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Antiferromagnetic Potts models

Let G = (V ,E ) be a finite graph. For each spin configuration
σ : V → {1, . . . , q}, define a Hamiltonian

H(σ) :=
∑
{x ,y}∈E

1{σ(x)=σ(y)},

and for each inverse temperature β ≥ 0, define a Gibbs measure

µβ(σ) :=
1

Zβ
e−βH(σ),

where the partition sum Zβ :=
∑

σ e−βH(σ) is just a normalization
constant. Then the probability measure µβ is the law of an
antiferromagnetic q-state Potts model.
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Zero temperature

In the zero temperature limit β →∞, we obtain the uniform
distribution on all q-colorings of the graph G , if any exist.
I.e., µ∞ is uniformly distributed on configurations σ such that
σ(x) 6= σ(y) for each edge {x , y} ∈ E .

By contrast, for the ferromagnetic model (the model with H
replaced by −H), the ground states are the constant configurations
σ(x) = σ(y) for each {x , y} ∈ E .
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Boundary conditions

Fix Λ ⊂ V and a configuration τ . Then the conditional law

µβ
(
σ |σ = τ on V \Λ

)
is a Gibbs measure corresponding to the Hamiltonian

HΛ(σ|τ) :=
∑
{x ,y}∈E
x ,y∈Λ

1{σ(x)=σ(y)} +
∑
{x ,y}∈E

x∈Λ, y∈V \Λ

1{σ(x)=τ(y)}.

This can be used to define infinite volume Gibbs measures through
the DLR conditions.

Uniqueness of the infinite volume Gibbs measure is equivalent to
the effect of the boundary conditions going to zero as Λ ↑ V .
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Ferromagnetic model

I Case q = 2 is the well-known Ising model.

I Model on Zd exhibits a phase transition from disorder to
long-range order at some 0 < βc <∞.

I Phase transition of second order for small q and first order for
large q.

I For Z2: second order for q < 4 and first order for q > 4
(proved for q = 2 and q > 25).
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Antiferromagnetic model

‘Facts’ believed to be true:

I For each dimension d , there is a qc such that the q-state
model on Zd has a phase transition only if q < qc.

I For q > qc, the model is disordered even at zero temperature.

I For q < qc, there is a βc such that the model is disordered for
β < βc and has long-range order for β > βc.

I For Z2, it is believed that qc = 3 and the 3-state model is
critical at zero temperature.
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Height mapping

Let h : Zd → Z satisfy

|h(x)− h(y)| = 1 if |x − y | = 1.

Then
σ(x) := h(x) mod(3)

is a 3-coloring.

Fact: The mapping h 7→ σ is a bijection, i.e.,
we can recover h from σ.
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Height mapping
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The red path can be deformed into the blue path so that the
height difference between the endpoints stays the same.
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Height mapping
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Simulations by Ron Peled of a random height mapping on a
100×100 square and the middle layer of a 100×100×100 cube.
Simulated using Propp-Wilson’s coupling from the past.

Jan M. Swart (Prague) Antiferromagnetic Potts models and random colorings



High dimension versus dimension two

Ron Peled (preprint 2010) has proved that for sufficiently high d , a
typical height-configuration is flat.
This implies (some form of) long-range order for the
zero-temperature, 3-state antiferromagnetic Potts model on Zd .

On the other hand, on Z2, the fluctuations of the height model are
believed to be of order log(system size). This is similar to wat is
known for dimer models (R. Kenyon).

Is this behavior universal in two-dimensional
AF 3-state Potts models?

NO.
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The diced lattice

Theorem (R. Kotecký, J. Salas & A.D. Sokal, 2008): The 3-state
antiferromagnetic Potts model on the diced lattice has long-range
order for β sufficiently large.
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The diced lattice

The diced lattice:

I Is bipartite.

I Is a quadrangulation.

I Admits a height
representation.

So why is it different from Z2?
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Asymmetry

Explanation 1: different densities of sublattices
For any bipartite graph, we can construct special 3-colorings by
using one color for one sublattice and reserving the other two
colors for the other sublattice.
This happens locally on Z2, but on larger scales, we see infinitely
many switchings between regions where one or the other sublattice
is monotonely colored.
For the diced lattice, the spatial density of points of one sublattice
is twice as high as for the other sublattice. Therefore, we can make
many more configurations if we reserve two colors for this
sublattice.
Effectively, this is like applying an external field that favors one
sublattice.
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Contour model

Explanation 2: contour model

We may view the sublattices as graphs on their own, connecting
vertices along the diagonals of quadrilaterals.
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Contour model

The two sublattices are dual in the sense of planar graph duality.
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Contour model
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We separate vertices of with different spins in the red sublattice by
contours in the green sublattice.
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Contour model
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Contours are collections of simple cycles, since vertices in the green
sublattice cannot be surrounded by three different types in the red
sublattice.
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Peierls argument

For vertices on a contour, only one type is available, while for
vertices that are not on a contour, 2 types are available. As a
result, the probability of a given cycle γ being present is less or
equal than 2−|γ|, where |γ| is the length of γ.

The expected number of cycles surrounding a given vertex can be
estimated by

∞∑
L=6

N(L)2−L,

where N(L) denotes the number of cycles of length L surrounding
a given vertex. Duminil-Copin and Smirnov (2010) have proved
that the connective constant of the honeycomb lattice is√

2 +
√

2. It follows that

N(L) ≤ constant×
(√

2 +
√

2
)L
.
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Peierls argument

Using moreover explicit counting of cycles up to length 140 due to
Jensen (2006), Kotecký, Salas & Sokal (2008) were able to prove
that for any vertex x in the red sublattice

P[x is surrounded by a cycle] <
2

3
.

Using 1-boundary conditions on the red sublattice and letting the
box size to infinity, it follows that there exists a zero-temperature
infinite-volume Gibbs measure µ∞ such that

µ∞
(
σ(x) = 1

)
>

1

3
.

In particular, this ‘positive magnetization’ proves Gibbs state
multiplicity and long range order.

Jan M. Swart (Prague) Antiferromagnetic Potts models and random colorings



More general lattices

We can prove Gibbs state multiplicity for more general lattices, as
long as the red sublattice is a triangulation.
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More general lattices

If the red sublattice is a triangulation, then each vertex in the
green sublattice has degree three.
Green cycles have at each vertex 2 choices where to go.
With a bit of work, this can be used to show that the connective
constant α of the green sublattice must be strictly less than 2.
As a result, the Peierls sum is finite:

∞∑
L=3

N(L)2−L ≤ constant×
∞∑

L=3

αL2−L <∞.
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More general lattices

This does not prove positive magnetization, but it does show that
very large cycles are unlikely.
As a result, we can show that for a sufficiently large, finite block
∆, there exists a zero-temperature infinite-volume Gibbs measure
µ∞ such that

µ∞
(
σ(x) = 1 ∀x ∈ ∆

)
� µ∞

(
σ(x) = i ∀x ∈ ∆

)
(i = 2, 3),

which is enough to prove Gibbs state multiplicity and long-range
order.
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Positive temperature

N(L,T )
≤ (LT/T !)2CT (α+ε)L,

where T is the number of
triple points.

The argument can be extended to small positive temperature by a
careful counting of non-simple contours.
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Open problems

I Prove positive magnetization.

I How different do the sublattices have to be to obtain a phase
transition?
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and one more question for the experts. . .

Our proofs apply whenever the red sublattice is a quasi-transitive,
3-connected, planar graph with one end, such that each face is
bounded by exactly three edges. This includes certain hyperbolic
lattices.

Does every quasi-transitive, 3-connected, planar graph with one
end have a periodic embedding in R2 or the hyperbolic plane?
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