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Markov Chains

S finite set. RS space of functions f : S → R.
For probability kernel P = (P(x , y))x,y∈S and f ∈ RS define left and
right multiplication as

Pf (x) :=
∑
y

P(x , y)f (y) and fP(x) :=
∑
y

f (y)P(y , x).

(I do not distinguish row and column vectors.)
Def Chain X = (Xk)k≥0 of S-valued r.v.’s is Markov chain with
transition kernel P and state space S if

E
[
f (Xk+1)

∣∣ (X0, . . . ,Xk)
]

= Pf (Xk) a.s. (f ∈ RS)

⇔ P
[
(X0, . . . ,Xk) = (x0, . . . , xk)

]
= P[X0 = x0]P(x0, x1) · · ·P(xk−1, xk).

Write Pµ,Eµ for process with initial law µ = Pµ[X0 ∈ · ].
Px := Pδx with δx(y) := 1{x=y}. Ex similar.
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Markov Chains

Set

µk := µPk(x) = Pµ[Xk = x ] and fk := Pk f (x) = Ex [f (Xk)].

Then the forward and backward equations read

µk+1 = µkP and fk+1 = Pfk .

In particular π invariant law iff πP = π.
Function h harmonic iff Ph = h ⇔ h(Xk) martingale.
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Random mapping representation

(Zk)k≥1 i.i.d. with common law ν, take values in (E , E).
φ : S × E → S measurable

P(x , y) = P[φ(x ,Z1) = y ].

Random mapping representation (E , E , ν, φ) always exists, highly
non-unique.
X0 independent of (Zk)k≥1, then

Xk := φ(Xk−1,Zk) (k ≥ 1)

defines Markov chain with transition kernel P.
Example

if rand < 0.3
X = X + 1

else

X = X− 1

end
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Continuous time

Markov semigroup (Pt)t≥0 satisfies PsPt = Ps+t , limt↓0 Pt = P0 = 1.
Given by

Pt = e tG =
∞∑
n=0

1

n!
tnG n,

where generator G satisfies G (x , y) ≥ 0 for x 6= y and
∑

y G (x , y) = 0.
Def Process X = (Xt)t≥0 is Markov with semigroup (Pt)t≥0 and
generator G if

E
[
f (Xu)

∣∣ (Xs)0≤s≤t
]

= Pu−t f (Xt) a.s. (f ∈ RS).

Pε(x , y) = 1{x=y} + εG (x , y) + O(ε2) with G (x , y) jump rate.

µt := µPt(x) = Pµ[Xt = x ] and ft := Pt f (x) = Ex [f (Xt)]

satisfy the forward and backward equations

∂
∂tµt = µtG and ∂

∂t ft = Gft .

Also ∂
∂tPt = GPt = PtG .
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Random mapping representation

Write
Gf (x) =

∑
m∈M

rm
(
f (m(x))− f (x)

)
with M collection of maps m : S → S and (rm)m∈M nonnegative rates.
Let ∆ be a Poisson point subset of M×R with local intensity rmdt, and
set

∆s,u := {(m, t) : s < t ≤ u}
=: {(m1, tt), . . . , (mn, tn)}, t1 < · · · < tn.

Then
Φs,u := mn ◦ · · · ◦m1 satisfy Φt,u ◦ Φs,t = Φs,u.

If X0 independent of ∆, then

Xt := Φ0,t(X0) (t ≥ 0)

Markov process with generator G .
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Duality

X =(Xt)t≥0 Markov with state space S , generator G , semigroup (Pt)t≥0.
Y =(Yt)t≥0 Markov with state space R, generator H, semigroup (Qt)t≥0.

Def X and Y dual with duality function ψ : S × R → R iff

Ex [ψ(Xt , y)] = Ey [ψ(x ,Yt)] (t ≥ 0).

Implies more generally, if X and Y independent, then

E[ψ(Xs ,Yt−s)] does not depend on s ∈ [0, t].

Equivalent formulations (with A†(x , y) := A(y , x)):

I
∑
x′

Pt(x , x
′)ψ(x ′, y) =

∑
y ′

ψ(x , y ′)Qt(y , y
′),

I Ptψ = ψQ†t ,

I Gψ = ψH†.
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Duality

If the matrix ψ is invertible, then

Pt = ψQ†t ψ
−1,

which relates the backward evolution of X to the forward evolution of Y .
In general

π invariant for Y ⇒ ψπ harmonic for X .

Proof Ptψπ = ψQ†t π = ψ(πQt) = ψπ.

Similar: h harmonic for Y ⇒ ψh invariant under right-multiplication with
Pt (in particular, if ψh is a probabiity distribution, then it is an invariant
law).
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Pathwise Duality

Def Maps m : S → S and m̂ : R → R are dual w.r.t. ψ if

ψ
(
m(x), y

)
= ψ

(
x , m̂(y)

)
∀x , y .

Let
Gf (x) =

∑
m∈M

rm
(
f (m(x))− f (x)

)
,

Hf (y) =
∑
m∈M

rm
(
f (m̂(y))− f (y)

)
.

Lemma For each t > 0, X and Y can be coupled such that (Xu)0≤u≤s
and (Yu)0≤u≤t−s independent and

ψ
(
Xs−,Yt−s

)
a.s. does not depend on s ∈ [0, t].
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Pathwise Duality

Proof Set

∆s−,u− := {(m, t) : s ≤ t < u}
=: {(m1, tt), . . . , (mn, tn)}, t1 < · · · < tn.

Then

Φ̂s−,u− := m̂1 ◦ · · · ◦ m̂n dual to Φs−,u− := mn ◦ · · · ◦m1.

For fixed t > 0, observe that Ys := Φ̂(t−s)−,t−(Y0) (s ≥ 0) Markov with
generator H. Then

ψ
(
Xs−,Yt−s

)
= ψ

(
Φ0−,s−(X0), Φ̂s−,t−(Y0)

)
= ψ

(
Φ0−,t−(X0),Y0

)
does not depend on s ∈ [0, t].
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A formal dual

P(S) := set of all subsets of S . For m : S → S define
m−1 : P(S)→ P(S) by m−1(A) := {x : m(x) ∈ A} inverse image.

Observe m−1 dual to m w.r.t. ψ(x ,A) := 1{x∈A}:

ψ(m(x),A) = 1{m(x)∈A} = 1{x∈m−1(A)} = ψ(x ,m−1(A)).

Consequence X dual to set-valued process X with generator

Gf (A) =
∑
m∈M

rm
(
f (m−1(A))− f (A)

)
.

Question Does the large (|P(S)| = 2|S|) space P(Λ) contain any useful
subspaces that are invariant under the dynamics of X ?
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Partial Order

Recall that a partial order over S is a relation ≤ s.t.

I x ≤ x ,

I x ≤ y and y ≤ x implies x = y ,

I x ≤ y ≤ z implies x ≤ z .

A partial order is a total order if

I x ≤ y or y ≤ x for all x , y ∈ S , x 6= y .

Let S ,S ′ be partially ordered. Then m : S → S ′ is monotone if

x ≤ y ⇒ m(x) ≤ m(y).

A set A ⊂ S is increasing (decreasing) if 1A : S → {0, 1} monotone (resp.
1− 1A monotone).

Observe m : S → S monotone iff

I A increasing ⇒ m−1(A) increasing,

I A decreasing ⇒ m−1(A) decreasing.
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Partial Order

Def x ∈ A minimal element if

x ′ 6= x , x ′ ≤ x ⇒ x ′ 6∈ A.

Def The episet of a set B is the increasing set

B↑ := {y : y ≥ x for some x ∈ B}.

Lemma A finite increasing set, Amin set of minimal elements, then

A = (Amin)↑.

Def Pinc(Λ) := set of increasing subsets of Λ,
P!inc(Λ) := set of increasing subsets of Λ

that have a unique minimal element.

Similarly maximal element, hyposet B↓, Pdec(Λ), P!dec(Λ).
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Monotone Systems Duality

Observe The condition

(∗) A ∈ P!inc ⇒ m−1(A) ∈ P!inc

is stronger than saying that m is monotone. But if S totally ordered
almost the same since P!inc(Λ) = Pinc(Λ)\{∅}.
Proposition For each m : S → S satisfying (∗), there exists a unique
m̂ : S → S such that

ψ
(
m(x), y

)
= ψ

(
x , m̂(y)

)
with ψ(x , y) := 1{x≥y}.

Moreover, m̂ satisfies

(†) A ∈ P!dec ⇒ m̂−1(A) ∈ P!dec.
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Monotone Systems Duality

Proof We need
1{m(x)≥y} = 1{x≥m̂(y)} ∀x , y ,

which says that

m−1
(
{y}↑

)
= {x : m(x) ≥ y} = {x : x ≥ m̂(y)} = {m̂(y)}↑.

A map m̂ with this property exists iff m satisfies (∗), and m̂ is clearly
unique. Moreover

m̂−1({x}↓) = {y : m̂(y) ≤ x} = {y : y ≤ m(x)} = {m(x)}↓,

which proves that m̂ maps the space P!dec(S) into itself.
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Monotone Systems Duality

Def A Markov process X monotone if generator of the form

Gf (x) =
∑
m∈M

rm
(
f (m(x))− f (x)

)
with M a collection of monotone maps.

Observe If moreover each m ∈M maps P!inc(S) into itself, then X is
pathwise dual to the process Y with generator

Hf (y) =
∑
m∈M

rm
(
f (m̂(y))− f (y)

)
in the sense that for each t > 0, X ,Y can be coupled s.t.

{Xs− ≥ Yt−s}

a.s. does not depend on s ∈ [0, t].
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Birth-and-death processes

Let S := {0, . . . , n} and define

birthz(x) :=

{
x + 1 if x + 1 = z ,
x otherwise,

deathz(x) :=

{
x − 1 if x = z ,
x otherwise.

Then
b̂irthz = deathz and d̂eathz = birthz+1.

Birth-and-death process X with generator

Gf (x) =
n∑

z=1

bz
(
f (birthz(x))− f (x)

)
+

n−1∑
z=1

dz
(
f (deathz(x))− f (x)

)
dual to process X ′ with

d ′z = bz and b′z+1 = dz .

Jan M. Swart Markov Process Duality



Birth-and-death processes

XX ′
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Additive Systems Duality

Let S = P(Λ) where Λ is a finite set.
Assume Z and Y have generators

Gf (z) =
∑
n∈M

rn
(
f (n(z))− f (z)

)
,

Hf (y) =
∑
n∈M

rn
(
f (n̂(y))− f (y)

)
where each n−1 maps P!inc(Λ) into itself and each n̂−1 maps P!dec(Λ)
into itself, so Z and Y dual w.r.t.

ψ(z , y) := 1{z≥y}.

Replace Zt by Xt := Z c
t = Λ\Zt , replace map n by

m(x) := n(xc)c,

and set m† := n̂. Then m,m† both map P!dec(Λ) into itself and X ,Y are
dual w.r.t.

ψ(x , y) := 1{x∩y 6=∅}.
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Additive Systems Duality

Def m : P(Λ)→ P(Λ) is additive if

m(∅) = ∅ and m(x ∪ y) = m(x) ∪m(y)
(
x , y ∈ P(Λ)

)
.

Proposition Then the following statements are equivalent.

(i) m−1(A) ∈ P!dec(P(Λ)) for all A ∈ P!dec(P(Λ)).

(ii) There exists a unique m† such that 1{m(x)∩y 6=∅} = 1{x∩m†(y)6=∅}.

(iii) m is additive.

Def A Markov process X additive if generator of the form

Gf (x) =
∑
m∈M

rm
(
f (m(x))− f (x)

)
with M a collection of additive maps.
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Additive Systems Duality

Proof (i)⇒(ii): monotone systems duality applied to X c and Y .

(ii)⇒(iii):

m(∅) = {i ∈ Λ : {i} ∩m(∅) 6= ∅} = {i ∈ Λ : m†({i}) ∩ ∅ 6= ∅} = ∅,

and

m(x ∪ x ′) = {i ∈ Λ : {i} ∩m(x ∪ x ′) 6= ∅} = {i ∈ Λ : m†({i}) ∩ (x ∪ x ′) 6= ∅}
= {i ∈ Λ : m†({i}) ∩ x 6= ∅} ∪ {i ∈ Λ : m†({i}) ∩ x ′ 6= ∅} = m(x) ∪m(x ′).

(iii)⇒(i): Setting m̂(y) := {i ∈ Λ : m({i}) ⊂ y}, one has

m−1
(
{y}↓

)
= {x : m(x) ⊂ y} = {x :

⋃
i∈x

m({i}) ⊂ y} = {m̂(y)}↓,

proving that m−1 maps P!dec(P(Λ)) into itself.
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Additive Systems Duality

Def m(i , j) := 1{j∈m({i})}. Then: Lemma m†(i , j) = m(j , i).

In the graphical representation, we draw Λ horizontaly, time vertically,
and for each (m, t) ∈ ∆, we draw:

an arrow from (i , t) to (j , t) for each i , j ∈ Λ, i 6= j such that m(i , j) = 1,

a blocking symbol at (i , t) for each i ∈ Λ such that m(i , i) = 0.

Write (i , s) (j , t) if there is an open path γ from γs = i to γt = j that
may use arrows and avoids blocking symbols. Then

Xs :=
{
j ∈ Λ : ∃i ∈ X0 s.t. (i , 0) (j , s)

}
,

Ys− :=
{
i ∈ Λ : ∃j ∈ Y0 s.t. (i , t − s) (j , t)

}
.

The dual process runs downward in time and uses arrows in the reverse
order.
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The voter model

Define

voti,j(x) :=

{
x ∪ {j} if i ∈ x ,

x\{j} if i 6∈ x .

Fix p(i , j) ≥ 0. In the voter model with generator

Gvotf (x) :=
∑
i 6=j

p(i , j)
(
f (voti,j(x))− f (x)

)
,

site j adopts the type of site j with rate p(i , j).
Dual map

rwj,i (x) :=

{
(x\{j}) ∪ {i} if j ∈ x ,

x if j 6∈ x .

Dual process Y with generator

Grwf (y) :=
∑
i 6=j

p(i , j)
(
f (rwj,i (y))− f (y)

)
is system of coalescing random walks.
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The voter model

X0

Xt

Yt

Y0

{Xt ∩ Y0 6= ∅} = {∃ open path from X0 to Y0} = {X0 ∩ Yt 6= ∅}.
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The contact process

Interpret Xt = set of infected sites.

reci (x) := x\{i} (i ∈ Λ),

inf i,j(x) :=

{
x ∪ {j} if i ∈ Λ
x otherwise,

(i , j ∈ Λ, i 6= j).

The contact process with recovery rate δ and infection rates λ(i , j) has
generator

Gcontf (x) := δ
∑
i

(
f (reci (x))− f (x)

)
+
∑
i 6=j

λ(i , j)
(
f (inf i,j(x))− f (x)

)
.

(Self-) dual to process with reversed infection rates λ†(i , j) := λ(j , i).
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The contact process

X0

Xt

Yt

Y0

{Xt ∩ Y0 6= ∅} = {∃ open path from X0 to Y0} = {X0 ∩ Yt 6= ∅}.
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Linear systems duality

Let S be (a subspace of) RΛ, with Λ a finite set.
Def A Markov process X is linear if its generator has a representation

Gf (x) =
∑
m∈M

rm
(
f (m(x))− f (x)

)
with each m ∈M a linear map m : RΛ → RΛ. The adjoint
m†(i , j) := m(j , i) is dual w.r.t. the duality function

ψ(x , y) := 〈x , y〉 :=
∑
i∈Λ

x(i)y(i).

Graphical representation

an arrow with weight m(i , j) from (i , t) to (j , t)

for each i , j ∈ Λ with i 6= j such that m(i , j) 6= 0,

a symbol with weight m(i , i) at (i , t)

for each i ∈ Λ such that m(i , i) 6= 1.

Each path has weight = product of arrows and on the path.
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The contact path process

X0

Xt

1 1

3 3

Yt

Y0

4 4 2

2

〈Xt ,Y0〉 = 〈X0,Yt〉
=
∑
i,j

X0(i) · #{open paths (i , 0) (j , t)} · Y0(j).
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Cancellative Systems Duality

The set {0, 1} with the usual product and with addition modulo 2,
denoted by ⊕, is a finite field.

We may view {0, 1}Λ ∼= P(Λ) as a linear space over {0, 1}.
A map m : {0, 1}Λ → {0, 1}Λ is linear iff

mx(i) =
⊕
j

m(i , j)x(j),

where m(i , j) ∈ {0, 1} form the matrix of m. Adjoint matrix m† dual
w.r.t.

ψ(x , y) = 〈x , y〉 :=
⊕
i

x(i)y(i).

In the graphical representation, each arrow has weight 1 and each has
weight 0.
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The voter model revisited

The voter model map voti,j is linear mod 2 and dual to

anni.j(y)(k) =


0 if k = i ,

y(i)⊕ y(j) if k = j ,

y(k) otherwise,

Dual process Y with generator

Gannf (y) :=
∑
i 6=j

p(i , j)
(
f (annj,i (y))− f (y)

)
is system of annihilating random walks.
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The voter model revisited

X0

Xt

Yt

Y0

〈Xt ,Y0〉 = 〈X0,Yt〉
= 1{#paths from X0 to Y0 is odd}.
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Applications of duality

I Characterization of a ‘difficult’ invariant law (e.g. the upper
invariant law of the contact process) in terms of a ‘simple’ harmonic
function of the dual process (e.g. the survival probability).

I Equality of critical points (e.g. survival and nontriviality of the
invariant law for the contact process, invadeability and coexistence
for rebellious voter models).

I Uniqueness of the invariant law and ergodicity. (Often by proving
‘extinction versus unbounded growth’ for the dual.)

I Explicit estimates based on subduality. (E.g. for the density of
branching-coalescing particle systems, cooperative branching.)

I Finding ‘difficult’ harmonic functions in terms of ‘simple’ invariant
laws of the dual process. (E.g. Vandermonde determinant based on
noncrossing duality, strong interface tightness implies
noncoexistence.)

I Subinvariant laws (Holley-Liggett upper bound on critical point for
the contact process).
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Lloyd-Sudbury duals

Let Λ be an undirected graph. Let X be a Markov process with state
space P(Λ) ∼= {0, 1}Λ such that for each edge {i , j}, the local state
(x(i), x(j)) performs

annihilation 11 7→ 00 with rate a,

branching 01 7→ 11 with rate b,

coalescence 11 7→ 01 with rate c ,

death 01 7→ 00 with rate d ,

exclusion 01 7→ 10 with rate e,

with similar rates for transitions that are mirror images of these.
This is the most general interacting particle system with only two-point
interactions, for which ∅ is a trap.
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Lloyd-Sudbury duals

[Lloyd and Sudbury (’95, ’97, ’00)] Let X and X ′ be given by rates
a, b, c , d , e ≥ 0 resp. a′, b′, c ′, d ′, e′ ≥ 0 satisfying

a′ = a+2qγ, b′ = b+γ, c ′ = c−(1+q)γ, d ′ = d+γ, e′ = e−γ,

where γ := (a + c − d + qb)/(1− q). Then

E
[
q |Xt ∩ X ′0|] = E

[
q |X0 ∩ X ′t |]

Example 1 q = 0 gives

0 |x ∩ y | = 1{x∩y=∅} additive duality.

Example 2 q = −1 gives

(−1) |x ∩ y | = 1− 2
⊕
i

x(i)y(i) cancellative duality.
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Lloyd-Sudbury duals

Proof (sketch) Write the space of all functions f : {0, 1}Λ → R as a
tensor product

RS = R {0, 1}
Λ ∼=

⊗
i∈Λ

R {0, 1}.

Write the generator G as G =
∑
{i,j} Gij where we sum over all edges of

the graph and Gij acts only on the coordinates i and j , and similarly
H =

∑
{i,j} Hij .

Write ψ as the commutative product ψ =
∏

i ψi where ψi is an operator
that acts only on coordinate i .
For k 6= i , j , ψk commutes with Gij , so suffices to check for each edge
{i , j}

Gijψiψj = ψiψjH
†
ij .
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Lloyd-Sudbury duals

Gij =


· 0 0 0
d · e b
d e · b
a c c ·

 and H†ij =


· d ′ d ′ a′

0 · e′ c ′

0 e′ · c ′

0 b′ b′ ·



ψi =

(
1 1
1 q

)
and ψiψj =


1 1 1 1
1 q 1 q
1 1 q q
1 q q q2

 .

Now brutal calculation. Can simplify a bit by using

Gij


1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

 = 0 =


1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

H†ij .
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Duals of the voter model

Voter model X has

a = 0, b = 1, c = 0, d = 1, e = 0.

For each 0 ≤ α ≤ 1 q-dual with q := −α to the process Y with generator

Hf (y) =
∑
{i,j}

{
α
(
f (anni,j(y))− f (y)

)
+ (1− α)

(
f (rwi,j(y))− f (y)

)
}.

α = 0 gives coalescing random walks, α = 1 gives annihilating random
walks.
Extension to biased voter model and branching-coalescing-annihilating
random walk (exercise).

Jan M. Swart Markov Process Duality



Applications of intertwining

I Interlacing of non-crossing random walks (Patrik Ferrari).

I Skeleton decomposition of superprocesses (Maren Eckhoff).

I Look-down construction of Fleming-Viot process.

I Strong mixing times.

I Convergence to quasi-invariant laws, metastability.

I Lower bounds on the survival probability for hierarchical contact
proceses.

I Linking ‘difficult’, non-monotone systems to easier monotone
systems.

I Processes with multiple time scales.
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Autonomous Markov chain

Let X = (Xk)k≥0 a Markov chain with state space S and transition
kernel P, an let f : S → R be surjective.

Def (Yk)k≥0 = (f (Xk))k≥0 is autonomous (also called lumpable) if

f (x) = f (x ′) implies Px [f (X1) = y ] = Px′ [f (X1) = y ].

Lemma Y autonomous ⇒ Y on its own Markov with transition kernel

Q(y , y ′) := Px [f (X1) = y ′] =
∑
x′∈S

1{f (x′)=y}P(x , x ′).

(Y is sometimes called a lumped Markov chain.)

Jan M. Swart Markov Process Duality



Markov functionals

X Markov chain with state space S and transition kernel P.

[Rogers & Pitman ’81] Let f : S → R be surjective and let K (y , x) be
a probability kernel from R to S s.t.

K (y , x) = 0 whenever f (x) 6= y .

Assume
QK = KP.

Then
P[X0 = x |Y0] = K (Y0, x) a.s. (x ∈ S),

implies

P[Xk = x | (Y0, . . . ,Yk)] = K (Yk , x) a.s. (x ∈ S),

and Y , on its own, is a Markov chain with transition kernel Q.

Jan M. Swart Markov Process Duality



Markov functionals

Proof Set

π(x | y0, . . . , yk) := P
[
Xk = x

∣∣ (Y0, . . . ,Yk) = (y0, . . . , yk)
]
.

We wish to prove that

π(x | y0, . . . , yk) = K (x , yk) (k ≥ 1),

given that this holds at k = 0. The filtering equations tell us that

π(x | y0, . . . , yk+1) =

∑
x′∈S P(x ′, x ; yk+1)π(x ′ | y0, . . . , yk)∑

x′,x′′∈S P(x ′, x ′′; yk+1)π(x ′ | y0, . . . , yk)
,

where

P(x , x ′; y) := 1{f (x′)=y}P(x , x ′) (x , x ′ ∈ S , y ∈ R).
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Markov functionals

Our assumptions on K imply that∑
x∈S

K (y , x)P(x , x ′; y ′) = 1{f (x′)=y ′}(KP)(y , x ′) = 1{f (x′)=y ′}(QK )(y , x ′)

=
∑
y ′′∈R

Q(y , y ′′)K (y ′′, x ′)1{f (x′)=y ′} = Q(y , y ′)K (y ′, x ′)

Using this, by induction,

π(x | y0, . . . , yk+1) =

∑
x′∈S P(x ′, x ; yk+1)K (yk , x

′)∑
x′,x′′∈S P(x ′, x ′′; yk+1)K (yk , x ′)

=
Q(yk , yk+1)K (yk+1, x)∑

x′′∈S Q(yk , yk+1)K (yk+1, x ′′)
= K (yk+1, x).
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Markov functionals

Now, by the Markov property of X and what we have already proved

P
[
Yk+1 = y

∣∣(Y0, . . . ,Yk) = (y0, . . . , yk)
]

=
∑
x∈S

P
[
Yk+1 = y

∣∣Xk = x , (Y0, . . . ,Yk) = (y0, . . . , yk)
]

· P
[
Xk = x

∣∣(Y0, . . . ,Yk) = (y0, . . . , yk)
]

=
∑
x∈S

P
[
Yk+1 = y

∣∣Xk = x
]
π(x | y0, . . . , yk)

=
∑

x,x′∈S

P(x , x ′; y)K (yk , x) =
∑
x′∈S

Q(yk , y)K (yk , x
′) = Q(yk , y),

proving that Y is a Markov chain with transition kernel Q.
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Intertwining

Let P,Q be transition kernels on S ,R, and let K be a kernel from R to S .

[Diaconis & Fill ’90] Assume that

QK = KP.

Then there exists a Markov chain (X ,Y ) = (Xk ,Yk)k≥0 with state space

Ŝ := {(x , y) ∈ S × R : K (y , x) > 0} such that

1. X is autonomous with transition kernel P,

and moreover, the condition

P[X0 = x |Y0] = K (Y0, x) a.s. (x ∈ S) (1)

implies that

2. Y , on its own, is a Markov chain with transition kernel Q,

3. P[Xk = x | (Y0, . . . ,Yk)] = K (Yk , x) a.s. (k ≥ 0, x ∈ S).
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Intertwining

Proof (sketch) Set

Qx′(y , y
′) :=

Q(y , y ′)K (y ′, x ′)

QK (y , x ′)
(QK (y , x ′) > 0),

and make an arbitrary choice for Qx′(y , · ) if QK (y , x ′) = 0.
Check that

P̂(x , y ; x ′, y ′) := P(x , x ′)Qx′(y , y
′)

unambiguously defines a transition kernel on Ŝ which satisfies

QK̂ = K̂ P̂

with
K̂ (y ; x ′, y ′) := K (y , x ′)1{y=y ′}.

Apply Rogers & Pitman’s result to Q, P̂, K̂ , and the function f : Ŝ → R
be defined by f (x , y) := y .

Jan M. Swart Markov Process Duality



Intertwining

Remark 1 Compared to duality, there are two differences: 1. The
intertwiner is necessarily a probability kernel. 2. We link the forward
equation of one process to the forward equation of another.

Remark 2 It seems the first use of the term ‘intertwining’ in the context
of Markov chains was by Marc Yor (’88, unpublished).

Remark 3 Diaconis and Fill’s result contains Rogers & Pitman’s as a
special case. Indeed, Ŝ ∼= S if there exists a function f : S → R such that
K (y , x) = 0 unless f (x) = y .

Remark 4 The condition P[X0 = x |Y0] = K (Y0, x) a.s. puts restrictions
on the law of X0 but not on Y0. We can read the proposition as saying
that Y , started in any initial law, can be coupled to a process X such
that P[Xk = x | (Y0, . . . ,Yk)] = K (Yk , x) a.s. (k ≥ 0).

Remark 5 Since the inverse of a probability kernel K is not a probability
kernel, intertwining of Markov chains is not a symmetric relation. We will
say that X sits on top of Y . (Because we view X as extra structure
added ‘on top’ of Y .)
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Intertwining

Remark 6 Athreya & S. ’10 proved a generalization of Diaconis and Fill’s
result where X need not be autonomous. They applied this in a case
where X is ‘almost’ autonomous.
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Continuous time

Let G ,H be generators of Markov processes with state spaces S ,R, and
let K be a probability kernel from R to S .

[Fill ’92] Assume that
HK = KG .

Then there exists a Markov process (X ,Y ) = (Xt ,Yt)t≥0 with state

space Ŝ := {(x , y) ∈ S × R : K (y , x) > 0} such that

1. X is autonomous with generator G ,

and moreover, the condition

P[X0 = x |Y0] = K (Y0, x) a.s. (x ∈ S)

implies that

2. Y , on its own, is a Markov process with generator H,

3. P[Xt = x | (Ys)0≤s≤t ] = K (Yt , x) a.s. (t ≥ 0, x ∈ S).
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Thinning

Let Λ be a finite set and let x ∈ {0, 1}Λ ∼= P(Λ). Let χ ∈ P(Λ) be
independent of x and assume that (χ(i))i∈Λ are i.i.d. with
P[χ(i) = 1] = p. Then

Thinp(x) := x ∩ χ

is called a p-thinning of x . We define a thinning kernel Tp on P(Λ) by

Tp(x , y) := P[Thinp(x) = y ]
(
x , y ∈ P(Λ)

)
,

Call processes X and Y q-dual if they are dual w.r.t. the duality function

ψq(x , y) := q|x∩y |.
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Thinning

[Lloyd & Sudbury ’97] Let X ,X ′,Y be P(Λ)-valued Markov processes
with generators G ,G ′,H. Assume that X is a q-dual of Y and that X ′ is
a q′-dual of Y , for constants q, q′ 6= 1 satisfying

p :=
1− q

1− q′
∈ [0, 1].

Then the generators of X and X ′ satisfy the intertwining relation

GTp = TpG
′.

In particular, the process X , started in an arbitrary initial law, can be
coupled to a process X ′ such that

1. X ′ is an autonomous Markov process with generator G ,

2. P[X ′t ∈ · | (Xs)0≤s≤t ] = Tp(Xt , · ) a.s. (t ≥ 0).

We say that X ′ is a p-thinning of X .
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Thinning

Proof We claim that

ψqψ
−1
q′ = Tp provided that p =

1− q

1− q′
∈ [0, 1].

Since both ψq and Tp are products of commuting operators acting on a
single sites, it suffices to prove the claim for single sites. Then

ψq =

(
1 1
1 q

)
and ψ−1

q′ = (1− q′)−1

(
−q′ 1

1 −1

)
,

which implies that

ψqψ
−1
q′ =

(
1 0

q−q′
1−q′

1−q
1−q′

)
=

(
1 0

1− p p

)
= Tp.
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Thinning

Now duality says that

Gψq = ψqH
† and G ′ψq′ = ψq′H

†,

which implies that ψ−1
q′ G

′ = H†ψ−1
q′ and

GTp = Gψqψ
−1
q′ = ψqH

†ψ−1
q′ = ψqψ

−1
q′ G

′ = TpG
′.

Remark We have never used that H is a Markov generator. It is
therefore sufficient if Y is only a ‘formal dual’.
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Annihilating and coalescing random walks

Let Xα be the process with generator

Gαf (x) =
∑
{i,j}

{
α
(
f (anni,j(x))− f (x)

)
+ (1− α)

(
f (rwi,j(x))− f (x)

)
},

i.e., these are random walks that when on the same site annihilate with
probability 0 ≤ α ≤ 1 and coalesce with probab. 1− α.

Since Xα is q-dual to the voter model with q = −α, we obtain that for
any 0 ≤ α ≤ α′ ≤ 1, the process Xα can be coupled to Xα′ s.t.

P[Xα′

t ∈ · | (Xα
s )0≤s≤t ] = T(1+α)/(1+α′)(X

α
t , · ) a.s. (t ≥ 0).

In particular, annihilating random walks are a 1/2-thinning of coalescing
random walks.

This can be extended to systems with branching (exercise).
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Intertwining of birth and death processes

[Karlin & McGregor ’59] Let Z be a Markov process with state space
{0, 1, 2, . . .}, started in Z0 = 0, that jumps k − 1 7→ k with rate bk > 0
and k 7→ k − 1 with rate dk > 0 (k ≥ 1). Then

τN := inf{t ≥ 0 : Zt = N}

is distributed as a sum of independent exponentially distributed random
variables whose parameters λ1 < · · · < λN are the negatives of the
eigenvalues of the generator of the process stopped in N.

[Diaconis & Miclos ’09] Let Xt := Zt∧τN be the stopped process and let
0 > −λ1 > · · · > −λN be its eigenvalues. Let X+ be a pure birth process
with birth rates b1, . . . , bN given by λN , . . . , λ1. Then it is possible to
couple the processes X and X+, both started in zero, in such a way that
Xt ≤ X+

t for all t ≥ 0 and both processes arrive in N at the same time.
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Intertwining of birth and death processes

Idea of the proof Let G ,G+ be the generators of X ,X+. Then one can
show that there exists a kernel K+ such that

K+(x , {0, . . . , x}) = 1 (0 ≤ x ≤ N),

K+(N,N) = 1,

and moreover
K+G = G+K+.

This can be proved by induction, using the Perron-Frobenius theorem in
each step.
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Intertwining of birth and death processes

b1 b2 b3 b4

λ1

λ1λ2

λ4 λ3 λ2 λ1

K(3)+d1 d2

b′1

d′1

b′2

d′2

b′′1

d′′1

d3

b′′2

b′3
G′+

K(2)+

K(1)+

G+

G′′+

0 1 2 4G 3
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Intertwining of birth and death processes

[S. ’10] Let Xt and λ1, . . . , λN be as before. Let X− be a pure birth
process with birth rates b1, . . . , bN given by λ1, . . . , λN . Then it is
possible to couple the processes X and X−, both started in zero, in such
a way that X−t ≤ Xt for all t ≥ 0 and both processes arrive in N at the
same time.
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Intertwining of birth and death processes
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The complete figure
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