Markov Process Duality

Jan M. Swart
Luminy, October 23 and 24, 2013

Markov Chains

S finite set. \mathbb{R}^{S} space of functions $f: S \rightarrow \mathbb{R}$.
For probability kernel $P=(P(x, y))_{x, y \in S}$ and $f \in \mathbb{R}^{S}$ define left and right multiplication as

$$
P f(x):=\sum_{y} P(x, y) f(y) \quad \text { and } \quad f P(x):=\sum_{y} f(y) P(y, x) .
$$

(I do not distinguish row and column vectors.)
Def Chain $X=\left(X_{k}\right)_{k \geq 0}$ of S-valued r.v.'s is Markov chain with transition kernel P and state space S if

$$
\begin{aligned}
& \mathbb{E}\left[f\left(X_{k+1}\right) \mid\left(X_{0}, \ldots, X_{k}\right)\right]=P f\left(X_{k}\right) \quad \text { a.s. } \quad\left(f \in \mathbb{R}^{S}\right) \\
& \quad \Leftrightarrow \quad \mathbb{P}\left[\left(X_{0}, \ldots, X_{k}\right)=\left(x_{0}, \ldots, x_{k}\right)\right] \\
& \quad=\mathbb{P}\left[X_{0}=x_{0}\right] P\left(x_{0}, x_{1}\right) \cdots P\left(x_{k-1}, x_{k}\right) .
\end{aligned}
$$

Write $\mathbb{P}^{\mu}, \mathbb{E}^{\mu}$ for process with initial law $\mu=\mathbb{P}^{\mu}\left[X_{0} \in \cdot\right]$. $\mathbb{P}^{x}:=\mathbb{P}^{\delta_{x}}$ with $\delta_{x}(y):=1_{\{x=y\}} . \mathbb{E}^{x}$ similar.

Markov Chains

Set

$$
\mu_{k}:=\mu P^{k}(x)=\mathbb{P}^{\mu}\left[X_{k}=x\right] \quad \text { and } \quad f_{k}:=P^{k} f(x)=\mathbb{E}^{x}\left[f\left(X_{k}\right)\right] .
$$

Then the forward and backward equations read

$$
\mu_{k+1}=\mu_{k} P \quad \text { and } \quad f_{k+1}=P f_{k} .
$$

In particular π invariant law iff $\pi P=\pi$.
Function harmonic iff $P h=h \Leftrightarrow h\left(X_{k}\right)$ martingale.

Random mapping representation

$\left(Z_{k}\right)_{k \geq 1}$ i.i.d. with common law ν, take values in (E, \mathcal{E}).
$\phi: S \times E \rightarrow S$ measurable

$$
P(x, y)=\mathbb{P}\left[\phi\left(x, Z_{1}\right)=y\right] .
$$

Random mapping representation ($E, \mathcal{E}, \nu, \phi$) always exists, highly non-unique.
X_{0} independent of $\left(Z_{k}\right)_{k \geq 1}$, then

$$
X_{k}:=\phi\left(X_{k-1}, Z_{k}\right) \quad(k \geq 1)
$$

defines Markov chain with transition kernel P. Example

$$
\begin{aligned}
& \text { if rand }<0.3 \\
& X=X+1 \\
& \text { else } \\
& X=X-1 \\
& \text { end }
\end{aligned}
$$

Continuous time

Markov semigroup $\left(P_{t}\right)_{t \geq 0}$ satisfies $P_{s} P_{t}=P_{s+t}, \lim _{t \downarrow 0} P_{t}=P_{0}=1$. Given by

$$
P_{t}=e^{t G}=\sum_{n=0}^{\infty} \frac{1}{n!} t^{n} G^{n}
$$

where generator G satisfies $G(x, y) \geq 0$ for $x \neq y$ and $\sum_{y} G(x, y)=0$. Def Process $X=\left(X_{t}\right)_{t \geq 0}$ is Markov with semigroup $\left(P_{t}\right)_{t \geq 0}$ and generator G if

$$
\begin{gathered}
\mathbb{E}\left[f\left(X_{u}\right) \mid\left(X_{s}\right)_{0 \leq s \leq t}\right]=P_{u-t} f\left(X_{t}\right) \quad \text { a.s. } \quad\left(f \in \mathbb{R}^{S}\right) . \\
P_{\varepsilon}(x, y)=1_{\{x=y\}}+\varepsilon G(x, y)+O\left(\varepsilon^{2}\right) \text { with } G(x, y) \text { jump rate. } \\
\mu_{t}:=\mu P_{t}(x)=\mathbb{P}^{\mu}\left[X_{t}=x\right] \quad \text { and } \quad f_{t}:=P_{t} f(x)=\mathbb{E}^{x}\left[f\left(X_{t}\right)\right]
\end{gathered}
$$

satisfy the forward and backward equations

$$
\frac{\partial}{\partial t} \mu_{t}=\mu_{t} G \quad \text { and } \quad \frac{\partial}{\partial t} f_{t}=G f_{t} .
$$

Also $\frac{\partial}{\partial t} P_{t}=G P_{t}=P_{t} G$.

Random mapping representation

Write

$$
G f(x)=\sum_{m \in \mathcal{M}} r_{m}(f(m(x))-f(x))
$$

with \mathcal{M} collection of maps $m: S \rightarrow S$ and $\left(r_{m}\right)_{m \in \mathcal{M}}$ nonnegative rates. Let Δ be a Poisson point subset of $\mathcal{M} \times \mathbb{R}$ with local intensity $r_{m} \mathrm{~d} t$, and set

$$
\begin{aligned}
\Delta_{s, u} & :=\{(m, t): s<t \leq u\} \\
& =:\left\{\left(m_{1}, t_{t}\right), \ldots,\left(m_{n}, t_{n}\right)\right\}, \quad t_{1}<\cdots<t_{n} .
\end{aligned}
$$

Then

$$
\Phi_{s, u}:=m_{n} \circ \cdots \circ m_{1} \quad \text { satisfy } \quad \Phi_{t, u} \circ \Phi_{s, t}=\Phi_{s, u} .
$$

If X_{0} independent of Δ, then

$$
X_{t}:=\Phi_{0, t}\left(X_{0}\right) \quad(t \geq 0)
$$

Markov process with generator G.

Duality

$X=\left(X_{t}\right)_{t \geq 0}$ Markov with state space S, generator G, semigroup $\left(P_{t}\right)_{t \geq 0}$. $Y=\left(Y_{t}\right)_{t \geq 0}$ Markov with state space R, generator H, semigroup $\left(Q_{t}\right)_{t \geq 0}$.

Def X and Y dual with duality function $\psi: S \times R \rightarrow \mathbb{R}$ iff

$$
\mathbb{E}^{x}\left[\psi\left(X_{t}, y\right)\right]=\mathbb{E}^{y}\left[\psi\left(x, Y_{t}\right)\right] \quad(t \geq 0)
$$

Implies more generally, if X and Y independent, then

$$
\mathbb{E}\left[\psi\left(X_{s}, Y_{t-s}\right)\right] \text { does not depend on } s \in[0, t]
$$

Equivalent formulations (with $A^{\dagger}(x, y):=A(y, x)$):

- $\sum_{x^{\prime}} P_{t}\left(x, x^{\prime}\right) \psi\left(x^{\prime}, y\right)=\sum_{y^{\prime}} \psi\left(x, y^{\prime}\right) Q_{t}\left(y, y^{\prime}\right)$,

Duality

$X=\left(X_{t}\right)_{t \geq 0}$ Markov with state space S, generator G, semigroup $\left(P_{t}\right)_{t \geq 0}$. $Y=\left(Y_{t}\right)_{t \geq 0}$ Markov with state space R, generator H, semigroup $\left(Q_{t}\right)_{t \geq 0}$.

Def X and Y dual with duality function $\psi: S \times R \rightarrow \mathbb{R}$ iff

$$
\mathbb{E}^{x}\left[\psi\left(X_{t}, y\right)\right]=\mathbb{E}^{y}\left[\psi\left(x, Y_{t}\right)\right] \quad(t \geq 0)
$$

Implies more generally, if X and Y independent, then

$$
\mathbb{E}\left[\psi\left(X_{s}, Y_{t-s}\right)\right] \text { does not depend on } s \in[0, t]
$$

Equivalent formulations (with $A^{\dagger}(x, y):=A(y, x)$):

- $\sum_{x^{\prime}} P_{t}\left(x, x^{\prime}\right) \psi\left(x^{\prime}, y\right)=\sum_{y^{\prime}} \psi\left(x, y^{\prime}\right) Q_{t}\left(y, y^{\prime}\right)$,
- $P_{t} \psi=\psi Q_{t}^{\dagger}$,

Duality

$X=\left(X_{t}\right)_{t \geq 0}$ Markov with state space S, generator G, semigroup $\left(P_{t}\right)_{t \geq 0}$. $Y=\left(Y_{t}\right)_{t \geq 0}$ Markov with state space R, generator H, semigroup $\left(Q_{t}\right)_{t \geq 0}$.

Def X and Y dual with duality function $\psi: S \times R \rightarrow \mathbb{R}$ iff

$$
\mathbb{E}^{x}\left[\psi\left(X_{t}, y\right)\right]=\mathbb{E}^{y}\left[\psi\left(x, Y_{t}\right)\right] \quad(t \geq 0)
$$

Implies more generally, if X and Y independent, then

$$
\mathbb{E}\left[\psi\left(X_{s}, Y_{t-s}\right)\right] \text { does not depend on } s \in[0, t]
$$

Equivalent formulations (with $A^{\dagger}(x, y):=A(y, x)$):

- $\sum_{x^{\prime}} P_{t}\left(x, x^{\prime}\right) \psi\left(x^{\prime}, y\right)=\sum_{y^{\prime}} \psi\left(x, y^{\prime}\right) Q_{t}\left(y, y^{\prime}\right)$,
- $P_{t} \psi=\psi Q_{t}^{\dagger}$,
- $G \psi=\psi H^{\dagger}$.

Duality

If the matrix ψ is invertible, then

$$
P_{t}=\psi Q_{t}^{\dagger} \psi^{-1}
$$

which relates the backward evolution of X to the forward evolution of Y. In general

$$
\pi \text { invariant for } Y \quad \Rightarrow \quad \psi \pi \text { harmonic for } X
$$

Proof $P_{t} \psi \pi=\psi Q_{t}^{\dagger} \pi=\psi\left(\pi Q_{t}\right)=\psi \pi$.
Similar: h harmonic for $Y \Rightarrow \psi h$ invariant under right-multiplication with P_{t} (in particular, if ψh is a probabiity distribution, then it is an invariant law).

Pathwise Duality

Def Maps $m: S \rightarrow S$ and $\hat{m}: R \rightarrow R$ are dual w.r.t. ψ if

$$
\psi(m(x), y)=\psi(x, \hat{m}(y)) \quad \forall x, y .
$$

Let

$$
\begin{aligned}
& G f(x)=\sum_{m \in \mathcal{M}} r_{m}(f(m(x))-f(x)), \\
& H f(y)=\sum_{m \in \mathcal{M}} r_{m}(f(\hat{m}(y))-f(y)) .
\end{aligned}
$$

Lemma For each $t>0, X$ and Y can be coupled such that $\left(X_{u}\right)_{0 \leq u \leq s}$ and $\left(Y_{u}\right)_{0 \leq u \leq t-s}$ independent and

$$
\psi\left(X_{s-}, Y_{t-s}\right) \quad \text { a.s. } \quad \text { does not depend on } s \in[0, t] .
$$

Pathwise Duality

Proof Set

$$
\begin{aligned}
\Delta_{s-, u-} & :=\{(m, t): s \leq t<u\} \\
& =:\left\{\left(m_{1}, t_{t}\right), \ldots,\left(m_{n}, t_{n}\right)\right\}, \quad t_{1}<\cdots<t_{n} .
\end{aligned}
$$

Then

$$
\hat{\Phi}_{s-, u-}:=\hat{m}_{1} \circ \cdots \circ \hat{m}_{n} \quad \text { dual to } \quad \Phi_{s-, u-}:=m_{n} \circ \cdots \circ m_{1} .
$$

For fixed $t>0$, observe that $Y_{s}:=\hat{\Phi}_{(t-s)-, t-}\left(Y_{0}\right)(s \geq 0)$ Markov with generator H. Then

$$
\psi\left(X_{s-}, Y_{t-s}\right)=\psi\left(\Phi_{0-, s-}\left(X_{0}\right), \hat{\Phi}_{s-, t-}\left(Y_{0}\right)\right)=\psi\left(\Phi_{0-, t-}\left(X_{0}\right), Y_{0}\right)
$$

does not depend on $s \in[0, t]$.

A formal dual

$\mathcal{P}(S):=$ set of all subsets of S. For $m: S \rightarrow S$ define
$m^{-1}: \mathcal{P}(S) \rightarrow \mathcal{P}(S)$ by $m^{-1}(A):=\{x: m(x) \in A\}$ inverse image.
Observe m^{-1} dual to m w.r.t. $\psi(x, A):=1_{\{x \in A\}}$:

$$
\psi(m(x), A)=1_{\{m(x) \in A\}}=1_{\left\{x \in m^{-1}(A)\right\}}=\psi\left(x, m^{-1}(A)\right) .
$$

Consequence X dual to set-valued process \mathcal{X} with generator

$$
\mathcal{G} f(A)=\sum_{m \in \mathcal{M}} r_{m}\left(f\left(m^{-1}(A)\right)-f(A)\right)
$$

Question Does the large $\left(|\mathcal{P}(S)|=2^{|S|}\right)$ space $\mathcal{P}(\Lambda)$ contain any useful subspaces that are invariant under the dynamics of \mathcal{X} ?

Partial Order

Recall that a partial order over S is a relation \leq s.t.

- $x \leq x$,

A partial order is a total order if

Let S, S^{\prime} be partially ordered. Then $m: S \rightarrow S^{\prime}$ is monotone if

$$
x \leq y \quad \Rightarrow \quad m(x) \leq m(y) .
$$

A set $A \subset S$ is increasing (decreasing) if $1_{A}: S \rightarrow\{0,1\}$ monotone (resp.
$1-1_{A}$ monotone).
Observe $m: S \rightarrow S$ monotone iff

Partial Order

Recall that a partial order over S is a relation \leq s.t.

- $x \leq x$,
- $x \leq y$ and $y \leq x$ implies $x=y$,

A partial order is a total order if

Let S, S^{\prime} be partially ordered. Then $m: S \rightarrow S^{\prime}$ is monotone if

$$
x \leq y \quad \Rightarrow \quad m(x) \leq m(y) .
$$

A set $A \subset S$ is increasing (decreasing) if $1_{A}: S \rightarrow\{0,1\}$ monotone (resp. $1-1_{A}$ monotone).

Observe $m: S \rightarrow S$ monotone iff

Partial Order

Recall that a partial order over S is a relation \leq s.t.

- $x \leq x$,
- $x \leq y$ and $y \leq x$ implies $x=y$,
- $x \leq y \leq z$ implies $x \leq z$.

A partial order is a total order if

Let S, S^{\prime} be partially ordered. Then $m: S \rightarrow S^{\prime}$ is monotone if

$$
x \leq y \quad \Rightarrow \quad m(x) \leq m(y) .
$$

A set $A \subset S$ is increasing (decreasing) if $1_{A}: S \rightarrow\{0,1\}$ monotone (resp. $1-1_{A}$ monotone).

Observe $m: S \rightarrow S$ monotone iff

Partial Order

Recall that a partial order over S is a relation \leq s.t.

- $x \leq x$,
- $x \leq y$ and $y \leq x$ implies $x=y$,
- $x \leq y \leq z$ implies $x \leq z$.

A partial order is a total order if

- $x \leq y$ or $y \leq x$ for all $x, y \in S, x \neq y$.

Let S, S^{\prime} be partially ordered. Then $m: S \rightarrow S^{\prime}$ is monotone if

$$
x \leq y \quad \Rightarrow \quad m(x) \leq m(y) .
$$

A set $A \subset S$ is increasing (decreasing) if $1_{A}: S \rightarrow\{0,1\}$ monotone (resp. $1-1_{A}$ monotone).

Observe $m: S \rightarrow S$ monotone iff

Partial Order

Recall that a partial order over S is a relation \leq s.t.

- $x \leq x$,
- $x \leq y$ and $y \leq x$ implies $x=y$,
- $x \leq y \leq z$ implies $x \leq z$.

A partial order is a total order if

- $x \leq y$ or $y \leq x$ for all $x, y \in S, x \neq y$.

Let S, S^{\prime} be partially ordered. Then $m: S \rightarrow S^{\prime}$ is monotone if

$$
x \leq y \quad \Rightarrow \quad m(x) \leq m(y) .
$$

A set $A \subset S$ is increasing (decreasing) if $1_{A}: S \rightarrow\{0,1\}$ monotone (resp. $1-1_{A}$ monotone).

Observe $m: S \rightarrow S$ monotone iff

- A increasing $\Rightarrow m^{-1}(A)$ increasing,

Partial Order

Recall that a partial order over S is a relation \leq s.t.

- $x \leq x$,
- $x \leq y$ and $y \leq x$ implies $x=y$,
- $x \leq y \leq z$ implies $x \leq z$.

A partial order is a total order if

- $x \leq y$ or $y \leq x$ for all $x, y \in S, x \neq y$.

Let S, S^{\prime} be partially ordered. Then $m: S \rightarrow S^{\prime}$ is monotone if

$$
x \leq y \quad \Rightarrow \quad m(x) \leq m(y) .
$$

A set $A \subset S$ is increasing (decreasing) if $1_{A}: S \rightarrow\{0,1\}$ monotone (resp. $1-1_{A}$ monotone).

Observe $m: S \rightarrow S$ monotone iff

- A increasing $\Rightarrow m^{-1}(A)$ increasing,
- A decreasing $\Rightarrow m^{-1}(A)$ decreasing.

Partial Order

Def $x \in A$ minimal element if

$$
x^{\prime} \neq x, x^{\prime} \leq x \Rightarrow x^{\prime} \notin A .
$$

Def The episet of a set B is the increasing set

$$
B^{\uparrow}:=\{y: y \geq x \text { for some } x \in B\} .
$$

Lemma A finite increasing set, $A_{\text {min }}$ set of minimal elements, then

$$
A=\left(A_{\min }\right)^{\uparrow} .
$$

Def $\mathcal{P}_{\text {inc }}(\Lambda):=$ set of increasing subsets of Λ,
$\mathcal{P}_{\text {linc }}(\Lambda):=$ set of increasing subsets of Λ that have a unique minimal element.

Similarly maximal element, hyposet $B^{\downarrow}, \mathcal{P}_{\text {dec }}(\Lambda), \mathcal{P}_{\text {Idec }}(\Lambda)$.

Monotone Systems Duality

Observe The condition

$$
\text { (*) } \quad A \in \mathcal{P}_{\text {!inc }} \Rightarrow m^{-1}(A) \in \mathcal{P}_{\text {!inc }}
$$

is stronger than saying that m is monotone. But if S totally ordered almost the same since $\mathcal{P}_{\text {linc }}(\Lambda)=\mathcal{P}_{\text {inc }}(\Lambda) \backslash\{\emptyset\}$.

Proposition For each $m: S \rightarrow S$ satisfying (*), there exists a unique $\hat{m}: S \rightarrow S$ such that

$$
\psi(m(x), y)=\psi(x, \hat{m}(y)) \quad \text { with } \quad \psi(x, y):=1_{\{x \geq y\}} .
$$

Moreover, \hat{m} satisfies

$$
(\dagger) \quad A \in \mathcal{P}_{!\text {dec }} \Rightarrow \hat{m}^{-1}(A) \in \mathcal{P}_{!\text {dec }} .
$$

Monotone Systems Duality

Proof We need

$$
1_{\{m(x) \geq y\}}=1_{\{x \geq \hat{m}(y)\}} \quad \forall x, y,
$$

which says that

$$
m^{-1}\left(\{y\}^{\uparrow}\right)=\{x: m(x) \geq y\}=\{x: x \geq \hat{m}(y)\}=\{\hat{m}(y)\}^{\uparrow} .
$$

A map \hat{m} with this property exists iff m satisfies (*), and \hat{m} is clearly unique. Moreover

$$
\hat{m}^{-1}\left(\{x\}^{\downarrow}\right)=\{y: \hat{m}(y) \leq x\}=\{y: y \leq m(x)\}=\{m(x)\}^{\downarrow}
$$

which proves that \hat{m} maps the space $\mathcal{P}_{\text {!dec }}(S)$ into itself.

Monotone Systems Duality

Def A Markov process X monotone if generator of the form

$$
G f(x)=\sum_{m \in \mathcal{M}} r_{m}(f(m(x))-f(x))
$$

with \mathcal{M} a collection of monotone maps.
Observe If moreover each $m \in \mathcal{M}$ maps $\mathcal{P}_{\text {!inc }}(S)$ into itself, then X is pathwise dual to the process Y with generator

$$
H f(y)=\sum_{m \in \mathcal{M}} r_{m}(f(\hat{m}(y))-f(y))
$$

in the sense that for each $t>0, X, Y$ can be coupled s.t.

$$
\left\{X_{s-} \geq Y_{t-s}\right\}
$$

a.s. does not depend on $s \in[0, t]$.

Birth-and-death processes

Let $S:=\{0, \ldots, n\}$ and define

$$
\begin{aligned}
& \operatorname{birth}_{z}(x):= \begin{cases}x+1 & \text { if } x+1=z \\
x & \text { otherwise }\end{cases} \\
& \operatorname{death}_{z}(x):= \begin{cases}x-1 & \text { if } x=z \\
x & \text { otherwise }\end{cases}
\end{aligned}
$$

Then

$$
\widehat{\operatorname{birth}}_{z}=\operatorname{death}_{z} \quad \text { and } \quad \widehat{\operatorname{death}}_{z}=\operatorname{birth}_{z+1} .
$$

Birth-and-death process X with generator

$$
G f(x)=\sum_{z=1}^{n} b_{z}\left(f\left(\operatorname{birth}_{z}(x)\right)-f(x)\right)+\sum_{z=1}^{n-1} d_{z}\left(f\left(\operatorname{death}_{z}(x)\right)-f(x)\right)
$$

dual to process X^{\prime} with

$$
d_{z}^{\prime}=b_{z} \quad \text { and } \quad b_{z+1}^{\prime}=d_{z}
$$

Birth-and-death processes

Additive Systems Duality

Let $S=\mathcal{P}(\Lambda)$ where Λ is a finite set.
Assume Z and Y have generators

$$
\begin{aligned}
& G f(z)=\sum_{n \in \mathcal{M}} r_{n}(f(n(z))-f(z)) \\
& H f(y)=\sum_{n \in \mathcal{M}} r_{n}(f(\hat{n}(y))-f(y))
\end{aligned}
$$

where each n^{-1} maps $\mathcal{P}_{\text {!inc }}(\Lambda)$ into itself and each \hat{n}^{-1} maps $\mathcal{P}_{\text {!dec }}(\Lambda)$ into itself, so Z and Y dual w.r.t.

$$
\psi(z, y):=1_{\{z \geq y\}}
$$

Replace Z_{t} by $X_{t}:=Z_{t}^{c}=\Lambda \backslash Z_{t}$, replace map n by

$$
m(x):=n\left(x^{\mathrm{c}}\right)^{\mathrm{c}}
$$

and set $m^{\dagger}:=\hat{n}$. Then m, m^{\dagger} both map $\mathcal{P}_{!\operatorname{dec}}(\Lambda)$ into itself and X, Y are dual w.r.t.

$$
\psi(x, y):=1_{\{x \cap y \neq \emptyset\}}
$$

Additive Systems Duality

Def $m: \mathcal{P}(\Lambda) \rightarrow \mathcal{P}(\Lambda)$ is additive if

$$
m(\emptyset)=\emptyset \quad \text { and } \quad m(x \cup y)=m(x) \cup m(y) \quad(x, y \in \mathcal{P}(\Lambda)) .
$$

Proposition Then the following statements are equivalent.
(i) $m^{-1}(A) \in \mathcal{P}_{\text {!dec }}(\mathcal{P}(\Lambda))$ for all $A \in \mathcal{P}_{\text {!dec }}(\mathcal{P}(\Lambda))$.

Def A Markov process X additive if generator of the form

$$
G f(x)=\sum_{m \in \mathcal{M}} r_{m}(f(m(x))-f(x))
$$

with \mathcal{M} a collection of additive maps.

Additive Systems Duality

Def $m: \mathcal{P}(\Lambda) \rightarrow \mathcal{P}(\Lambda)$ is additive if

$$
m(\emptyset)=\emptyset \quad \text { and } \quad m(x \cup y)=m(x) \cup m(y) \quad(x, y \in \mathcal{P}(\Lambda)) .
$$

Proposition Then the following statements are equivalent.
(i) $m^{-1}(A) \in \mathcal{P}_{\text {!dec }}(\mathcal{P}(\Lambda))$ for all $A \in \mathcal{P}_{\text {!dec }}(\mathcal{P}(\Lambda))$.
(ii) There exists a unique m^{\dagger} such that $1_{\{m(x) \cap y \neq \emptyset\}}=1_{\left\{x \cap m^{\dagger}(y) \neq \emptyset\right\}}$.

Def A Markov process X additive if generator of the form

$$
G f(x)=\sum_{m \in \mathcal{M}} r_{m}(f(m(x))-f(x))
$$

with \mathcal{M} a collection of additive maps.

Additive Systems Duality

Def $m: \mathcal{P}(\Lambda) \rightarrow \mathcal{P}(\Lambda)$ is additive if

$$
m(\emptyset)=\emptyset \quad \text { and } \quad m(x \cup y)=m(x) \cup m(y) \quad(x, y \in \mathcal{P}(\Lambda)) .
$$

Proposition Then the following statements are equivalent.
(i) $m^{-1}(A) \in \mathcal{P}_{\text {!dec }}(\mathcal{P}(\Lambda))$ for all $A \in \mathcal{P}_{\text {!dec }}(\mathcal{P}(\Lambda))$.
(ii) There exists a unique m^{\dagger} such that $1_{\{m(x) \cap y \neq \emptyset\}}=1_{\left\{x \cap m^{\dagger}(y) \neq \emptyset\right\}}$.
(iii) m is additive.

Def A Markov process X additive if generator of the form

$$
G f(x)=\sum_{m \in \mathcal{M}} r_{m}(f(m(x))-f(x))
$$

with \mathcal{M} a collection of additive maps.

Additive Systems Duality

Proof (i) \Rightarrow (ii): monotone systems duality applied to X^{c} and Y.
(ii) \Rightarrow (iii):

$$
m(\emptyset)=\{i \in \Lambda:\{i\} \cap m(\emptyset) \neq \emptyset\}=\left\{i \in \Lambda: m^{\dagger}(\{i\}) \cap \emptyset \neq \emptyset\right\}=\emptyset,
$$

and

$$
\begin{aligned}
& m\left(x \cup x^{\prime}\right)=\left\{i \in \Lambda:\{i\} \cap m\left(x \cup x^{\prime}\right) \neq \emptyset\right\}=\left\{i \in \Lambda: m^{\dagger}(\{i\}) \cap\left(x \cup x^{\prime}\right) \neq \emptyset\right\} \\
& \quad=\left\{i \in \Lambda: m^{\dagger}(\{i\}) \cap x \neq \emptyset\right\} \cup\left\{i \in \Lambda: m^{\dagger}(\{i\}) \cap x^{\prime} \neq \emptyset\right\}=m(x) \cup m\left(x^{\prime}\right) .
\end{aligned}
$$

(iii) \Rightarrow (i): Setting $\hat{m}(y):=\{i \in \Lambda: m(\{i\}) \subset y\}$, one has

$$
m^{-1}\left(\{y\}^{\downarrow}\right)=\{x: m(x) \subset y\}=\left\{x: \bigcup_{i \in x} m(\{i\}) \subset y\right\}=\{\hat{m}(y)\}^{\downarrow},
$$

proving that m^{-1} maps $\mathcal{P}_{\mathrm{I} \operatorname{dec}}(\mathcal{P}(\Lambda))$ into itself.

Additive Systems Duality

Def $m(i, j):=1_{\{j \in m(\{i\})\}}$. Then: Lemma $m^{\dagger}(i, j)=m(j, i)$.
In the graphical representation, we draw Λ horizontaly, time vertically, and for each $(m, t) \in \Delta$, we draw:
an arrow from (i, t) to (j, t) for each $i, j \in \Lambda, i \neq j$ such that $m(i, j)=1$, a blocking symbol $=$ at (i, t) for each $i \in \Lambda$ such that $m(i, i)=0$.

Write $(i, s) \rightsquigarrow(j, t)$ if there is an open path γ from $\gamma_{s}=i$ to $\gamma_{t}=j$ that may use arrows and avoids blocking symbols. Then

$$
\begin{aligned}
X_{s} & :=\left\{j \in \Lambda: \exists i \in X_{0} \text { s.t. }(i, 0) \rightsquigarrow(j, s)\right\}, \\
Y_{s-} & :=\left\{i \in \Lambda: \exists j \in Y_{0} \text { s.t. }(i, t-s) \rightsquigarrow(j, t)\right\} .
\end{aligned}
$$

The dual process runs downward in time and uses arrows in the reverse order.

The voter model

Define

$$
\operatorname{vot}_{i, j}(x):= \begin{cases}x \cup\{j\} & \text { if } i \in x \\ x \backslash\{j\} & \text { if } i \notin x\end{cases}
$$

Fix $p(i, j) \geq 0$. In the voter model with generator

$$
G_{\mathrm{vot}} f(x):=\sum_{i \neq j} p(i, j)\left(f\left(\operatorname{vot}_{i, j}(x)\right)-f(x)\right),
$$

site j adopts the type of site j with rate $p(i, j)$.
Dual map

$$
\mathrm{rw}_{j, i}(x):= \begin{cases}(x \backslash\{j\}) \cup\{i\} & \text { if } j \in x \\ x & \text { if } j \notin x\end{cases}
$$

Dual process Y with generator

$$
G_{\mathrm{rw}} f(y):=\sum_{i \neq j} p(i, j)\left(f\left(\mathrm{rw}_{j, i}(y)\right)-f(y)\right)
$$

is system of coalescing random walks.

The voter model

$\left\{X_{t} \cap Y_{0} \neq \emptyset\right\}=\left\{\exists\right.$ open path from X_{0} to $\left.Y_{0}\right\}=\left\{X_{0} \cap Y_{t} \neq \emptyset\right\}$.

The contact process

Interpret $X_{t}=$ set of infected sites.

$$
\begin{array}{rlr}
\operatorname{rec}_{i}(x) & :=x \backslash\{i\} & (i \in \Lambda), \\
\inf _{i, j}(x) & := \begin{cases}x \cup\{j\} & \text { if } i \in \Lambda \\
x & \text { otherwise, }\end{cases} & (i, j \in \Lambda, i \neq j) .
\end{array}
$$

The contact process with recovery rate δ and infection rates $\lambda(i, j)$ has generator

$$
G_{\text {cont }} f(x):=\delta \sum_{i}\left(f\left(\operatorname{rec}_{i}(x)\right)-f(x)\right)+\sum_{i \neq j} \lambda(i, j)\left(f\left(\inf _{i, j}(x)\right)-f(x)\right) .
$$

(Self-) dual to process with reversed infection rates $\lambda^{\dagger}(i, j):=\lambda(j, i)$.

The contact process

$\left\{X_{t} \cap Y_{0} \neq \emptyset\right\}=\left\{\exists\right.$ open path from X_{0} to $\left.Y_{0}\right\}=\left\{X_{0} \cap Y_{t} \neq \emptyset\right\}$.

Linear systems duality

Let S be (a subspace of) \mathbb{R}^{\wedge}, with Λ a finite set.
Def A Markov process X is linear if its generator has a representation

$$
G f(x)=\sum_{m \in \mathcal{M}} r_{m}(f(m(x))-f(x))
$$

with each $m \in \mathcal{M}$ a linear map $m: \mathbb{R}^{\wedge} \rightarrow \mathbb{R}^{\wedge}$. The adjoint $m^{\dagger}(i, j):=m(j, i)$ is dual w.r.t. the duality function

$$
\psi(x, y):=\langle x, y\rangle:=\sum_{i \in \Lambda} x(i) y(i) .
$$

Graphical representation
an arrow with weight $m(i, j)$ from (i, t) to (j, t) for each $i, j \in \Lambda$ with $i \neq j$ such that $m(i, j) \neq 0$,
a symbol - with weight $m(i, i)$ at (i, t) for each $i \in \Lambda$ such that $m(i, i) \neq 1$.

Each path has weight $=$ product of arrows and - on the path.

The contact path process

$$
\begin{aligned}
& \left\langle X_{t}, Y_{0}\right\rangle=\left\langle X_{0}, Y_{t}\right\rangle \\
& \quad=\sum_{i, j} X_{0}(i) \cdot \#\{\text { open paths }(i, 0) \rightsquigarrow(j, t)\} \cdot Y_{0}(j) .
\end{aligned}
$$

Cancellative Systems Duality

The set $\{0,1\}$ with the usual product and with addition modulo 2 , denoted by \oplus, is a finite field.

We may view $\{0,1\}^{\wedge} \cong \mathcal{P}(\Lambda)$ as a linear space over $\{0,1\}$.
A map $m:\{0,1\}^{\wedge} \rightarrow\{0,1\}^{\wedge}$ is linear iff

$$
m x(i)=\bigoplus_{j} m(i, j) x(j)
$$

where $m(i, j) \in\{0,1\}$ form the matrix of m. Adjoint matrix m^{\dagger} dual w.r.t.

$$
\psi(x, y)=\langle x, y\rangle:=\bigoplus_{i} x(i) y(i) .
$$

In the graphical representation, each arrow has weight 1 and each $\boldsymbol{\text { a }}$ has weight 0 .

The voter model revisited

The voter model map vot ${ }_{i, j}$ is linear mod 2 and dual to

$$
\operatorname{ann}_{i . j}(y)(k)=\left\{\begin{array}{l}
0 \quad \text { if } k=i, \\
y(i) \oplus y(j) \quad \text { if } k=j \\
y(k) \quad \text { otherwise }
\end{array}\right.
$$

Dual process Y with generator

$$
G_{\mathrm{ann}} f(y):=\sum_{i \neq j} p(i, j)\left(f\left(\operatorname{ann}_{j, i}(y)\right)-f(y)\right)
$$

is system of annihilating random walks.

The voter model revisited

$$
\begin{aligned}
& \left\langle X_{t}, Y_{0}\right\rangle=\left\langle X_{0}, Y_{t}\right\rangle \\
& \quad=1_{\left\{\# \text { paths from } X_{0} \text { to } Y_{0} \text { is odd }\right\}} .
\end{aligned}
$$

Applications of duality

- Characterization of a 'difficult' invariant law (e.g. the upper invariant law of the contact process) in terms of a 'simple' harmonic function of the dual process (e.g. the survival probability).

Applications of duality

- Characterization of a 'difficult' invariant law (e.g. the upper invariant law of the contact process) in terms of a 'simple' harmonic function of the dual process (e.g. the survival probability).
- Equality of critical points (e.g. survival and nontriviality of the invariant law for the contact process, invadeability and coexistence for rebellious voter models).

Applications of duality

- Characterization of a 'difficult' invariant law (e.g. the upper invariant law of the contact process) in terms of a 'simple' harmonic function of the dual process (e.g. the survival probability).
- Equality of critical points (e.g. survival and nontriviality of the invariant law for the contact process, invadeability and coexistence for rebellious voter models).
- Uniqueness of the invariant law and ergodicity. (Often by proving 'extinction versus unbounded growth' for the dual.)

Applications of duality

- Characterization of a 'difficult' invariant law (e.g. the upper invariant law of the contact process) in terms of a 'simple' harmonic function of the dual process (e.g. the survival probability).
- Equality of critical points (e.g. survival and nontriviality of the invariant law for the contact process, invadeability and coexistence for rebellious voter models).
- Uniqueness of the invariant law and ergodicity. (Often by proving 'extinction versus unbounded growth' for the dual.)
- Explicit estimates based on subduality. (E.g. for the density of branching-coalescing particle systems, cooperative branching.)

Applications of duality

- Characterization of a 'difficult' invariant law (e.g. the upper invariant law of the contact process) in terms of a 'simple' harmonic function of the dual process (e.g. the survival probability).
- Equality of critical points (e.g. survival and nontriviality of the invariant law for the contact process, invadeability and coexistence for rebellious voter models).
- Uniqueness of the invariant law and ergodicity. (Often by proving 'extinction versus unbounded growth' for the dual.)
- Explicit estimates based on subduality. (E.g. for the density of branching-coalescing particle systems, cooperative branching.)
- Finding 'difficult' harmonic functions in terms of 'simple' invariant laws of the dual process. (E.g. Vandermonde determinant based on noncrossing duality, strong interface tightness implies noncoexistence.)

Applications of duality

- Characterization of a 'difficult' invariant law (e.g. the upper invariant law of the contact process) in terms of a 'simple' harmonic function of the dual process (e.g. the survival probability).
- Equality of critical points (e.g. survival and nontriviality of the invariant law for the contact process, invadeability and coexistence for rebellious voter models).
- Uniqueness of the invariant law and ergodicity. (Often by proving 'extinction versus unbounded growth' for the dual.)
- Explicit estimates based on subduality. (E.g. for the density of branching-coalescing particle systems, cooperative branching.)
- Finding 'difficult' harmonic functions in terms of 'simple' invariant laws of the dual process. (E.g. Vandermonde determinant based on noncrossing duality, strong interface tightness implies noncoexistence.)
- Subinvariant laws (Holley-Liggett upper bound on critical point for the contact process).

Lloyd-Sudbury duals

Let Λ be an undirected graph. Let X be a Markov process with state space $\mathcal{P}(\Lambda) \cong\{0,1\}^{\wedge}$ such that for each edge $\{i, j\}$, the local state $(x(i), x(j))$ performs

$$
\begin{array}{rll}
\text { annihilation } & 11 \mapsto 00 \quad \text { with rate } a, \\
\text { branching } & 01 \mapsto 11 \quad \text { with rate } b, \\
\text { coalescence } & 11 \mapsto 01 \quad \text { with rate } c, \\
\text { death } & 01 \mapsto 00 \quad \text { with rate } d, \\
\text { exclusion } & 01 \mapsto 10 & \text { with rate } e,
\end{array}
$$

with similar rates for transitions that are mirror images of these.
This is the most general interacting particle system with only two-point interactions, for which \emptyset is a trap.

Lloyd-Sudbury duals

[Lloyd and Sudbury ('95, '97, '00)] Let X and X^{\prime} be given by rates $a, b, c, d, e \geq 0$ resp. $a^{\prime}, b^{\prime}, c^{\prime}, d^{\prime}, e^{\prime} \geq 0$ satisfying
$a^{\prime}=a+2 q \gamma, \quad b^{\prime}=b+\gamma, \quad c^{\prime}=c-(1+q) \gamma, \quad d^{\prime}=d+\gamma, \quad e^{\prime}=e-\gamma$, where $\gamma:=(a+c-d+q b) /(1-q)$. Then

$$
\mathbb{E}\left[q^{\left|X_{t} \cap X_{0}^{\prime}\right|}\right]=\mathbb{E}\left[q^{\left|X_{0} \cap X_{t}^{\prime}\right|}\right]
$$

Example $1 q=0$ gives

$$
{ }_{0}|x \cap y|=1_{\{x \cap y=\emptyset\}} \quad \text { additive duality. }
$$

Example $2 q=-1$ gives

$$
(-1)^{|x \cap y|}=1-2 \bigoplus_{i} x(i) y(i) \quad \text { cancellative duality. }
$$

Lloyd-Sudbury duals

Proof (sketch) Write the space of all functions $f:\{0,1\}^{\wedge} \rightarrow \mathbb{R}$ as a tensor product

$$
\mathbb{R}^{S}=\mathbb{R}^{\{0,1\}^{\wedge}} \cong \bigotimes_{i \in \Lambda} \mathbb{R}^{\{0,1\}}
$$

Write the generator G as $G=\sum_{\{i, j\}} G_{i j}$ where we sum over all edges of the graph and $G_{i j}$ acts only on the coordinates i and j, and similarly $H=\sum_{\{i, j\}} H_{i j}$.
Write ψ as the commutative product $\psi=\prod_{i} \psi_{i}$ where ψ_{i} is an operator that acts only on coordinate i.
For $k \neq i, j, \psi_{k}$ commutes with $G_{i j}$, so suffices to check for each edge $\{i, j\}$

$$
G_{i j} \psi_{i} \psi_{j}=\psi_{i} \psi_{j} H_{i j}^{\dagger}
$$

Lloyd-Sudbury duals

$$
\begin{gathered}
G_{i j}=\left(\begin{array}{cccc}
\cdot & 0 & 0 & 0 \\
d & \cdot & e & b \\
d & e & \cdot & b \\
a & c & c & \cdot
\end{array}\right) \text { and } H_{i j}^{\dagger}=\left(\begin{array}{cccc}
\cdot & d^{\prime} & d^{\prime} & a^{\prime} \\
0 & \cdot & e^{\prime} & c^{\prime} \\
0 & e^{\prime} & \cdot & c^{\prime} \\
0 & b^{\prime} & b^{\prime} & \cdot
\end{array}\right) \\
\psi_{i}=\left(\begin{array}{ll}
1 & 1 \\
1 & q
\end{array}\right) \quad \text { and } \psi_{i} \psi_{j}=\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & q & 1 & q \\
1 & 1 & q & q \\
1 & q & q & q^{2}
\end{array}\right) .
\end{gathered}
$$

Now brutal calculation. Can simplify a bit by using

$$
G_{i j}\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{array}\right)=0=\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{array}\right) H_{i j}^{\dagger}
$$

Duals of the voter model

Voter model X has

$$
a=0, \quad b=1, \quad c=0, \quad d=1, \quad e=0 .
$$

For each $0 \leq \alpha \leq 1 q$-dual with $q:=-\alpha$ to the process Y with generator

$$
H f(y)=\sum_{\{i, j\}}\left\{\alpha\left(f\left(\operatorname{ann}_{i, j}(y)\right)-f(y)\right)+(1-\alpha)\left(f\left(\mathrm{rw}_{i, j}(y)\right)-f(y)\right)\right\} .
$$

$\alpha=0$ gives coalescing random walks, $\alpha=1$ gives annihilating random walks.
Extension to biased voter model and branching-coalescing-annihilating random walk (exercise).

Applications of intertwining

- Interlacing of non-crossing random walks (Patrik Ferrari).

Applications of intertwining

- Interlacing of non-crossing random walks (Patrik Ferrari).
- Skeleton decomposition of superprocesses (Maren Eckhoff).

Applications of intertwining

- Interlacing of non-crossing random walks (Patrik Ferrari).
- Skeleton decomposition of superprocesses (Maren Eckhoff).
- Look-down construction of Fleming-Viot process.

Applications of intertwining

- Interlacing of non-crossing random walks (Patrik Ferrari).
- Skeleton decomposition of superprocesses (Maren Eckhoff).
- Look-down construction of Fleming-Viot process.
- Strong mixing times.

Applications of intertwining

- Interlacing of non-crossing random walks (Patrik Ferrari).
- Skeleton decomposition of superprocesses (Maren Eckhoff).
- Look-down construction of Fleming-Viot process.
- Strong mixing times.
- Convergence to quasi-invariant laws, metastability.

Applications of intertwining

- Interlacing of non-crossing random walks (Patrik Ferrari).
- Skeleton decomposition of superprocesses (Maren Eckhoff).
- Look-down construction of Fleming-Viot process.
- Strong mixing times.
- Convergence to quasi-invariant laws, metastability.
- Lower bounds on the survival probability for hierarchical contact proceses.

Applications of intertwining

- Interlacing of non-crossing random walks (Patrik Ferrari).
- Skeleton decomposition of superprocesses (Maren Eckhoff).
- Look-down construction of Fleming-Viot process.
- Strong mixing times.
- Convergence to quasi-invariant laws, metastability.
- Lower bounds on the survival probability for hierarchical contact proceses.
- Linking 'difficult', non-monotone systems to easier monotone systems.

Applications of intertwining

- Interlacing of non-crossing random walks (Patrik Ferrari).
- Skeleton decomposition of superprocesses (Maren Eckhoff).
- Look-down construction of Fleming-Viot process.
- Strong mixing times.
- Convergence to quasi-invariant laws, metastability.
- Lower bounds on the survival probability for hierarchical contact proceses.
- Linking 'difficult', non-monotone systems to easier monotone systems.
- Processes with multiple time scales.

Autonomous Markov chain

Let $X=\left(X_{k}\right)_{k \geq 0}$ a Markov chain with state space S and transition kernel P, an let $f: S \rightarrow R$ be surjective.
Def $\left(Y_{k}\right)_{k \geq 0}=\left(f\left(X_{k}\right)\right)_{k \geq 0}$ is autonomous (also called lumpable) if

$$
f(x)=f\left(x^{\prime}\right) \text { implies } \mathbb{P}^{x}\left[f\left(X_{1}\right)=y\right]=\mathbb{P}^{x^{\prime}}\left[f\left(X_{1}\right)=y\right] .
$$

Lemma Y autonomous $\Rightarrow Y$ on its own Markov with transition kernel

$$
Q\left(y, y^{\prime}\right):=\mathbb{P}^{x}\left[f\left(X_{1}\right)=y^{\prime}\right]=\sum_{x^{\prime} \in S} 1_{\left\{f\left(x^{\prime}\right)=y\right\}} P\left(x, x^{\prime}\right) .
$$

(Y is sometimes called a lumped Markov chain.)

Markov functionals

X Markov chain with state space S and transition kernel P.
[Rogers \& Pitman '81] Let $f: S \rightarrow R$ be surjective and let $K(y, x)$ be a probability kernel from R to S s.t.

$$
K(y, x)=0 \quad \text { whenever } \quad f(x) \neq y
$$

Assume

$$
Q K=K P .
$$

Then

$$
\mathbb{P}\left[X_{0}=x \mid Y_{0}\right]=K\left(Y_{0}, x\right) \quad \text { a.s. } \quad(x \in S)
$$

implies

$$
\mathbb{P}\left[X_{k}=x \mid\left(Y_{0}, \ldots, Y_{k}\right)\right]=K\left(Y_{k}, x\right) \quad \text { a.s. } \quad(x \in S)
$$

and Y, on its own, is a Markov chain with transition kernel Q.

Markov functionals

Proof Set

$$
\pi\left(x \mid y_{0}, \ldots, y_{k}\right):=\mathbb{P}\left[X_{k}=x \mid\left(Y_{0}, \ldots, Y_{k}\right)=\left(y_{0}, \ldots, y_{k}\right)\right]
$$

We wish to prove that

$$
\pi\left(x \mid y_{0}, \ldots, y_{k}\right)=K\left(x, y_{k}\right) \quad(k \geq 1)
$$

given that this holds at $k=0$. The filtering equations tell us that

$$
\pi\left(x \mid y_{0}, \ldots, y_{k+1}\right)=\frac{\sum_{x^{\prime} \in S} P\left(x^{\prime}, x ; y_{k+1}\right) \pi\left(x^{\prime} \mid y_{0}, \ldots, y_{k}\right)}{\sum_{x^{\prime}, x^{\prime \prime} \in S} P\left(x^{\prime}, x^{\prime \prime} ; y_{k+1}\right) \pi\left(x^{\prime} \mid y_{0}, \ldots, y_{k}\right)}
$$

where

$$
P\left(x, x^{\prime} ; y\right):=1_{\left\{f\left(x^{\prime}\right)=y\right\}} P\left(x, x^{\prime}\right) \quad\left(x, x^{\prime} \in S, y \in R\right)
$$

Markov functionals

Our assumptions on K imply that

$$
\begin{aligned}
& \sum_{x \in S} K(y, x) P\left(x, x^{\prime} ; y^{\prime}\right)=1_{\left\{f\left(x^{\prime}\right)=y^{\prime}\right\}}(K P)\left(y, x^{\prime}\right)=1_{\left\{f\left(x^{\prime}\right)=y^{\prime}\right\}}(Q K)\left(y, x^{\prime}\right) \\
& =\sum_{y^{\prime \prime} \in R} Q\left(y, y^{\prime \prime}\right) K\left(y^{\prime \prime}, x^{\prime}\right) 1_{\left\{f\left(x^{\prime}\right)=y^{\prime}\right\}}=Q\left(y, y^{\prime}\right) K\left(y^{\prime}, x^{\prime}\right)
\end{aligned}
$$

Using this, by induction,

$$
\begin{aligned}
& \pi\left(x \mid y_{0}, \ldots, y_{k+1}\right)=\frac{\sum_{x^{\prime} \in S} P\left(x^{\prime}, x ; y_{k+1}\right) K\left(y_{k}, x^{\prime}\right)}{\sum_{x^{\prime}, x^{\prime \prime} \in S} P\left(x^{\prime}, x^{\prime \prime} ; y_{k+1}\right) K\left(y_{k}, x^{\prime}\right)} \\
& =\frac{Q\left(y_{k}, y_{k+1}\right) K\left(y_{k+1}, x\right)}{\sum_{x^{\prime \prime} \in S} Q\left(y_{k}, y_{k+1}\right) K\left(y_{k+1}, x^{\prime \prime}\right)}=K\left(y_{k+1}, x\right) .
\end{aligned}
$$

Markov functionals

Now, by the Markov property of X and what we have already proved

$$
\begin{aligned}
\mathbb{P} & {\left[Y_{k+1}=y \mid\left(Y_{0}, \ldots, Y_{k}\right)=\left(y_{0}, \ldots, y_{k}\right)\right] } \\
& =\sum_{x \in S} \mathbb{P}\left[Y_{k+1}=y \mid X_{k}=x,\left(Y_{0}, \ldots, Y_{k}\right)=\left(y_{0}, \ldots, y_{k}\right)\right] \\
& \cdot \mathbb{P}\left[X_{k}=x \mid\left(Y_{0}, \ldots, Y_{k}\right)=\left(y_{0}, \ldots, y_{k}\right)\right] \\
& =\sum_{x \in S} \mathbb{P}\left[Y_{k+1}=y \mid X_{k}=x\right] \pi\left(x \mid y_{0}, \ldots, y_{k}\right) \\
& =\sum_{x, x^{\prime} \in S} P\left(x, x^{\prime} ; y\right) K\left(y_{k}, x\right)=\sum_{x^{\prime} \in S} Q\left(y_{k}, y\right) K\left(y_{k}, x^{\prime}\right)=Q\left(y_{k}, y\right),
\end{aligned}
$$

proving that Y is a Markov chain with transition kernel Q.

Intertwining

Let P, Q be transition kernels on S, R, and let K be a kernel from R to S. [Diaconis \& Fill '90] Assume that

$$
Q K=K P .
$$

Then there exists a Markov chain $(X, Y)=\left(X_{k}, Y_{k}\right)_{k \geq 0}$ with state space $\hat{S}:=\{(x, y) \in S \times R: K(y, x)>0\}$ such that

1. X is autonomous with transition kernel P,
and moreover, the condition

$$
\begin{equation*}
\mathbb{P}\left[X_{0}=x \mid Y_{0}\right]=K\left(Y_{0}, x\right) \quad \text { a.s. } \quad(x \in S) \tag{1}
\end{equation*}
$$

implies that
2. Y, on its own, is a Markov chain with transition kernel Q,

$$
\text { 3. } \mathbb{P}\left[X_{k}=x \mid\left(Y_{0}, \ldots, Y_{k}\right)\right]=K\left(Y_{k}, x\right) \quad \text { a.s. } \quad(k \geq 0, x \in S) .
$$

Intertwining

Proof (sketch) Set

$$
Q_{x^{\prime}}\left(y, y^{\prime}\right):=\frac{Q\left(y, y^{\prime}\right) K\left(y^{\prime}, x^{\prime}\right)}{Q K\left(y, x^{\prime}\right)} \quad\left(Q K\left(y, x^{\prime}\right)>0\right)
$$

and make an arbitrary choice for $Q_{x^{\prime}}(y, \cdot)$ if $Q K\left(y, x^{\prime}\right)=0$. Check that

$$
\hat{P}\left(x, y ; x^{\prime}, y^{\prime}\right):=P\left(x, x^{\prime}\right) Q_{x^{\prime}}\left(y, y^{\prime}\right)
$$

unambiguously defines a transition kernel on \hat{S} which satisfies

$$
Q \hat{K}=\hat{K} \hat{P}
$$

with

$$
\hat{K}\left(y ; x^{\prime}, y^{\prime}\right):=K\left(y, x^{\prime}\right) 1_{\left\{y=y^{\prime}\right\}} .
$$

Apply Rogers \& Pitman's result to Q, \hat{P}, \hat{K}, and the function $f: \hat{S} \rightarrow R$ be defined by $f(x, y):=y$.

Intertwining

Remark 1 Compared to duality, there are two differences: 1. The intertwiner is necessarily a probability kernel. 2. We link the forward equation of one process to the forward equation of another.

Remark 2 It seems the first use of the term 'intertwining' in the context of Markov chains was by Marc Yor (' 88 , unpublished).
Remark 3 Diaconis and Fill's result contains Rogers \& Pitman's as a special case. Indeed, $\hat{S} \cong S$ if there exists a function $f: S \rightarrow R$ such that $K(y, x)=0$ unless $f(x)=y$.
Remark 4 The condition $\mathbb{P}\left[X_{0}=x \mid Y_{0}\right]=K\left(Y_{0}, x\right)$ a.s. puts restrictions on the law of X_{0} but not on Y_{0}. We can read the proposition as saying that Y, started in any initial law, can be coupled to a process X such that $\mathbb{P}\left[X_{k}=x \mid\left(Y_{0}, \ldots, Y_{k}\right)\right]=K\left(Y_{k}, x\right)$ a.s. $(k \geq 0)$.

Remark 5 Since the inverse of a probability kernel K is not a probability kernel, intertwining of Markov chains is not a symmetric relation. We will say that X sits on top of Y. (Because we view X as extra structure added 'on top' of Y.)

Intertwining

Remark 6 Athreya \& S. '10 proved a generalization of Diaconis and Fill's result where X need not be autonomous. They applied this in a case where X is 'almost' autonomous.

Continuous time

Let G, H be generators of Markov processes with state spaces S, R, and let K be a probability kernel from R to S.
[Fill '92] Assume that

$$
H K=K G .
$$

Then there exists a Markov process $(X, Y)=\left(X_{t}, Y_{t}\right)_{t \geq 0}$ with state space $\hat{S}:=\{(x, y) \in S \times R: K(y, x)>0\}$ such that

1. X is autonomous with generator G, and moreover, the condition

$$
\mathbb{P}\left[X_{0}=x \mid Y_{0}\right]=K\left(Y_{0}, x\right) \quad \text { a.s. } \quad(x \in S)
$$

implies that
2. Y, on its own, is a Markov process with generator H,
3. $\mathbb{P}\left[X_{t}=x \mid\left(Y_{s}\right)_{0 \leq s \leq t}\right]=K\left(Y_{t}, x\right) \quad$ a.s. $\quad(t \geq 0, x \in S)$.

Thinning

Let Λ be a finite set and let $x \in\{0,1\}^{\wedge} \cong \mathcal{P}(\Lambda)$. Let $\chi \in \mathcal{P}(\Lambda)$ be independent of x and assume that $(\chi(i))_{i \in \Lambda}$ are i.i.d. with $\mathbb{P}[\chi(i)=1]=p$. Then

$$
\operatorname{Thin}_{p}(x):=x \cap \chi
$$

is called a p-thinning of x. We define a thinning kernel T_{p} on $\mathcal{P}(\Lambda)$ by

$$
T_{p}(x, y):=\mathbb{P}\left[\operatorname{Thin}_{p}(x)=y\right] \quad(x, y \in \mathcal{P}(\Lambda)),
$$

Call processes X and Y q-dual if they are dual w.r.t. the duality function

$$
\psi_{q}(x, y):=q^{|x \cap y|} .
$$

Thinning

[Lloyd \& Sudbury '97] Let X, X^{\prime}, Y be $\mathcal{P}(\Lambda)$-valued Markov processes with generators G, G^{\prime}, H. Assume that X is a q-dual of Y and that X^{\prime} is a q^{\prime}-dual of Y, for constants $q, q^{\prime} \neq 1$ satisfying

$$
p:=\frac{1-q}{1-q^{\prime}} \in[0,1] .
$$

Then the generators of X and X^{\prime} satisfy the intertwining relation

$$
G T_{p}=T_{p} G^{\prime}
$$

In particular, the process X, started in an arbitrary initial law, can be coupled to a process X^{\prime} such that

1. X^{\prime} is an autonomous Markov process with generator G,
2. $\mathbb{P}\left[X_{t}^{\prime} \in \cdot \mid\left(X_{s}\right)_{0 \leq s \leq t}\right]=T_{p}\left(X_{t}, \cdot\right) \quad$ a.s. $\quad(t \geq 0)$.

We say that X^{\prime} is a p-thinning of X.

Thinning

Proof We claim that

$$
\psi_{q} \psi_{q^{\prime}}^{-1}=T_{p} \quad \text { provided that } \quad p=\frac{1-q}{1-q^{\prime}} \in[0,1] .
$$

Since both ψ_{q} and T_{p} are products of commuting operators acting on a single sites, it suffices to prove the claim for single sites. Then

$$
\psi_{q}=\left(\begin{array}{cc}
1 & 1 \\
1 & q
\end{array}\right) \quad \text { and } \quad \psi_{q^{\prime}}^{-1}=\left(1-q^{\prime}\right)^{-1}\left(\begin{array}{cc}
-q^{\prime} & 1 \\
1 & -1
\end{array}\right)
$$

which implies that

$$
\psi_{q} \psi_{q^{\prime}}^{-1}=\left(\begin{array}{cc}
1 & 0 \\
\frac{q-q^{\prime}}{1-q^{\prime}} & \frac{1-q}{1-q^{\prime}}
\end{array}\right)=\left(\begin{array}{cc}
1 & 0 \\
1-p & p
\end{array}\right)=T_{p} .
$$

Thinning

Now duality says that

$$
G \psi_{q}=\psi_{q} H^{\dagger} \quad \text { and } \quad G^{\prime} \psi_{q^{\prime}}=\psi_{q^{\prime}} H^{\dagger}
$$

which implies that $\psi_{q^{\prime}}^{-1} G^{\prime}=H^{\dagger} \psi_{q^{\prime}}^{-1}$ and

$$
G T_{p}=G \psi_{q} \psi_{q^{\prime}}^{-1}=\psi_{q} H^{\dagger} \psi_{q^{\prime}}^{-1}=\psi_{q} \psi_{q^{\prime}}^{-1} G^{\prime}=T_{p} G^{\prime} .
$$

Remark We have never used that H is a Markov generator. It is therefore sufficient if Y is only a 'formal dual'.

Annihilating and coalescing random walks

Let X^{α} be the process with generator

$$
G_{\alpha} f(x)=\sum_{\{i, j\}}\left\{\alpha\left(f\left(\operatorname{ann}_{i, j}(x)\right)-f(x)\right)+(1-\alpha)\left(f\left(\mathrm{rw}_{i, j}(x)\right)-f(x)\right)\right\},
$$

i.e., these are random walks that when on the same site annihilate with probability $0 \leq \alpha \leq 1$ and coalesce with probab. $1-\alpha$.

Since X^{α} is q-dual to the voter model with $q=-\alpha$, we obtain that for any $0 \leq \alpha \leq \alpha^{\prime} \leq 1$, the process X^{α} can be coupled to $X^{\alpha^{\prime}}$ s.t.

$$
\mathbb{P}\left[X_{t}^{\alpha^{\prime}} \in \cdot \mid\left(X_{s}^{\alpha}\right)_{0 \leq s \leq t}\right]=T_{(1+\alpha) /\left(1+\alpha^{\prime}\right)}\left(X_{t}^{\alpha}, \cdot\right) \quad \text { a.s. } \quad(t \geq 0)
$$

In particular, annihilating random walks are a 1/2-thinning of coalescing random walks.

This can be extended to systems with branching (exercise).

Intertwining of birth and death processes

[Karlin \& McGregor '59] Let Z be a Markov process with state space $\{0,1,2, \ldots\}$, started in $Z_{0}=0$, that jumps $k-1 \mapsto k$ with rate $b_{k}>0$ and $k \mapsto k-1$ with rate $d_{k}>0(k \geq 1)$. Then

$$
\tau_{N}:=\inf \left\{t \geq 0: Z_{t}=N\right\}
$$

is distributed as a sum of independent exponentially distributed random variables whose parameters $\lambda_{1}<\cdots<\lambda_{N}$ are the negatives of the eigenvalues of the generator of the process stopped in N.
[Diaconis \& Miclos '09] Let $X_{t}:=Z_{t \wedge \tau_{N}}$ be the stopped process and let $0>-\lambda_{1}>\cdots>-\lambda_{N}$ be its eigenvalues. Let X^{+}be a pure birth process with birth rates b_{1}, \ldots, b_{N} given by $\lambda_{N}, \ldots, \lambda_{1}$. Then it is possible to couple the processes X and X^{+}, both started in zero, in such a way that $X_{t} \leq X_{t}^{+}$for all $t \geq 0$ and both processes arrive in N at the same time.

Intertwining of birth and death processes

Idea of the proof Let G, G^{+}be the generators of X, X^{+}. Then one can show that there exists a kernel K^{+}such that

$$
\begin{aligned}
& K^{+}(x,\{0, \ldots, x\})=1 \quad(0 \leq x \leq N), \\
& K^{+}(N, N)=1
\end{aligned}
$$

and moreover

$$
K^{+} G=G^{+} K^{+} .
$$

This can be proved by induction, using the Perron-Frobenius theorem in each step.

Intertwining of birth and death processes

Intertwining of birth and death processes

[S. '10] Let X_{t} and $\lambda_{1}, \ldots, \lambda_{N}$ be as before. Let X^{-}be a pure birth process with birth rates b_{1}, \ldots, b_{N} given by $\lambda_{1}, \ldots, \lambda_{N}$. Then it is possible to couple the processes X and X^{-}, both started in zero, in such a way that $X_{t}^{-} \leq X_{t}$ for all $t \geq 0$ and both processes arrive in N at the same time.

Intertwining of birth and death processes

The complete figure

