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Intertwining of semigroups

[Fill ’92] Let X and Y be Markov processes with state spaces S
and T , semigroups (Pt)t≥0 and (P ′t)t≥0, and generators G and G ′.
Let K be a probability kernel from S to T and assume that

GK = KG ′

Then one has the intertwining relation

PtK = KP ′t (t ≥ 0)

and the processes X and Y can be coupled such that

P[Yt = y | (Xs)0≤s≤t ] = K (Xt , y) a.s. (t ≥ 0).

We call Y an averaged Markov process on X .
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Example: Wright-Fisher diffusion

Let X be a Wright-Fisher diffusion with generator

Gf (x) = 1
2x(1− x) ∂2

∂x2 f (x).

Let Y be a process with state space {0, 1} that jumps 0 7→ 1 with
rate one, i.e.,

G ′f (y) := f (1)− f (y) (y = 0, 1).

Let K : [0, 1]→ {0, 1} be the probability kernel

K (x , y) :=

{
4x(1− x) if y = 0,
1− 4x(1− x) if y = 1.

Then
GK = KG ′.
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Example: Wright-Fisher diffusion

The coupled process (X ,Y ) has the following description:

I Y evolves according to the generator G ′ regardless of the
state of X , i.e., Y is autonomous.

I While Y is in the state y , the process Xt evolves according to
the generator

Gy f (x) := 1
2x(1− x) ∂2

∂x2 f (x) + by (x) ∂
∂x f (x) (y = 0, 1),

where

b0(x) = 2( 1
2 − x), b1(x) =

8x(1− x)(x − 1
2 )

1− 4x(1− x)
.
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Wright-Fisher diffusion with drift

As long as
Yt = 0, X
cannot reach
the boundary.
When Yt = 1,
X cannot cross
the middle.

Jan M. Swart An intertwining-based renormalization argument for hierarchical contact processes



Intertwining of Markov processes
Hierarchical contact processes

Wright-Fisher diffusion
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If we forget
about the
colors, then
X is just a
Wright-Fisher
diffusion
without drift!
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Explanation

The process (X ,Y ) is Markov, but X is not autonomous, i.e., its
dynamics depend on the state of Y . So how is it possible that X ,
on its own, is Markov?
In fact, one has

P[Yt = 0 | (Xs)0≤s≤t ] = 4Xt(1− Xt) a.s.

In particular, this probability depends only on the endpoint of the
path (Xs)0≤s≤t , and the expected drift is

E[bYt (Xt) | (Xs)0≤s≤t ] =

4Xt(1− Xt)b0(Xt) +
(
1− 4Xt(1− Xt)

)
b1(Xt) = 0.

Intertwining is a useful tool to study metastability.
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A generalization

[Athreya & S. ’10] Let X be a Markov processes with state space
S and generator G , let K be a probability kernel from S to T and
let (G ′x)x∈S be a collection of generators of T -valued Markov
processes. Assume that

GK = K̂ G

where K̂ : RS×T → RS and G : RT → RS×T are defined by

K̂ f (x) :=
∑
y∈S

K (x , y)f (x , y) and Gf (x , y) := G ′x f (y).

Then X can be coupled to a process Y such that (X ,Y ) is
Markov, Y evolves according to the generator G ′x while X is in the
state x , and

P[Yt = y | (Xs)0≤s≤t ] = K (Xt , y) a.s. (t ≥ 0).
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A generalization

In this more general setting, the process Y is no longer
autonomous, but in “good” situations its transition rates are
“almost” constant as a function of the state of X .

We call Y an added-on process on X .
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The hierarchical group

By definition, the hierarchical group with freedom N is the set

ΩN :=
{
i = (i0, i1, . . .) : ik ∈ {0, . . . ,N − 1},

ik 6= 0 for finitely many k
}
,

equipped with componentwise
addition modulo N. Think of
sites i ∈ ΩN as the leaves of
an infinite tree. Then i0, i1, i2, . . .
are the labels of the branches on
the unique path from i to the root
of the tree.

10 2 10 2 10 2 10 2 10 2 10 2 10 2 10 2 10 2

0 1 2 0 1 2 0 1 2

10 2

site (2,0,1,0,...)

0
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The hierarchical distance

Set
|i | := inf{k ≥ 0 : im = 0 ∀m ≥ k} (i ∈ ΩN).

Then |i − j | is the hierarchi-
cal distance between two el-
ements i , j ∈ ΩN . In the tree
picture, |i − j | measures how
high we must go up the tree
to find the last common an-
cestor of i and j .

two sites at hierarchical distance 3
i j
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Hierarchical contact processes

Fix a recovery rate δ ≥ 0 and infection rates αk ≥ 0 such that∑∞
k=1 αk <∞.

Consider a contact process on ΩN where:

I An infected site i infects a healthy site j at hierarchical
distance k := |i − j | with rate αkN

−k

I Infected sites become healthy with rate δ ≥ 0.

Write:

Xt(i) =

{
0
1

if the site i is

{
healthy
infected

at time t.

Then (Xt)t≥0 with Xt = (Xt(i))i∈ΩN
is a Markov process.
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Hierarchical contact processes
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Infection rates on the hierarchical group.
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The critical recovery rate

We say that a contact process (Xt)t≥0 on ΩN with given recovery
and infection rates survives if there is a positive probability that
the process started with only one infected site never recovers
completely, i.e., there are infected sites at any t ≥ 0. For given
infection rates, we let

δc := sup
{
δ ≥ 0 : the contact process with infection rates

(αk)k≥1 and recovery rate δ survives
}

denote the critical recovery rate. A simple monotone coupling
argument shows that X survives for δ < δc and dies out for δ > δc.
It is not hard to show that δc <∞. The question whether δc > 0
is more subtle.
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(Non)triviality of the critical recovery rate

[Athreya & S. ’10] Assume that αk = e−θ
k

(k ≥ 1). Then:

(a) If N < θ, then δc = 0.

(b) If 1 < θ < N, then δc > 0.

More generally, we show that δc = 0 if

lim inf
k→∞

N−k log(βk) = −∞, where βk :=
∞∑
n=k

αn (k ≥ 1),

while δc > 0 if
∞∑

k=m

(N ′)−k log(αk) > −∞,

for some m ≥ 1 and N ′ < N.
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Proof of extinction

Without loss of generality
∑∞

k=1 αk ≤ 1.
Let X (n) be the process restricted to

Ωn
N :=

{
i = (i0, . . . , in−1) : ik ∈ {0, . . . ,N − 1}

}
.

Comparison of X (n) with a process X̃ (n) where sites jump
independently from each other from 0 to 1 with rate one and from
1 to 0 with rate δ yields the estimate

T := Eδ0
[

inf{t ≥ 0 : X
(n)
t = 0}

]
≤ N−n(1 + δ−1)N

n
.

For N < θ, this implies that sufficiently large blocks recover faster
than they can infect other blocks of the same size, hence the result
follows by comparison with subcritical branching.
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Proof of survival

We use added-on Markov processes to inductively derive bounds on
the finite-time survival probability of finite systems. Let

Ωn
2 :=

{
i = (i0, . . . , in−1) : ik ∈ {0, 1}

}
and let Sn := {0, 1}Ωn

2 . We define a kernel from Sn to Sn−1 by
independently replacing blocks consisting of two spins by a single
spin according to the stochastic rules:

00 −→ 0, 11 −→ 1,

and 01 or 10 −→
{

0 with probability ξ,
1 with probability 1− ξ,

where ξ ∈ (0, 1
2 ] is a constant, to be determined later.
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Renormalization kernel

0 0 1 10 0 1 1
0 1 0 1

K

The probability of this transition is 1 · (1− ξ) · ξ · 1.
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An added-on process

Let X be a contact process on Ωn
2 with infection rates α1, . . . , αn

and recover rate δ. Then X can be coupled to a process Y such
that

P[Yt = y | (Xs)0≤s≤t ] = K (Xt , y) a.s. (t ≥ 0),

where K is the kernel defined before, and

ξ := γ −
√
γ2 − 1

2 with γ :=
1

4

(
3 +

α1

2δ

)
.

The process Y is not autonomous, but “almost” so. Indeed, we
can couple Y to a contact process X ′ on Ωn−1

2 with recovery rate
δ′ := 2ξδ and infection rates α′1, . . . , α

′
n−1 given by α′k := 1

2αk+1,
in such a way that X ′t ≤ Yt for all t ≥ 0.
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Renormalization

We may view the map (δ, α1, . . . , αn) 7→ (δ′, α′1, . . . , α
′
n−1) as an

(approximate) renormalization transformation. By iterating this
map n times, we get a sequence of recovery rates δ, δ′, δ′′, . . ., the
last of which gives a upper bound on the spectral gap of the finite
contact process X on Ωn

2. Under suitable assumptions on the αk ’s,
we can show that this spectral gap tends to zero as n→∞, and in
fact, we can derive explicit lower bounds on the probability that
finite systems survive till some fixed time t.
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Open problems

The renormalization procedure is only approximate, since we use
the stochastic bound X ′ ≤ Y to estimate the non-autonomous
process Y from below by a contact process X ′.

I Can we improve our kernel K so that Y ′ is even closer to
being autonomous?

I Can we even find an exact renormalization map, where Y ′ is
autonomous (though possibly no longer a contact process)?

I Can we set up a similar argument for contact processes on Z?

I Do random renormalization mappings have advantages over
deterministic rules?
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