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One-dimensional voter models

{0, 1}Z = the space of all functions x : Z→ {0, 1}. Interpretation:

x = · · · 0000110101000110101110011111 · · ·

models the distribution of two genetic types of a plant, living in a
one-dimensional environment (coastline, river).

(Xt)t≥0 with Xt =
(
Xt(i)

)
i∈Z continuous-time Markov process

with state space {0, 1}Z.
Dynamics: each plant lives an exponential time with mean 1, and
upon death is immediately replaced by a clone of a near-by plant,
at a distance chosen according to a probability distribution p.

In other words, if the present state is x , then x(i) jumps:

0 7→ 1 with rate
∑
j∈Z

p(j − i)1{x(j) = 1},

1 7→ 0 with rate
∑
j∈Z

p(j − i)1{x(j) = 0}.
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A graphical representation

We concentrate for the moment on the nearest neighbor case
p(−1) = p(1) = 1

2 .

For each i , j ∈ Z, at times of a Poisson process with intensity
p(j − i), we draw a resampling arrow from j to i .
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A graphical representation

Xt

X0

When there is an arrow from j to i ,
the site i copies the type of site j .
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Duality

Xt

X0

Y0

Yt

A voter model X is dual to a system of coalescing random walks Y :

P
[
Xt ∧ Y0 6= 0] = P

[
X0 ∧ Yt 6= 0] (t ≥ 0).
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Duality

Xt

X0

Y0

Yt

Interpretation: Set Yt := {i : Yt(i) = 1}.
Then Yt are the ancestors of Y0.

Xt(i) = 1 for some i ∈ Y0 iff X0(i) = 1 for some i ∈ Yt .
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Duality

Xt

X0

Y0

Yt

Interfaces of the voter model correspond to dual coalescing random
walks running upwards in time.
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The Brownian web

The system of coalescing random walks has a diffusive scaling
limit, when we rescale space by ε, time by ε2, and send ε ↓ 0.
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The Brownian web

The same is true for the dual coalescing random walks running
upwards.
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The Brownian web

At each space-time point (x , t) ∈ R2, there starts a Brownian path.
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The Brownian web

Paths started at different points coalesce.
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Topological matters

(0, 0)

(∞, 2)

(−∞,−1)

(−1,∞)

(∞,−∞)

We first compactify R2 to [−∞,∞]2. . .
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Topological matters

(0, 0)

(∗,∞)

(∗,−∞)

(−∞,−1)

(2,∞)

. . . and then contract [−∞,∞]× {−∞}
and [−∞,∞]× {∞} to single points.
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Topological matters

(0, 0)

(∗,∞)

(∗,−∞)

(−∞,−1)

(2,∞)

We identify a path π : [σπ,∞)→ R with (the closure of) its graph{
(π(t), t) : t ∈ [σπ,∞)

}
.
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Topological matters

(0, 0)

(∗,∞)

(∗,−∞)

(−∞,−1)

(2,∞)

π2

π1

d(π1,π2)

We equip the space Π of all paths with the Hausdorff metric

d(π1, π2) = sup
z1∈π1

inf
z2∈π2

d(z1, z2) ∨ sup
z2∈π2

inf
z1∈π1

d(z1, z2).
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Topological matters

We equip the space K(Π) of all compact subsets of the space of
paths Π with the Hausdorff metric

d(U1,U2) = sup
π1∈U1

inf
π2∈U2

d(π1, π2) ∨ sup
π2∈U2

inf
π1∈U1

d(π1, π2).

We define a diffusive scaling map Sε by

Sε(x , t) := (εx , ε2t).
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The Brownian web

Let
U :=

{
π(x ,s) : x ∈ Z, s ∈ R

}
denote the collection of coalescing random walk paths started from
any point in Z× R. By adding trivial paths that are ≡ ±∞, we
can view U as a compact subset of Π.

[Fontes, Isopi, Newman & Ravishankar ’04]

P
[
Sε(U) ∈ ·

]
=⇒
ε↓0

P
[
W ∈ ·

]
where W is the Brownian web.
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The Brownian web

I For each deterministic z ∈ R2, almost surely there is a unique
open path πz ∈ W.

I For any deterministic finite set of points z1, . . . , zk ∈ R2, the
collection (πz1 , . . . , πzk ) is distributed as coalescing Brownian
motions

I For any deterministic countable dense subset D ⊂ R2, almost
surely, W is the closure of {πz : z ∈ D}.
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Special points

(0, 1)

(1, 1) (2, 1) (1, 2)l

(0, 2) (0, 3)
(1, 2)r

Special points are classified according to the number of incoming
and outgoing open paths. There exists 7 types of special points.
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The dual Brownian web

Structure of dual open paths at special points.
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The non-nearest neighbor case

[Newman, Ravishankar & Sun ’05] Assume that∑
i |i |3+δp(i) <∞ for some δ > 0. Then

P
[
Sε(U) ∈ ·

]
=⇒
ε↓0

P
[
W ∈ ·

]
where W is the Brownian web with variance σ2 :=

∑
i |i |2p(i).

Proof is more difficult, because there is no (obvious) dual system
of coalescing random walks.
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Interfaces

S01
int :=

{
x ∈ {0, 1}Z : ∃i < j s.t. x(i ′) = 0 ∀i ′ ≤ i ,

x(j ′) = 1 ∀j ′ ≥ j
}
.

Interpretation: x ∈ S01
int describes the interface between two infinite

populations of 0’s and 1’s:

· · · 0000000000000 1011000110100︸ ︷︷ ︸
interface

11111111111111 · · ·

Lemma
If
∑
k

p(k)|k| <∞, then X0 ∈ S01
int implies Xt ∈ S01

int ∀t ≥ 0 a.s.

Question Starting from the Heaviside configuration

x0 := · · · 00000000000000000000001111111111111111111111 · · ·

does the size of the interface keep growing, or does it reach some
finite equilibrium size?
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Numerics

A voter model on {1, . . . , 500} with periodic boundary conditions,
and p the uniform distribution on {−2,−1, 1, 2}.

Total time elapsed 600.
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Interface tightness

Def x ∼ y if ∃j s.t. x(i) = y(i + j) (i ∈ Z).

Def x := {y : y ∼ x} and S
01
int := {x : x ∈ S01

int}.

Observation The voter model modulo translations (X t)t≥0 is a
Markov process.

Def A voter model exhibits interface tightness on S01
int if x0 is a

positive recurrent state for the Markov process (X t)t≥0.

Theorem If
∑
k

p(k)|k |2 <∞, then interface tightness holds on

S01
int and S10

int.

Proved when
∑

k p(k)|k |3 <∞ by Cox and Durrett (1995) and in
general by Belhaouari, Mountford and Valle (2007), who moreover
showed that the second moment condition is optimal.
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A useful function

Cox and Durrett (1995) look at the function

h(x) :=
∑
i<j

1{x(i) > x(j)}
(
x ∈ S01

int

)
,

which counts the number of inversions. For the process started in
the Heaviside state x0, they used duality to prove

sup
t≥0

P
[
h(Xt) ≥ N

]
−→
N→∞

0.

The function h also plays a key role in the proofs of Belhaouari,
Mountford and Valle (2007).
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Inversions

0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

1 0

For an inversion, two dual coalescing random walks must cross and
end up on opposite sides of the origin.
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Some functions of the interface

We denote the left and right boundaries of x ∈ S01
int by

L(x) := inf{i : x(i) = 1}− 1
2 and R(x) := sup{i : x(i) = 0}+ 1

2 ,

and let `(x) := R(x)− L(x) denote the width of the interface.

M(x)

↓
· · · 0000000000000 10110︸ ︷︷ ︸

`(x)=5

11111111111111 · · ·

We also define the midpoint M(x) ∈ Z + 1
2 of the interface by∑

i<M(x)

1{x(i)=1} =
∑

i>M(x)

1{x(i)=0}.
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The width of the interface

If interface tightness holds, then X t , started in x0, converges in law
as t →∞ to some X∞. Cox and Durrett (Theorem 6) prove that

E
[
`(X∞)

]
=∞.

Belhaouari, Mountford, Sun and Valle (2006, Theorem 1.4) have
shown that

E
[
`(X∞) ≥ L

]
� L−1.
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A pseudo-Lyapunov function

The process modulo translations X t is a countinuous-time Markov

chain with countable state space S
01
int.

By Foster’s theorem, positive recurrence is equivalent to the

existence of a Lyapunov function V : S
01
int → [0,∞) such that

GV (x) <∞ for all x ∈ S
01
int,

GV (x) ≤ −1 for all but finitely many x ∈ S
01
int,

where G is the generator of X t .

For the voter model modulo translations, no such Lyapunov
function has been found explicitly.
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A pseudo-Lyapunov function

Sturm & S. (2008) have shown that the number of inversions h(x)
is “almost” a Lyapunov function.

More precisely,

Gh(x) = 1
2

∑
k∈Z

p(k)|k |2 − 1
2

∑
k∈Z

p(k)Ik(x),

where
Ik(x) :=

∑
i∈Z

1{x(i) 6= x(i + k)}

denotes the number of k-boundaries.

Since {x : x ∈ S01
int, Gh(x) 6≤ −1} is in general not finite

(except when p is almost nearest neighbor),
this is not a Lyapunov function.
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A pseudo-Lyapunov function

Nevertheless, it is almost as good as a Lyapunov function. One
can show that if interface tightness does not hold, then

lim
T→∞

1

T

∫ T

0
dt P

[
Ik(Xt) < N

]
= 0 (N, k ≥ 1),

i.e., most of the time, there are lots of k-boundaries.

As a result, most of the time Gh(Xt) ≤ −1, while the rest of the
time Gh(Xt) ≤ 1

2

∑
k∈Z p(k)|k |2 <∞.

This means that if interface tightness does not hold, then over
long time intervals, h(Xt) decreases more than it increases. Since
h ≥ 0, we arrive at a contradiction.
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Scaling limit of the interface

Let Lt := L(Xt) and Rt := R(Xt) denote the left and right
boundaries of the interface and let Mt := M(Xt) denote the
midpoint.

Lemma If
∑

i i2p(i) <∞, then

P
[
εMε−2t)t≥0 ∈ ·

]
=⇒
ε↓0

P
[
(Bt)t≥0 ∈ ·

]
,

where (Bt)t≥0 is Brownian motion.
If
∑

i |i |3+δp(i) <∞ for some δ > 0, then moreover

P
[
(εLε−2t , εRε−2t)t≥0 ∈ ·

]
=⇒
ε↓0

P
[
(Bt ,Bt)t≥0 ∈ ·

]
.

Remark This can be used to prove that the rescaled collections of
coalescing random walk paths Sε(U) (ε > 0) are tight in the
Brownian web topology.
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Scaling limit of the interface

Assume
∑

k |k|3p(k) <∞.
Then the expected number of resampling arrows that start ≥ ε left
of Bt and end ≥ ε right of Bt during a time interval of length one
is

ε−2
∑
i≥ε−1

∑
j≥ε−1

p(i + j) = ε−2
∑

k≥ε−1

p(k)(k − ε−1) −→
ε↓0

0,

where we have used dominated convergence and

ε−2(k − ε−1) ≤ k3 (k ≥ ε−1).

Conversely, if
∑

k |k |3p(k) =∞, we cannot expect

P
[
(εLε−2t , εRε−2t)t≥0 ∈ ·

]
=⇒
ε↓0

P
[
(Bt ,Bt)t≥0 ∈ ·

]
.
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The regime where tightness fails

Recall that we identify a path π : [σπ,∞)→ R with the closure of
its graph

π =
{

(π(t), t) : t ∈ [σπ,∞)
}
.

If
∑

k |k |2p(k) <∞ but
∑

k |k |3p(k) =∞, we can expect

P
[
Sε(U) ∈ ·

]
=⇒
ε↓0

P
[
W∗ ∈ ·

]
,

where
W∗ :=

{
π ∪ {(x , σπ)} : π ∈ W, x ∈ R

}
consists of all paths in the Brownian web W that moreover can
make a jump of arbitrary size at their starting time σπ.

Proof?
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Biased voter models

In the biased voter model with bias ε ∈ [0, 1], x(i) jumps:

0 7→ 1 with rate
∑
j∈Z

p(j − i)1{x(j) = 1},

1 7→ 0 with rate (1− ε)
∑
j∈Z

p(j − i)1{x(j) = 0}.

Theorem [Sun, S. & Yu ’18] If
∑
k<0

p(k)|k| <∞ and∑
k>0

p(k)|k|2 <∞, then interface tightness holds on S01
int.
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Numerics

A biased voter model with bias ε = 0.3.
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Duality for biased voter models

Xt

X0

Y0

Yt

A biased voter model X has a branching-coalescing dual Y :

P
[
Xt ∧ Y0 6= 0] = P

[
X0 ∧ Yt 6= 0] (t ≥ 0).
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Duality for biased voter models

Xt

X0

Y0

Yt

Interpretation: Set Yt := {i : Yt(i) = 1}.
Then Yt are the potential ancestors of Y0.

Xt(i) = 1 for some i ∈ Y0 iff X0(i) = 1 for some i ∈ Yt .

Jan M. Swart (Czech Academy of Sciences) Interface tightness



Interface tightness for biased voter models

Sun, S. & Yu (2018) prove interface tightness for biased
voter models using the pseudo-Lyapunov function technique of
Sturm & S. Set:

i0(x) := inf{i ∈ Z : x(i) = 1},
in+1 := inf{i > in : x(i) = 1}.

A suitable pseudo-Lyapunov function turns out to be the weighted
number of inversions

hε(x) :=
∞∑
n=0

(1− ε)n
∑
j>in

1{x(j) = 0}.
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Scaling limit

Theorem Assuming
∑

i |i |2p(i) <∞, the equilibrium law of the
width of the interface satisfies

P
[
`(X ε
∞) ∈ ·

]
=⇒
ε↓0

P
[
`(X 0
∞) ∈ ·

]
Moreover, the midpoint of the interface scales to a drifted
Brownian motion (

εM(X ε
ε−2t)

)
=⇒
ε↓0

(
Bt

)
t≥0.
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Scaling limit

Open problem Assuming
∑

i |i |3+δp(i) <∞ for some δ > 0,
prove that (

εL(X ε
ε−2t), εR(X ε

ε−2t)
)

=⇒
ε↓0

(
Bt ,Bt

)
t≥0,

where Bt is a drifted Brownian motion.

Open problem Our methods do not work if the resampling and
selection arrows are governed by different kernels:

0 7→ 1 with rate (1− ε)
∑
j∈Z

p(j − i)1{x(j) = 1}

+ε
∑
j∈Z

q(j − i)1{x(j) = 1},

1 7→ 0 with rate (1− ε)
∑
j∈Z

p(j − i)1{x(j) = 0}.
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