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Probability kernels

Let S be a finite set.
A probability kernel on S is a function K : S× S → [0, 1] such that∑

y∈S
K (x , y) = 1 (x ∈ S).

We can multiply probability kernels as matrices:

(KL)(x , z) :=
∑
y∈S

K (x , y)L(y , z) (x , z ∈ S).

We can also view kernels as linear operators that act on functions
f : S → R as

Kf (x) :=
∑
y∈S

K (x , y)f (y).
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Continuous-time Markov chains

Let S be a finite set. A Markov semigroup is a collection of
probability kernels (Pt)t≥0 on S such that

lim
t↓0

Pt = P0 = 1 and PsPt = Ps+t (s, t ≥ 0).

Each such Markov semigroup is of the form

Pt = e tG :=
∞∑
n=0

1

n!
(tG )n,

where the generator G is a matrix of the form

G (x , y) ≥ 0 (x ̸= y) and
∑
y∈S

G (x , y) = 0.

One has Pt(x , y) = 1{x=y} + tG (x , y) + O(t2) as t → 0.
We call G (x , y) the rate of jumps from x to y (x ̸= y).
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Random mapping representations

We view generators as linear operators that act on functions
f : S → R as

Gf (x) :=
∑
y∈S

G (x , y)f (y) (x ∈ S).

Then Pt f = f + tGf + O(t2) as t → 0.
Each generator G can be written in the form

Gf (x) =
∑
m∈G

rm
{
f
(
m(x)

)
− f

(
x
)}

,

where G is a finite set whose elements are functions m : S → S and
(rm)m∈G are nonnegative rates.

We call this a random mapping representation of G .

Random mapping representation are usually far from unique.
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Poisson construction of Markov processes

Each random mapping representation of G corresponds to a
Poisson construction of the Markov process.

Let ρ be the measure on G × R defined by

ρ
(
{m} × [s, t]

)
:= rm(t − s) (m ∈ G, s ≤ t).

Let ω be a Poisson point set on G × R with intensity ρ and let

ωs,u :=
{
(m, t) ∈ ω : s < t ≤ u

}
(s ≤ u).

Define random maps (Xs,u)s≤u by

Xs,u := mn ◦ · · · ◦m1

with ωs,u :=
{
(m1, t1), . . . , (mn, tn)

}
and t1 < · · · < tn.
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Poisson construction of Markov processes

The random maps (Xs,u)s≤u form a stochastic flow:

Xs,s = 1 and Xt,u ◦ Xs,t = Xs,u (s ≤ t ≤ u).

This stochastic flow has independent increments in the sense that

Xt0,t1 , . . . ,Xtn−1,tn are independent ∀ t0 < · · · < tn.

Let X0 be an S-valued random variable, independent of ω, and let
s ∈ R. Then

Xt := Xs,s+t(X0) (t ≥ 0)

defines a Markov process (Xt)t≥0 with generator G .
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The contact process

Let Λ be a finite set and let λ(j , i) ≥ 0 (i , j ∈ Λ).
Let S := {0, 1}Λ be the set of all functions x : Λ → {0, 1}.
For x ∈ S and ∆ ⊂ Λ, we let

x∆ =
(
x(i)

)
i∈∆

denote the restriction of x to ∆.

For x , y ∈ S such that xΛ\{i} = yΛ\{i} for some i ∈ Λ, let

G (x , y) :=


∑
j∈Λ

x(j)λ(j , i) if x(i) = 0, y(i) = 1,

1 if x(i) = 1, y(i) = 0,

and let G (x , y) := 0 if x and y differ in more than one site.

The Markov process with generator G is called
the contact process with infection rates

(
λ(i , j)

)
i ̸=j

and death rate 1.
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The nearest-neighbour contact process

Often, the lattice Λ has the structure of a graph.
Write i ∼ j if i and j are neighbours.

The nearest-neighbour contact process has infection rates

λ(j , i) = λ1{i∼j} (i , j ∈ Λ),

where λ ≥ 0 is the infection rate.
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The random mapping representation

For each i , j ∈ Λ, we define a branching map
braji : {0, 1}Λ → {0, 1}Λ as

braji (x)(k) :=

{
x(i) ∨ x(j) if k = i ,

x(k) otherwise,

and a death map dthi : {0, 1}Λ → {0, 1}Λ as

dthi (x)(k) :=

{
0 if k = i ,

x(k) otherwise.

Then the generator of the contact process has the random
mapping representation

Gf (x)=
∑
i ,j∈Λ

λ(j , i)
{
f
(
braji (x)

)
− f

(
x
)}

+
∑
i∈Λ

{
f
(
dthi (x)

)
− f

(
x
)}

(x ∈ {0, 1}Λ).

Jan M. Swart Interacting particle systems



The graphical representation

We visualise the Poisson point set ω by drawing
space Λ horizontally and time R vertically.

For each (braji , t) ∈ ω we draw an arrow from (j , t) to (i , t).
For each (dthji , t) ∈ ω we draw a blocking symbol at (i , t).

It is easy to check that if we evolve the process under the
stochastic flow (Xs,u)s≤u, then in the state x , the site i flips from
0 to 1 at rate

∑
j∈Λ x(j)λ(j , i), and from 1 to 0 at rate 1.
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The graphical representation

time

space Z

X0

X0,t(Xt)

0 0 0 1 0 0 1 0 0 0

0 0 1 1 1 0 1 0 0 0
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The graphical representation

time

space Z
X0

X0,t(Xt)

0 0 0 1 0 0 1 0 0 0

0 0 1 1 1 0 1 0 0 0
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The cancellative contact process

Let ⊕ denote addition modulo 2.

For each i , j ∈ Λ, we define an annihilating branching map
abrji : {0, 1}Λ → {0, 1}Λ as

abrji (x)(k) :=

{
x(i)⊕ x(j) if k = i ,

x(k) otherwise.

The cancellative contact process has the generator

Gf (x)=
∑
i ,j∈Λ

λ(j , i)
{
f
(
abrji (x)

)
− f

(
x
)}

+
∑
i∈Λ

{
f
(
dthi (x)

)
− f

(
x
)}

(x ∈ {0, 1}Λ).
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The graphical representation

time

space Z

X0

X0,t(Xt)

0 0 0 1 0 0 1 0 0 0

0 0 1 1 1 0 1 0 0 0
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The graphical representation

time

space Z
X0

X0,t(Xt)

0 0 0 1 0 0 1 0 0 0

0 0 1 1 1 0 1 0 0 0
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The threshold voter model

For x , y ∈ S that differ only in one site i ∈ Λ, let

G (x , y) :=

{
1 if x(i) ̸= x(j) for some j ∼ i ,

0 otherwise.

and let G (x , y) := 0 if x and y differ in more than one site.

The Markov process with generator G is called
the threshold voter model.
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First random mapping representation

For each i ∈ Λ, we define maps mini and maxi by

mini (x)(k) :=

{ ∧
j∼i x(j) if k = i ,

x(k) otherwise,

and

maxi (x)(k) :=

{ ∨
j∼i x(j) if k = i ,

x(k) otherwise.

Then the generator of the threshold voter model has the random
mapping representation

Gf (x)=
∑
i∈Λ

{
f
(
mini (x)

)
− f

(
x
)}

+
∑
i∈Λ

{
f
(
maxi (x)

)
− f

(
x
)}

(x ∈ {0, 1}Λ).
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Second random mapping representation

Let Ni := {i} ∪ {j : j ∼ i}.

For each i ∈ Λ and ∆ ⊂ Ni , we define a map flipi ,∆ by

flipi ,∆(x)(k) :=

{ ⊕
j∈∆ x(j) if k = i ,

x(k) otherwise.

Then the generator of the threshold voter model has the random
mapping representation

Gf (x) =
∑
i∈Λ

2−|Ni |
∑
∆⊂Ni

|∆| is odd

{
f
(
flipi ,∆(x)

)
− f

(
x
)}

.
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Second random mapping representation

Note there are 2|Ni |−1 odd subsets of Ni .
We claim the threshold voter mode has the following description:

▶ Each site i is activated with Poisson rate 2.

▶ If i is activated, we uniformly chose an odd subset ∆ ⊂ Ni

and apply flipi ,∆.

If x(j) = 0 for all j ∈ Ni then
⊕

j∈∆ x(j) = 0 for all odd ∆ ⊂ Ni

so flipi ,∆ does nothing.

If x(j) = 1 for all j ∈ Ni then
⊕

j∈∆ x(j) = 1 for all odd ∆ ⊂ Ni

so flipi ,∆ does nothing.

In all other cases, ∆∩ {j ∈ Nj : x(j) = 1} is uniformly chosen from
all subsets of {j ∈ Nj : x(j) = 1} so

⊕
j∈∆ x(j) is uniformly

distributed on {0, 1} and there is a probability 1/2 that flipi ,∆
changes the local state at i .
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Infinite state space

We wish to define the (cancellative) contact process, the threshold
voter model, and many more interacting particle systems also when
Λ is countably infinite.

As before, we let S = {0, 1}Λ, and we set

Sfin :=
{
x ∈ S : |x | < ∞

}
with |x | :=

∑
i∈Λ

x(i).

Note that Sfin (contrary to S) is countable.

We first extend the Poisson construction of Markov processes to
countable state space.

Jan M. Swart Interacting particle systems



Poisson construction on countable spaces

Let S be a countably infinite set and let S := S ∪ {∞} be its
one-point compactification, i.e., S ∋ xn → ∞ iff for all finite
S′ ⊂ S there is an N < ∞ such that xn ̸∈ S′ for all n > N.

Let G be a countable set whose elements are functions m : S → S.
Let (rm)m∈G be nonnegative rates.

For x ∈ S, we set

Gx :=
{
m ∈ G : m(x) ̸= x

}
and we assume that ∑

m∈Gx

rm < ∞ (x ∈ S).
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Poisson construction of Markov processes

As before let ρ be the measure on G × R defined by

ρ
(
{m} × [s, t]

)
:= rm(t − s) (m ∈ G, s ≤ t).

Let ω be a Poisson point set on G × R with intensity ρ.

Recall that a function f defined on a real interval is cadlag if it is
right-continuous and the left-limit ft− := lims↑t fs exists for all t.

Lemma For all s ∈ R and x ∈ S, there exists a unique cadlag
function [s,∞) ∋ t 7→ Xt ∈ S and time 0 < τ ≤ ∞ such that

1. Xs = x ,

2. Xt = m(Xt−) if (m, t) ∈ ω for some necessarily unique m ∈ G
and Xt = Xt− otherwise

(
t ∈ [0, τ)

)
.

3. If τ < ∞, then limt↑τ Xt = ∞ and Xt = ∞ for all t ≥ τ .
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Explosion

If τ < ∞, then we say that the Markov process explodes.
To prove that the process is nonexplosive, it suffices to find a
Lyapunov function.

Lemma Assume that there exists a function L : S → [0,∞) such
that L(x) → ∞ as x → ∞, and a constant K < ∞ such that

GL(x) ≤ KL(x) (x ∈ S).

Then τ = ∞ a.s. and the process started in Xs = x satisfies

Ex
[
L(Xt)

]
≤ eK(t−s)L(x) (s ≤ t, x ∈ S).

We define random maps (Xs,u)s≤u by

Xs,u(x) := Xu where (Xt)t≥s satisfies 1–3.
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Finite contact processes

Recall the generator of the contact process

Gf (x)=
∑
i ,j∈Λ

λ(j , i)
{
f
(
braji (x)

)
− f

(
x
)}

+
∑
i∈Λ

{
f
(
dthi (x)

)
− f

(
x
)}

(x ∈ {0, 1}Λ).

As before, let

Sfin :=
{
x ∈ S : |x | < ∞

}
with |x | :=

∑
i∈Λ

x(i).

We use the Lypapunov function L(x) := |x |. Provided that

K := sup
j∈Λ

∑
i∈Λ

λ(j , i) < ∞,

we have GL(x) ≤ KL(x) (x ∈ Sfin) and the contact process with
state space Sfin is well-defined.
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Infinite initial states

The methods so far allow us to construct the (cancellative) contact
process, the threshold voter model, and many more interacting
particle systems for initial states x ∈ {0, 1}Λ such that |x | < ∞.

We wish to allow initial states x with |x | = ∞.

We replace {0, 1} by a general finite set S , the local state space.
We let Λ be a countable set, called the lattice.
We let S := SΛ denote the space of all functions x : Λ → S .
We equip SΛ with the product topology, under which it is compact.
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Relevant sites

As before, for x ∈ SΛ and ∆ ⊂ Λ, we let

x∆ =
(
x(i)

)
i∈∆

denote the restriction of x to ∆.

Lemma Let T be a finite set. Then a function f : SΛ → T is
continuous if and only if it depends on finitely many coordinates,
i.e., there exists a finite set ∆ ⊂ Λ and a function f ′ : S∆ → T
such that f (x) = f ′

(
x∆) (x ∈ SΛ).

Jan M. Swart Interacting particle systems



Relevant sites

For any function f : SΛ → T , we call

R(f ) :=
{
i ∈ Λ : ∃x , y ∈ SΛ s.t. f (x) ̸= f (y) and xΛ\{i} = yΛ\{i}

}
.

the set of f -relevant sites.

If f is continuous, then R(f ) is the smallest possible finite set
∆ ⊂ Λ such that there exists a function f ′ : S∆ → T with
f (x) = f ′

(
x∆) (x ∈ SΛ).

If f is not continuous, then strange things can happen:

Example Set S = T := {0, 1} and f (x) := 1 iff {i ∈ Λ : x(i) = 1}
is finite. Then R(f ) = ∅, but f is not constant.

Example Set S = T := {0, 1} and f (x) := 1 iff {i ∈ Λ : x(i) = 1}
is finite and even. Then R(f ) = Λ.
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Local maps

For any map m : SΛ → SΛ and i ∈ Λ, we define m[i ] : SΛ → S by

m[i ](x) := m(x)(i) (x ∈ SΛ).

Then m is continuous iff m[i ] is continuous for all i ∈ Λ.

By definition, a map m : SΛ → SΛ is local iff

1. m is continuous,

2. D(m) :=
{
i ∈ Λ : ∃x ∈ SΛ s.t. m(x)(i) ̸= x(i)

}
is finite.

We will be interested in interacting particle systems with generator
of the form

Gf (x) =
∑
m∈G

rm
{
f
(
m(x)

)
− f

(
x
)}

,

where G is a countable set whose elements are local functions
m : SΛ → SΛ and (rm)m∈G are nonnegative rates.
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Poisson construction of particle systems

Theorem Assume that

sup
i∈Λ

∑
m∈G

D(m)∋i

rm
(
|R(m([i ])|+ 1

)
< ∞.

Then almost surely, for each s ∈ R and x ∈ SΛ, there exists a
unique cadlag function (Xt)t≥s such that

1. Xs = x ,

2. Xt = m(Xt−) if (m, t) ∈ ω for some necessarily unique m ∈ G
and Xt = Xt− otherwise.

We define random maps (Xs,u)s≤u by

Xs,u(x) := Xu where (Xt)t≥s satisfies 1–2.

If X0 is independent of ω and s ∈ R, then

Xt := Xs,s+t(X0) (t ≥ 0)

is a Markov process (Xt)t≥0 with generator G .
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The backtracking process

Idea of the proof Fix a finite “target” set T .

Then the set C(SΛ,T ) of continuous functions f : SΛ → T is
countable.

For fixed f ∈ C(SΛ,T ) and u ∈ R, we want the backtracking
process

(Ft)t≥0 :=
(
f ◦ Xu−t,t

)
t≥0

to be a well-defined Markov process with state space C(SΛ,T ) and
generator

HF(f ) :=
∑
m∈G

rm
{
F
(
f ◦m

)
−F

(
f
)}

.
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The backtracking process

time

space

0 1 2 3 4 5 6 7 8 9

f

bra2,1

bra0,1

bra4,3
bra7,8

bra2,3

death4

bra3,4
bra1,2

bra6,5

bra7,6

death8

R(f ◦ Xu−t,u)

Jan M. Swart Interacting particle systems



The backtracking process

The condition
sup
i∈Λ

∑
m∈G

D(m)∋i

rm < ∞

guarantees that ∑
m∈G

f ◦m ̸=f

rm < ∞
(
f ∈ C(SΛ,T )

)
,

and the Lyapunov function

L(f ) := |R(f )|
(
f ∈ C(SΛ,T )

)
,

satisfies HL(f ) ≤ KL(f ) with

K := sup
i∈Λ

∑
m∈G

D(m)∋i

rm|R(m([i ])|.
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Examples

The contact process is well-defined for arbitrary initial states
x ∈ {0, 1}Λ provided that

sup
i∈Λ

∑
j∈Λ

λ(j , i) < ∞.

Note that earlier, we proved that |X0| < ∞ implies that |Xt | < ∞
for all t ≥ 0 provided that

sup
j∈Λ

∑
i∈Λ

λ(j , i) < ∞.

Our theorem implies that the threshold voter model is well-defined
provided the graph Λ is of uniformly bounded degree.
(This condition can be relaxed by a more clever choice of the
Lyapunov function.)
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The backward stochastic flow

We set

Fu,s(f ) := f ◦ Xs,u

(
u ≥ s, f ∈ C(SΛ,T )

)
.

Then (Fu,s)u≥s is a backward stochastic flow:

Fs,s = 1 and Ft,s ◦ Fu,t = Xs,u (u ≥ t ≥ s).

If F0 is a random variable with values in C(SΛ,T ), independent of
ω, and u ∈ R, then

Ft := Fu,u−t(F0) (t ≥ 0)

defines a Markov process (Ft)t≥0 with generator H.
It is a consequence of our construction that this backtracking
process has caglad sample paths, i.e., t 7→ Ft left-continuous and
the right limit Ft+ := lims↓t Fs exists for all t ≥ 0.
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