Frozen percolation on the binary tree

Jan M. Swart (Czech Academy of Sciences)

joint with Balázs Ráth, Tamás Terpai, and Márton Szőke. (Budapest)

Thursday, September 26th, 2019

Let $G_n = (V_n, E_n)$ be random, uniformly chosen, 3-regular graphs with *n* vertices (*n* is even).

Let $(\tau_e)_{e \in E_n}$ be i.i.d. uniformly distributed [0, 1]-valued random variables attached to the edges.

Initially, all edges are closed. At time τ_e , the edge *e* opens.

Known fact For large *n*, a giant component forms at time $t = \frac{1}{2}$.

(4月) (4日) (4日) 日

▲圖> ▲屋> ▲屋>

(1日) (日) (日)

- 4 回 ト - 4 三 ト

(1日) (日) (日)

▲御★ ▲注★ ▲注★

▲圖▶ ★ 国▶ ★ 国▶

▲圖▶ ★ 国▶ ★ 国▶

- 4 回 > - 4 回 >

(4回) (1) (1)

(4回) (1) (1)

- 4 回 > - 4 回 >

→ 프 ▶ - 프

- 4 回 > - 4 回 >

- ★ 臣 ▶ - - 臣

(4回) (1) (1)

(1日) (日) (日)

Let $(\sigma_v)_{v \in V_n}$ be i.i.d. exponentially distributed times with mean $1/\lambda_n$, attached to the vertices.

- At time σ_v , all vertices in the open component containing v freeze.
- ► At time \(\tau_e\), the edge e opens only if neither of its endvertices is frozen.

We are interested in $n^{-1} \ll \lambda_n \ll 1$, which means that w.h.p., small components do not freeze, but giant components freeze immediately.

・ 同 ト ・ ヨ ト ・ ヨ ト

個 と く ヨ と く ヨ と …

・ 回 と ・ ヨ と ・ ヨ と …

・ 回 と ・ ヨ と ・ ヨ と …

個 と く ヨ と く ヨ と …

回 と く ヨ と く ヨ と

回 と く ヨ と く ヨ と

回 と く ヨ と く ヨ と

回 と く ヨ と く ヨ と

回 と く ヨ と く ヨ と

回 と く ヨ と く ヨ と

回 と く ヨ と く ヨ と

(4回) (4回) (4回)

(4回) (4回) (4回)

(4回) (4回) (4回)

<回と < 目と < 目と

(4回) (4回) (4回)

(4回) (4回) (4回)

(4回) (4回) (4回)

<回と < 目と < 目と

(4回) (4回) (4回)

<回と < 目と < 目と

(4回) (4回) (4回)

The *local weak limit* of G_n is the infinite 3-regular tree G = (V, E).

Let $(\tau_e)_{e \in E}$ be i.i.d. uniformly distributed [0,1]-valued times attached to the edges.

Aldous (2000) has constructed a process $(F_t)_{t \in [0,1]}$ of frozen vertices $F_t \subset V$ such that:

- As soon as an open component reaches infinite size, all its vertices are frozen.
- At time τ_e, the edge e opens if and only if neither of its endvertices is frozen.

Question Given, $(\tau_e)_{e \in E}$, is $(F_t)_{t \in [0,1]}$ a.s. unique?

Short answer No.

- < ≣ →

★ E > < E >

A ■

★ 문 ► ★ 문 ►

A ■

→ Ξ → < Ξ →</p>

A ₽

★ 문 ► ★ 문 ►

A ₽

白 と く ヨ と く ヨ と

回 と く ヨ と く ヨ と

個 と く ヨ と く ヨ と …

個 と く ヨ と く ヨ と …

Frozen percolation on the complete graph

Remark Instead of a random 3-regular tree, we could have started with the complete graph. In this case, it is more natural to take $(\tau_e)_{e \in E}$ uniformly

[0, n]-valued.

Frozen percolation on the complete graph has been studied by Balázs Ráth (2009). Merle and Normand (2015) studied a configuration model with freezing.

The local limit of the complete graph equipped with i.i.d. times $(\tau_e)_{e \in E}$ is called the PWIT (Aldous & Steele, 2004).

Frozen percolation on the complete graph models the growth of polymers. Giant polymers are part of the gel and cannot grow further.

Related to the discrete Smoluchowski coagulation equation with a multiplicative kernel.

Exhibits self-organized criticality.

Let \mathbb{T} denote the space of all finite words $\mathbf{i} = i_1 \cdots i_n$ $(n \ge 0)$ made up from the alphabet $\{1, 2\}$.

Elements $\textbf{i} \in \mathbb{T}$ label oriented edges in an infinite binary tree.

Let $(\tau_i)_{i\in\mathbb{T}}$ be i.i.d. uniformly distributed [0,1]-valued. Aldous (2000) has constructed a process $(\vec{F}_t)_{t\in[0,1]}$ of frozen vertices $\vec{F}_t \subset \mathbb{T}$ such that:

- As soon as an infinite oriented path emerges, all its oriented edges freeze.
- At time τ_i, the oriented edge i opens if and only if neither of its descendants i1, i2 is frozen.

< 回 > < 注 > < 注 > … 注

Unoriented frozen percolation on the 3-regular tree can be constructed from the oriented process.

Equivalent question Given, $(\tau_i)_{i \in \mathbb{T}}$, is $(\vec{F}_t)_{t \in [0,1]}$ a.s. unique?

æ

< ∃ >

Frozen percolation on the oriented binary tree

Let

 $X_{\mathbf{i}} := \inf \left\{ t \in [0,1] : \mathbf{i} \text{ is part of an infinite open path} \right\},$

with $X_i:=\infty$ if this never happens. The $(X_i)_{i\in\mathbb{T}}$ solve the inductive relation

$$X_{\mathbf{i}} = \Phi[\tau_{\mathbf{i}}](X_{\mathbf{i}1} \wedge X_{\mathbf{i}2}) \qquad (\mathbf{i} \in \mathbb{T}),$$

where Φ is the function

$$\Phi[t](x) := \begin{cases} x & \text{if } x > t, \\ \infty & \text{if } x \le t. \end{cases}$$

伺 とう ヨン うちょう

A Recursive Tree Process

Let ν be the probability law on $\mathit{I}:=[0,1]\cup\{\infty\}$ defined by

$$\nu(\mathrm{d}x) := \frac{\mathrm{d}x}{2x^2} \mathbf{1}_{[\frac{1}{2},1]}(x) \qquad \nu(\{\infty\}) := \frac{1}{2}.$$
 (1)

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

Aldous (2000) has shown that ν solves the *Recursive Distributional* Equation (RDE)

$$X \stackrel{\mathrm{d}}{=} \Phi[\tau](X_1 \wedge X_2),$$

where X has law ν , X_1, X_2 are i.i.d. copies of X, and τ is independent uniform [0, 1]-valued.

By Kolmogorov's extension theorem, there exists a *Recursive Tree Process* (RTP) $(\tau_i, X_i)_{i \in \mathbb{T}}$, unique in law, such that

(i) For each finite rooted subtree $\mathbb{U} \subset \mathbb{T}$, the r.v.'s $(X_i)_{i \in \partial \mathbb{U}}$ are i.i.d. with common law ν and independent of $(\tau_i)_{i \in \mathbb{U}}$.

(ii)
$$X_{\mathbf{i}} = \Phi[\tau_{\mathbf{i}}](X_{\mathbf{i}1} \wedge X_{\mathbf{i}2})$$
 ($\mathbf{i} \in \mathbb{T}$).

Endogeny

Def The RTP is *endogenous* if X_{\emptyset} is measurable w.r.t. the σ -field generated by $(\tau_i)_{i \in \mathbb{T}}$.

Def bivariate map

$$\mathcal{T}^{(2)}(\mu^{(2)}):=$$
 the law of $igl(\Phi[au](X_1\wedge X_2),\Phi[au](X_1'\wedge X_2')igr),$

where $(X_1, X_1'), (X_2, X_2')$ are i.i.d. with law $\mu^{(2)}$ and τ is independent uniform [0, 1]-valued.

Let $(\tau_i, X_i)_{i \in \mathbb{T}}$ be the RTP corresponding to ν . Let $(X'_i)_{i \in \mathbb{T}}$ be a copy of $(X_i)_{i \in \mathbb{T}}$, conditionally independent given $(\tau_i)_{i \in \mathbb{T}}$. Then

$$\underline{\nu}^{(2)} := \mathbb{P}\big[(X_{\varnothing}, X_{\varnothing}') \in \cdot \big], \\ \overline{\nu}^{(2)} := \mathbb{P}\big[(X_{\varnothing}, X_{\varnothing}) \in \cdot \big],$$

solve the bivariate RDE $T^{(2)}(\nu^{(2)}) = \nu^{(2)}$.

Endogeny

Def $\mathcal{P}(I^2)_{\nu}$ = space of probability laws on I^2 whose one-dimensional marginals are given by ν .

Theorem (Aldous & Bandyopadhyay 2005) The following statements are equivalent:

(i) The RTP
$$(\tau_{\mathbf{i}}, X_{\mathbf{i}})_{\mathbf{i} \in \mathbb{T}}$$
 is endogenous.
(ii) $\underline{\nu}^{(2)} = \overline{\nu}^{(2)}$.
(iii) The bivariate map $T^{(2)}$ has a unique fixed point in $\mathcal{P}(I^2)_{\nu}$.
(iv) $(T^{(2)})^n(\mu^{(2)}) \underset{n \to \infty}{\Longrightarrow} \overline{\nu}^{(2)}$ for all $\mu^{(2)} \in \mathcal{P}(I^2)_{\nu}$.
Moreover, $(T^{(2)})^n(\nu \otimes \nu) \underset{n \to \infty}{\Longrightarrow} \underline{\nu}^{(2)}$.

Reformulation of the problem To prove that frozen percolation is *not* a.s. unique, it suffices to find a nontrivial solution $\nu^{(2)} \neq \overline{\nu}^{(2)}$ to the bivariate RDE.

소리가 소문가 소문가 소문가

History of the problem

Aldous (2000) conjectured a.s. uniqueness (i.e., endogeny).

Bandyopahyay (2004), arXiv:math/0407175 announced a false proof.

Bandyopahyay (2005) numerical simulations $(T^{(2)})^n (\nu \otimes \nu) \underset{n \to \infty}{\Longrightarrow} \underline{\nu}^{(2)} \neq \overline{\nu}^{(2)}.$

Antar Bandyopahyay, Tamás Terpai, and especially Balázs Ráth pursued the problem for many years...

Theorem (2019) Endogeny does not hold.

Proof The problem can be translated into frozen percolation on the MBBT, which is easier to handle.

(本間) (本語) (本語) (語)

Def The *Marked Binary Branching Tree* (MBBT) is a pair (\mathcal{T}, Π) with:

- ➤ T is the family tree of a rate one continuous-time binary branching process.
- Π is a rate one Poisson process on $\mathcal{T} \times [0, 1]$.

Def $\Pi_t := \{(z, \tau) \in \Pi : \tau > t\}.$

Equivalently, $\Pi = \{(z, \tau_z) : z \in \Pi_0\}$, where:

- Π_0 is a rate one Poisson process on \mathcal{T} ,
- $(\tau_z)_{z\in\Pi_0}$ are i.i.d. uniform [0, 1]-valued.

Interpretation Initially, points in Π_0 are closed. At time τ_z , the point *z* opens. Π_t set of closed points at time *t*.

< ≣⇒

The MBBT is the *universal scaling limit* of near-critical percolation on trees.

Related to this, the MBBT itself enjoys a form of *scale invariance*: Write $z \xrightarrow{\mathcal{T} \setminus \Pi_t} \infty$ if at time *t* there is an open upward path starting at *z*.

Then

$$\mathcal{T}' := \{ z \in \mathcal{T} : \varnothing \xrightarrow{\mathcal{T} \setminus \Pi_t} z \xrightarrow{\mathcal{T} \setminus \Pi_t} \infty \}$$

is the family tree of a rate t binary branching process. Moreover, $\Pi' := \{(z, \tau_z) \in \Pi : z \in \mathcal{T}\}$ is a rate one Poisson process on $\mathcal{T}' \times [0, t]$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

(4日) (日)

- ∢ ≣ ▶

æ

(4日) (日)

- ∢ ≣ ▶

æ

- 4 回 ト - 4 回 ト - 4 回 ト

(4回) (1日) (日)

(4回) (1日) (日)

(4回) (1日) (日)

→ 同 → → 目 →

→ 同 → → 目 →

→ 同 → → 目 →

→ 同 → → 目 →

▲□→ < □→</p>

- < ≣ →

æ

It is possible to construct frozen percolation on the MBBT such that:

At time $t = \tau_z$, the point z opens unless $z \xrightarrow{\mathcal{T} \setminus \Pi_t} \infty$.

Let $Y_{\varnothing} := \inf \left\{ t \in [0,1] : \varnothing \xrightarrow{\mathcal{T} \setminus \Pi_t} \infty \right\}$ and $:= \infty$ if this never happens.

Then

$$hoig([0,t]ig):=\mathbb{P}[Y_{arnothing}\leq t]=rac{1}{2}t \qquadig(t\in[0,1]ig).$$

Lemma The corresponding $\underline{\rho}^{(2)}$ has the scaling property

$$\mathbb{P}ig[(Y_{arnothing},Y_{arnothing}')\in[0,tr] imes[0,ts]ig]=t\mathbb{P}ig[(Y_{arnothing},Y_{arnothing}')\in[0,r] imes[0,s]ig]$$

 $0\leq r,s,t\leq 1ig).$

• 3 > 1

Theorem For frozen percolation on the MBBT, the bivariate map has precisely two scale-invariant fixed points.

A scale invariant law $\rho^{(2)}$ on I^2 solves the bivariate RDE if and only if the function

$$F(u) :=
ho^{(2)} ig(\{ (y_1, y_2) \in I^2 : y_1 > u, \ y_2 \le 1 \} ig) \qquad (0 \le u \le 1)$$

solves the differential equation

(i)
$$\frac{\partial}{\partial u}F(u) = \frac{Cu}{F(u)} - \frac{1}{2}$$
 $(u \in [0, 1]),$
(ii) $F(0) = \frac{1}{2},$ (iii) $F(1)^2 + \frac{1}{2}F(1) = 2c$

for some $c \ge 0$. There are two values $0 = \overline{c} < \underline{c} < \frac{1}{4}$ for which this equation has a solution, corresponding to $\overline{\rho}^{(2)}$ and $\rho^{(2)}$.