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Gibbs measures

Let G = (V ,E ) be a finite graph and let S be a finite set. For
each spin configuration σ : V → S , define a Hamiltonian

H(σ) :=
∑
x∈V

Jx(σ(x)) +
∑
{x ,y}∈E

J{x ,y}(σ(x), σ(y)).

Physically, this corresponds to the energy of a configuration σ.
The functions Jx is represent an external field acting on the spin at
position x while the functions J{x ,y} represent an interaction
between the spins at positions x and y .
For each inverse temperature β ≥ 0, define a Gibbs measure

µβ(σ) :=
1

Zβ
e−βH(σ),

where the partition sum Zβ :=
∑

σ e−βH(σ) is just a normalization
constant.
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Boundary conditions

Fix Λ ⊂ V and a configuration τ . Then the conditional law

µβ
(
σ
∣∣σ = τ on V \Λ

)
is a Gibbs measure corresponding to the Hamiltonian

H(σ) :=
∑
x∈V

Jx(σ(x)) +
∑
{x ,y}∈E
x ,y∈Λ

J{x ,y}(σ(x), σ(y))

+
∑
{x ,y}∈E

x∈Λ, y∈V \Λ

J{x ,y}(σ(x), τ(y)).

This can be used to define infinite volume Gibbs measures through
the Dobrushin-Lanford-Ruelle (DLR) conditions.

Uniqueness of the infinite volume Gibbs measure is equivalent to
the effect of the boundary conditions going to zero as Λ ↑ V .
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Motivation

Usually, G is (quasi-) transitive and H is invariant under some
(quasi-) transitive subgroup of Aut(G ). Consider large volumes
Λn ↑ V and let µΛn be the uniform distribution on all spin
configurations in Λn. Then we expect that the conditional laws

µΛn

(
σ
∣∣H(σ) ≈ ρ|Λn|

)
locally satisfy the DLR conditions in the limit n→∞, for some
suitable β depending on the energy density ρ. This (and related)
‘facts’ are known as the equivalence of ensembles and are related
to Large Deviations Theory.
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Potts models

We now make the choice S = {1, . . . , q} and

H±(σ) := ∓
∑
{x ,y}∈E

1{σ(x)=σ(y)}.

In this case, the finite-volume Gibbs measures

µ±β (σ) :=
1

Zβ
e−βH±(σ),

describe a ferromagnetic (+) or antiferromagnetic (−) q-state
Potts model. In the (anti-) ferromagnetic model, neighboring spins
(dis-) like to be of the same type.
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Zero temperature

In the zero-temperature limit β →∞, the finite-volume Gibbs
measure µ+

β converges to the uniform distribution on the ground
states, which are:

I Ferromagnetic: The constant configurations{
σ : σ(x) = σ(y) ∀{x , y} ∈ E

}
.

I Antiferromagnetic: The (proper) q-colorings{
σ : σ(x) 6= σ(y) ∀{x , y} ∈ E

}
.
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Ferromagnetic model

I Case q = 2 is the well-known Ising model.

I Model on Zd exhibits a phase transition from disorder to
long-range order at some 0 < βc <∞.

I Phase transition of second order for small q and first order for
large q.

I For Z2: second order for q < 4 and first order for q > 4
(proved for q = 2 and q > 25).
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Antiferromagnetic model

‘Facts’ believed to be true:

I For each dimension d , there is a qc such that the q-state
model on Zd has a phase transition only if q < qc.

I For q > qc, the model is disordered even at zero temperature.

I For q < qc, there is a βc such that the model is disordered for
β < βc and has long-range order for β > βc.

I For Z2, it is believed that qc = 3 and the 3-state model is
critical at zero temperature.
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Height mapping

Let h : Zd → Z satisfy

|h(x)− h(y)| = 1 if |x − y | = 1.

Then
σ(x) := h(x) mod(3)

is a 3-coloring.

Fact: If we fix h(x0) and σ(x0) in one point x0, then the mapping
h 7→ σ is a bijection, i.e., we can recover h from σ.
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Height mapping
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The red path can be deformed into the blue path so that the
height difference between the endpoints stays the same.
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Height mapping
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Simulations by Ron Peled of a random height mapping on a
100×100 square and the middle layer of a 100×100×100 cube.
Simulated using Propp-Wilson’s coupling from the past.
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High dimension versus dimension two

Ron Peled (preprint 2010) has proved that for sufficiently high d , a
typical height-configuration is flat.
This implies (some form of) long-range order for the
zero-temperature, 3-state antiferromagnetic Potts model on Zd .

On the other hand, on Z2, the fluctuations of the height model are
believed to be of order log(system size). This is similar to wat is
known for dimer models (R. Kenyon).

Is this behavior universal in two-dimensional
AF 3-state Potts models?

NO.
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The diced lattice

Theorem (R. Kotecký, J. Salas & A.D. Sokal, 2008): The 3-state
antiferromagnetic Potts model on the diced lattice has long-range
order for β sufficiently large.
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The diced lattice

The diced lattice:

I Is bipartite.

I Is a quadrangulation.

I Admits a height
representation.

So why is it different from Z2?
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Asymmetry

Explanation 1: different densities of sublattices
For any bipartite graph, we can construct special 3-colorings by
using one color for one sublattice and reserving the other two
colors for the other sublattice.
This happens locally on Z2, but on larger scales, we see infinitely
many switchings between regions where one or the other sublattice
is monotonely colored.
For the diced lattice, the spatial density of points of one sublattice
is twice as high as for the other sublattice. Therefore, we can make
many more configurations if we reserve two colors for this
sublattice.
Effectively, this is like applying an external field that favors one
sublattice.
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Contour model

Explanation 2: contour model

We may view the sublattices as graphs on their own, connecting
vertices along the diagonals of quadrilaterals.
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Contour model

The two sublattices are dual in the sense of planar graph duality.
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Contour model
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We separate vertices of with different spins in the red sublattice by
contours in the green sublattice.
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Contour model

?

1

2

3

At zero temperature, contours are collections of simple cycles,
since vertices in the green sublattice cannot be surrounded by three
different types in the red sublattice.
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Peierls argument

For vertices on a contour, only one type is available, while for
vertices that are not on a contour, 2 types are available. As a
result, for each configuration in which a given cycle is present, we
can find 2|γ| configurations where this contour has been removed,
with |γ| = the length of γ. Thus, the probability of a given cycle γ
being present is less or equal than 2−|γ| and the expected number
of cycles surrounding a given vertex can be estimated by

∞∑
L=6

N(L)2−L,

where N(L) denotes the number of cycles of length L surrounding
a given vertex.
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Peierls argument

Let Ñ(L) denotes the number of self-avoiding paths of length L in
the honeycomb lattice. Duminil-Copin and Smirnov (2010) have
proved that

lim
L→∞

Ñ(L)1/L =

√
2 +
√

2,

i.e., the connective constant of the honeycomb lattice is
√

2 +
√

2.
Since N(L) ≤ Ñ(L), it follows that

N(L) ≤ constant×
(√

2 +
√

2
)L
.

Note that
√

2 +
√

2 < 2 and hence the number of cycles of length
L surrounding a given vertex is bounded by

constant×
∞∑

L=6

2−L
(√

2 +
√

2
)L
<∞.
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Peierls argument

Using moreover explicit counting of cycles up to length 140 due to
Jensen (2006), Kotecký, Salas & Sokal (2008) were able to prove
that for any vertex x in the red sublattice

P[x is surrounded by a cycle] <
2

3
.

Using 1-boundary conditions on the red sublattice and letting the
box size to infinity, it follows that there exists a zero-temperature
infinite-volume Gibbs measure µ∞ such that

µ∞
(
σ(x) = 1

)
>

1

3
.

In particular, this ‘positive magnetization’ proves Gibbs state
multiplicity and long range order.
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More general lattices

We can prove positive magnetization for more general lattices, as
long as the red sublattice is a triangulation.
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More general lattices

Theorem Let G = (V ,E ) be a quadrangulation of the plane, and
let G0 = (V0,E0) and G1 = (V1,E1) be its sublattices, connected
through bonds along the diagonals of quadrilaterals. Assume that
G0 is a locally finite, 3-connected, quasi-transitive triangulation
with one end. Then there exist β0,C <∞ and ε > 0 such that for
each inverse temperature β ∈ [β0,∞] and each k ∈ {1, 2, 3}, there
exists an infinite-volume Gibbs measure µk,β for the 3-state Potts
antiferromagnet on G satisfying:

(a) For all v0 ∈ V0, we have µk,β(σv0 = k) ≥ 1
3 + ε.

(b) For all v1 ∈ V1, we have µk,β(σv1 = k) ≤ 1
3 − ε.

(c) For all {u, v} ∈ E , we have µk,β(σu = σv ) ≤ Ce−β.

In particular, for each inverse temperature β ∈ [β0,∞], the 3-state
Potts antiferromagnet on G has at least three distinct extremal
infinite-volume Gibbs measures.
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Low temperature stability
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Stiff boundary conditions for the height model. . .
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Low temperature stability
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. . . translate into b.c. for the Potts model that correspond to a
unique 3-coloring of the interior.
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Low temperature stability

This leads to trivial infinite-volume Gibbs measures.

But these Gibbs measures are not the limit of any positive
temperature Gibbs measures as the temperature is sent to zero.

The reason is that at any β <∞, we pay an energetic price of
order L (surface effect) to change to more advantageous boundary
conditions that lead to an entropic advantage of order L2 (bulk
effect).

Open problem: Construct such an example on a hyperbolic
lattice. Stable against low-temperature perturbations?
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Low temperature stability

Our Gibbs measures satisfy, for all β ∈ [β0,∞]:

(a) For all v0 ∈ V0, we have µk,β(σv0 = k) ≥ 1
3 + ε.

(b) For all v1 ∈ V1, we have µk,β(σv1 = k) ≤ 1
3 − ε.

(c) For all {u, v} ∈ E , we have µk,β(σu = σv ) ≤ Ce−β.

In particular, each zero-temperature Gibbs measure that is a limit
of positive-temperature Gibbs measures with these properties, will
also satisfy this. In particular, by (c), such a Gibbs measure is
concentrated on 3-colorings.
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