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joint with Balázs Ráth, Tamás Terpai, and Márton Szőke.
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Percolation on 3-regular graphs

Let Gn = (Vn,En) be random, uniformly chosen, 3-regular graphs
with n vertices (n is even).

Let (τe)e∈En be i.i.d. uniformly distributed [0, 1]-valued random
variables attached to the edges.

Initially, all edges are closed. At time τe , the edge e opens.

Known fact For large n, a giant component forms at time t = 1
2 .
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Frozen percolation on 3-regular graphs

Let (σv )v∈Vn be i.i.d. exponentially distributed times with mean
1/λn, attached to the vertices.

I At time σv , all vertices in the open component containing v
freeze.

I At time τe , the edge e opens only if neither of its endvertices
is frozen.

We are interested in n−1 � λn � 1, which means that w.h.p.,
small components do not freeze, but giant components freeze
immediately.
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Frozen percolation on the 3-regular tree

The local weak limit of Gn is the infinite 3-regular tree G = (V ,E ).

Let (τe)e∈E be i.i.d. uniformly distributed [0, 1]-valued times
attached to the edges.

Aldous (2000) has constructed a process (Ft)t∈[0,1] of frozen
vertices Ft ⊂ V such that:

I As soon as an open component reaches infinite size, all its
vertices are frozen.

I At time τe , the edge e opens if and only if neither of its
endvertices is frozen.

Question Given, (τe)e∈E , is (Ft)t∈[0,1] a.s. unique?

Short answer No.
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Frozen percolation on the complete graph

Remark Instead of a random 3-regular tree, we could have started
with the complete graph.
In this case, it is more natural to take (τe)e∈E uniformly
[0, n]-valued.

Frozen percolation on the complete graph has been studied by
Balázs Ráth (2009). Merle and Normand (2015) studied a
configuration model with freezing.

The local limit of the complete graph equipped with i.i.d. times
(τe)e∈E is called the PWIT (Aldous & Steele, 2004).

Frozen percolation on the complete graph models the growth of
polymers. Giant polymers are part of the gel and cannot grow
further.
Related to the discrete Smoluchowski coagulation equation with a
multiplicative kernel.

Exhibits self-organized criticality.
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Frozen percolation on the oriented binary tree

Let T denote the space of all finite words i = i1 · · · in (n ≥ 0) made
up from the alphabet {1, 2}.

Elements i ∈ T label oriented edges in an infinite binary tree.

Let (τi)i∈T be i.i.d. uniformly distributed [0, 1]-valued.
Aldous (2000) has constructed a process (~Ft)t∈[0,1] of frozen

vertices ~Ft ⊂ T such that:

I As soon as an infinite oriented path emerges, all its oriented
edges freeze.

I At time τi, the oriented edge i opens if and only if neither of
its descendants i1, i2 is frozen.

Unoriented frozen percolation on the 3-regular tree can be
constructed from the oriented process.

Equivalent question Given, (τi)i∈T, is (~Ft)t∈[0,1] a.s. unique?
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Frozen percolation on the oriented binary tree

Let

Xi := inf
{
t ∈ [0, 1] : i is part of an infinite open path

}
,

with Xi :=∞ if this never happens. The (Xi)i∈T solve the
inductive relation

Xi = Φ[τi](Xi1 ∧ Xi2) (i ∈ T),

where Φ is the function

Φ[t](x) :=

{
x if x > t,

∞ if x ≤ t.
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A Recursive Tree Process

Let ν be the probability law on I := [0, 1] ∪ {∞} defined by

ν(dx) :=
dx

2x2
1

[
1
2 ,1]

(x) ν
(
{∞}

)
:= 1

2 . (1)

Aldous (2000) has shown that ν solves the Recursive Distributional
Equation (RDE)

X
d
= Φ[τ ](X1 ∧ X2),

where X has law ν, X1,X2 are i.i.d. copies of X , and τ is
independent uniform [0, 1]-valued.

By Kolmogorov’s extension theorem, there exists a Recursive Tree
Process (RTP) (τi,Xi)i∈T, unique in law, such that

(i) For each finite rooted subtree U ⊂ T, the r.v.’s (Xi)i∈∂U are
i.i.d. with common law ν and independent of (τi)i∈U.

(ii) Xi = Φ[τi](Xi1 ∧ Xi2) (i ∈ T).
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Endogeny

Def The RTP is endogenous if X∅ is measurable w.r.t. the σ-field
generated by (τi)i∈T.

Def bivariate map

T (2)(µ(2)) := the law of
(
Φ[τ ](X1 ∧ X2),Φ[τ ](X ′1 ∧ X ′2)

)
,

where (X1,X
′
1), (X2,X

′
2) are i.i.d. with law µ(2) and τ is

independent uniform [0, 1]-valued.

Let (τi,Xi)i∈T be the RTP corresponding to ν.
Let (X ′i )i∈T be a copy of (Xi)i∈T, conditionally independent given
(τi)i∈T. Then

ν(2) :=P
[
(X∅,X

′
∅) ∈ ·

]
,

ν(2) :=P
[
(X∅,X∅) ∈ ·

]
,

solve the bivariate RDE T (2)(ν(2)) = ν(2).
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Endogeny

Def P(I 2)ν = space of probability laws on I 2 whose
one-dimensional marginals are given by ν.

Theorem (Aldous & Bandyopadhyay 2005)
The following statements are equivalent:

(i) The RTP (τi,Xi)i∈T is endogenous.

(ii) ν(2) = ν(2).

(iii) The bivariate map T (2) has a unique fixed point in P(I 2)ν .

(iv) (T (2))n(µ(2)) =⇒
n→∞

ν(2) for all µ(2) ∈ P(I 2)ν .

Moreover, (T (2))n(ν ⊗ ν) =⇒
n→∞

ν(2).

Reformulation of the problem To prove that frozen percolation
is not a.s. unique, it suffices to find a nontrivial solution
ν(2) 6= ν(2) to the bivariate RDE.
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Endogeny

History of the problem

Aldous (2000) conjectured a.s. uniqueness (i.e., endogeny).

Bandyopahyay (2004), arXiv:math/0407175 announced a false
proof.

Bandyopahyay (2005) numerical simulations
(T (2))n(ν ⊗ ν) =⇒

n→∞
ν(2) 6= ν(2).

Antar Bandyopahyay, Tamás Terpai, and especially Balázs Ráth
pursued the problem for many years. . .

Theorem (2019) Endogeny does not hold.

Proof The problem can be translated into frozen percolation on
the MBBT, which is easier to handle.
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The Marked Binary Branching Tree

Def The Marked Binary Branching Tree (MBBT) is a pair (T ,Π)
with:

I T is the family tree of a rate one continuous-time binary
branching process.

I Π is a rate one Poisson process on T × [0, 1].

Def Πt := {(z , τ) ∈ Π : τ > t}.

Equivalently, Π = {(z , τz) : z ∈ Π0}, where:

I Π0 is a rate one Poisson process on T ,

I (τz)z∈Π0 are i.i.d. uniform [0, 1]-valued.

Interpretation Initially, points in Π0 are closed. At time τz , the
point z opens. Πt set of closed points at time t.
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The Marked Binary Branching Tree
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The Marked Binary Branching Tree

The MBBT is the universal scaling limit of near-critical percolation
on trees.

Related to this, the MBBT itself enjoys a form of scale invariance:

Write z
T \Πt−→ ∞ if at time t there is an open upward path starting

at z .
Then

T ′ := {z ∈ T : ∅ T \Πt−→ z
T \Πt−→ ∞}

is the family tree of a rate t binary branching process.
Moreover, Π′ :=

{
(z , τz) ∈ Π : z ∈ T } is a rate one Poisson

process on T ′ × [0, t].
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Frozen percolation on the MBBT

It is possible to construct frozen percolation on the MBBT such
that:

At time t = τz , the point z opens unless z
T \Πt−→ ∞.

Let Y∅ := inf
{
t ∈ [0, 1] : ∅ T \Πt−→ ∞

}
and :=∞ if this never

happens.
Then

ρ
(
[0, t]

)
:= P[Y∅ ≤ t] = 1

2 t
(
t ∈ [0, 1]

)
.

Lemma The corresponding ρ(2) has the scaling property

P
[
(Y∅,Y

′
∅) ∈ [0, tr ]× [0, ts]

]
= tP

[
(Y∅,Y

′
∅) ∈ [0, r ]× [0, s]

]
(0 ≤ r , s, t ≤ 1).
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Frozen percolation on the MBBT

Theorem For frozen percolation on the MBBT, the bivariate map
has precisely two scale-invariant fixed points.
A scale invariant law ρ(2) on I 2 solves the bivariate RDE if and
only if the function

F (u) := ρ(2)
(
{(y1, y2) ∈ I 2 : y1 > u, y2 ≤ 1}

)
(0 ≤ u ≤ 1)

solves the differential equation

(i) ∂
∂uF (u) =

cu

F (u)
− 1

2

(
u ∈ [0, 1]

)
,

(ii) F (0) = 1
2 , (iii) F (1)2 + 1

2F (1) = 2c

for some c ≥ 0. There are two values 0 = c < c < 1
4 for which this

equation has a solution, corresponding to ρ(2) and ρ(2).
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