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The split real line

The split real line is Rs :=
{
t⋆ : t ∈ R, ⋆ ∈ {−,+}

}
.

We let τ := t denote the real part and
s(τ) := ∗ the sign of a split real number τ = t⋆.

We equip Rs with the lexicographic order and the associated order
topology, which is generated by the open intervals

((σ, ρ)) := {τ ∈ Rs : σ < τ < ρ} (σ, τ ∈ Rs).

For τn, t+ ∈ Rs one has τn → t+ iff
τn → t and τn ≥ t+ for all n large enough.

For τn, t− ∈ Rs one has τn → t− iff
τn → t and τn ≤ t− for all n large enough.
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The split real line

We also write

[[σ, ρ)) := {τ ∈ Rs : σ ≤ τ < ρ} (σ, τ ∈ Rs)

etc. The space Rs is first countable, Hausdorff, and separable, but
not second countable and not metrisable. A subset C ⊂ Rd

s is
compact iff it is closed and bounded.
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Cadlag functions

Let T be a Hausdorff topological space and let s, u ∈ R, s < u.

Lemma Let f + : [s, u] → T be a cadlag function and let
f − : [s, u] → T be its left-continuous modification, defined as

f −(t) :=

{
limr↑t f

+(r) if t ∈ (s, u],

f +(s) if t = s.

Then setting

f (t±) := f ±(t)
(
t± ∈ [[s+, t+]]

)
defines a continuous function f : [[s+, t+]] → T , and each
continuous function f : [[s+, t+]] → T is of this form.

Remark A continuous function f : [[s−, t+]] → T can jump at
time s but this is not possible for a cadlag function.
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Stochastic flows

Let S be a set and let (Xs,u)s≤u be a collection of random maps
Xs,u : S → S. We say that (Xs,u)s≤u is a stochastic flow on S if

Xs,s = 1 and Xt,u ◦ Xs,t = Xs,u a.s. ∀s ≤ t ≤ u.

Often, one even has a.s. equality jointly for all s ≤ t ≤ u.
In particular, this holds for all stochastic flows we have seen so far.
A stochastic flow has independent increments if

Xt0,t1 , . . . ,Xtn−1,tn are independent ∀ t0 < · · · < tn.

If (Xs,u)s≤u is a stochastic flow with independent increments, X0 is
an independent S-valued random variable, and s ∈ R, then

Xt := Xs,s+t(X0) (t ≥ 0)

defines a Markov process (Xt)t≥0.
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Backward stochastic flows

A backward stochastic flow on a set R is a collection of random
maps (Yu,s)u≥s such that

Ys,s = 1 and Yt,s ◦ Yu,t = Yu,s a.s. ∀u ≥ t ≥ s.

If (Yu,s)u≥s is a backward stochastic flow on R with independent
increments, Y0 is an independent R-valued random variable, and
u ∈ R, then

Yt := Yu,u−t(Y0) (t ≥ 0)

defines a Markov process (Yt)t≥0.
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The cadlag property

Let ∆ :=
{
(σ, τ) ∈ R2

s : σ ≤ τ
}
. Let (Xs,u)s≤u be a stochastic

flow on a Hausdorff topological space S.
We say that (Xs,u)s≤u is cadlag if there exists a continuous
function

∆× S ∋ (σ, τ, x) 7→ Xs
σ,τ (x) ∈ S

such that

Xs,t(x) = Xs
s+,t+(x) (s, t ∈ R, s ≤ t, x ∈ S).

Similarly, we call a backward stochastic flow (Yu,s)u≥s on R cadlag
if there exists a continuous function

∆× R ∋ (σ, τ, y) 7→ Ys
τ,σ(y) ∈ R

such that

Yt,s(y) = Ys
t+,s+(y) (t, s ∈ R, t ≥ s, y ∈ R).
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The cadlag property

If a stochastic flow (Xs,u)s≤u is cadlag, then a Markov process
(Xt)t≥0 defined as

Xt := Xs,s+t(X0) (t ≥ 0)

has cadlag sample paths.
However, if a backward stochastic flow (Yu,s)u≥s is cadlag, then a
Markov process (Yt)t≥0 defined as

Yt := Yu,u−t(Y0) (t ≥ 0)

has caglad sample paths.

Remark Without the split real line, it is quite tricky to define
cadlag functions of several variables. Kolmogorov (1956) already
pointed out that cadlag functions can be viewed as continuous
functions on the split real line.
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Pathwise duality

Let S,R, and T be sets, and let ψ : S× R → T be a function.
By definition, two maps m : S → S and m̂ : R → R are dual w.r.t.
the duality function ψ if

ψ
(
m(x), y

)
= ψ

(
x , m̂(y)

)
(x ∈ S, y ∈ R).

A stochastic flow (Xs,u)s≤u on S and a backward stochastic flow
(Yu,s)u≥s on R are dual w.r.t. ψ if

ψ
(
Xs,u(x), y

)
= ψ

(
x ,Yu,s(y)

)
(s ≤ u, x ∈ S, y ∈ R).

Two Markov processes (Xt)t≥0 and (Yt)t≥0 are pathwise dual if
they can be constructed from a stochastic flow and a backward
stochastic flow that are dual.
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The backtracking process

Let S and T be compact metrisable spaces.
Equip C(S,T ) with the topology of uniform convergence.

Lemma If (Xs,u)s≤u is a cadlag stochastic flow on S, then

Fu,s(f ) := f ◦ Xs,u

(
u ≥ s, C(S,T )

)
defines a cadlag backward stochastic flow (Fu,s)u≥s on C(S,T ).

The associated backtracking process (Ft)t≥0 is pathwise dual to
(Xt)t≥0 with duality function

ψback(x , f ) := f (x)
(
x ∈ S, f ∈ C(S,T )

)
.

Indeed:

ψback

(
Xs,u(x), f

)
= f ◦ Xs,u(x) = ψback

(
x ,Fu,s(f )

)
.
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Invariant subspaces

Def a subspace E ⊂ C(S,T ) is invariant under the backward
stochastic flow (Fu,s)u≥s of the backtracking process if

f ∈ E ⇒ Fu,s(f ) ∈ E (u ≥ s).

Claim Useful pathwise dualities are associated
with invariant subspaces of the backward stochastic flow

of the backtracking process.
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A bit of order theory

Let S be a partially ordered set.

Def A dual of a partially ordered set S is a partially ordered set S ′

together with a bijection S ∋ x 7→ x ′ ∈ S ′ such that

x ≤ y ⇔ x ′ ≥ y ′.

Example 1 S ′ := S equipped with the reverse order
x ≤′ y ⇔ x ≥ y and x 7→ x ′ is the identity map.

Example 2 If S ⊂ P(A) := {x : x ⊂ A}, equipped with the order
of set inclusion, then we may take x ′ := A\x the complement and
S ′ := {x ′ : x ∈ S}.

Naturally S ′′ = S .
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A bit of order theory

Define the upset A↑ and downset A↓ of A ⊂ S as

A↑ :=
{
y ∈ S : ∃x ∈ A s.t. x ≤ y

}
,

A↓ :=
{
y ∈ S : ∃x ∈ A s.t. x ≥ y

}
.

Then A is increasing if A = A↑ and decreasing if A = A↓.

S is a lattice if ∀x , y ∈ S ∃!x ∨ y , x ∧ y ∈ S s.t.

{x}↑ ∩ {y}↑ = {x ∨ y}↑ and {x}↓ ∩ {y}↓ = {x ∧ y}↓.

A finite lattice has a unique least element 0 and greatest element 1.
A map m : S → T is additive if

m(0) = 0 and m(x ∨ y) = m(x) ∨m(y) (x , y ∈ S).
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Additive duality

Let S ,T be finite lattices and let Λ be countable.
Equip S := SΛ with the product order and let 0(i) := 0 (i ∈ Λ).
Let Cadd(S,T ) :=

{
m ∈ C(S,T ) : m is additive

}
.

Lemma If m : S → S additive for all m ∈ G, then Cadd(S,T ) is
invariant under the backward stochastic flow (Fu,s)u≥s of the
backtracking process,

Proof Since the concatenation of additive maps is additive,
Fu,s(f ) = f ◦ Xs,u is additive for each f ∈ Cadd(S,T ).
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Additive duality

Let S be a finite lattice, let R be its dual, and let T := {0, 1}.
For each y ∈ Rfin, define

fy (x) := 1{x ̸≤ y ′} (x ∈ S).

Lemma fy ∈ Cadd(S,T ) and for each f ∈ Cadd(S,T ) there exists a
unique y ∈ Rfin such that f = fy .

Partial proof fy (0) = 1{0 ̸≤ y ′} = 0 and

fy (x1 ∨ x2) = 1{x1 ∨ x2 ̸≤ y ′}
= 1{x1 ̸≤ y ′} ∨ 1{x2 ̸≤ y ′} = fy (x1) ∨ fy (x2).
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Additive duality

The abstract duality function

ψback(x , f ) := f (x)
(
x ∈ S, f ∈ Cadd(S,T )

)
now takes the concrete form

ψadd(x , y) := ψback(x , fy ) = 1{x ̸≤ y ′} (x ∈ S, y ∈ Rfin).

Our arguments so far show that for each continuous additive map
m : S → S, there exists a unique map m̂ : Rfin → Rfin such that

ψadd

(
m(x), y

)
= ψadd

(
x , m̂(y)

)
(x ∈ S, y ∈ Rfin).

Remarkable fact m̂ is also additive. If m is local, then so is m̂.
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Additive duality

Theorem Let (Xs,u)s≤u be the cadlag stochastic flow of an
interacting particle system with state space S = SΛ and generator

Gf (x) =
∑
m∈G

rm
{
f
(
m(x)

)
− f

(
x
)}
.

Assume that S is a finite lattice with dual R and that all local
maps m ∈ G are additive. Then there exists a cadlag backward
stochastic flow (Yu,s)u≥s on Rfin such that

ψadd

(
Xs,u(x), y

)
= ψadd

(
x ,Yu,s(y)

)
(s ≤ u, x ∈ S, y ∈ Rfin).

The generator of the associated Markov process takes the form

Hf (y) =
∑
m∈G

rm
{
f
(
m̂(y)

)
− f

(
y
)}
.
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Additive duality

Remark If the rates satisfy

sup
i∈Λ

∑
m∈G

D(m̂)∋i

rm
(
|R(m̂([i ])|+ 1

)
<∞,

then (Yu,s)u≥s can be extended to R, and

ψadd

(
Xs,u(x), y

)
= ψadd

(
x ,Yu,s(y)

)
(s ≤ u, x ∈ S, y ∈ R).
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The contact process

For the contact process we set S = R = {0, 1} and define
S ∋ x 7→ x ′ ∈ R by x ′ := 1− x . Then

ψadd(x , y) = 1{x ̸≤ y ′} = 1{x ∧ y ̸= 0} (x ∈ S, y ∈ R).

We observe that

ψadd

(
braji (x), y

)
=ψadd

(
x , braij(y)

)
,

ψadd

(
dthi (x), y

)
=ψadd

(
x , dthi (y)

)
.

The generators of the forward process X and dual process Y are

Gf (x)=
∑
i ,j∈Λ

λ(j , i)
{
f
(
braji (x)

)
− f

(
x
)}

+
∑
i∈Λ

{
f
(
dthi (x)

)
− f

(
x
)}
,

Gf (y)=
∑
i ,j∈Λ

λ(j , i)
{
f
(
braij(y)

)
− f

(
y
)}

+
∑
i∈Λ

{
f
(
dthi (y)

)
− f

(
y
)}
.
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The contact process

time

space Λ

x

X0,t(x)

0 0 0 1 0 0 1 0 0 0

0 0 1 1 1 0 1 0 0 0

Jan M. Swart Monoid duality



The contact process

time

space Λ

Y0,t(y)

y

0 0 0 0 0 0 1 1 1 1

0 0 0 0 0 1 1 0 1 0
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The contact process

ψadd

(
X0,t(x), y

)
= 1{X0,t(x) ∧ y ̸= 0}

= 1{there is an open path from x to y}
= 1{x ∧ Yt,0(y) ̸= 0} = ψadd

(
x ,Yt,0(y)

)
.
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The contact process

Lemma The contact process X = (Xt)t≥0 started in X0 = 1 with
infection rates λ(j , i) satisfies

P1
[
Xt ∈ ·

]
⇒ ν,

where ν is an invariant law that is uniquely characterised by∫
ν(dx)1{x ∧ y ̸= 0} = Py

[
Yt ̸= 0 ∀t ≥ 0

]
(y ∈ Sfin),

where Y = (Yt)t≥0 is the contact process with reversed infection
rates λ†(j , i) := λ(i , j).

Proof
P1

[
Xt ∧ y ̸= 0

]
= Py

[
1 ∧ Yt ̸= 0

]
−→
t→∞

Py
[
Yt ̸= 0 ∀t ≥ 0

]
.

Since this holds for all y ∈ Sfin, the claim follows.
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The contact process

Theorem Assume that Λ = Zd .
Assume that λ(j , i) = λ(j − i) depends only on the difference j − i .
Assume that P

[
X0 ∈ ·

]
is translation invariant and

P
[
X0 = 0

]
= 0. Then

P
[
Xt ∈ ·

]
⇒ ν.

Proof idea Need to show

P
[
Xt ∧ y ̸= 0

]
−→
t→∞

Py
[
Yt ̸= 0 ∀t ≥ 0

]
=: ρ(y) (y ∈ Sfin).

Fix N > 0. Then

P
[
Xt ∧ y ̸= 0

]
= P

[
X0,1(X0) ∧ Yt,1(y) ̸= 0

]
= P

[
X0,1(X0) ∧ Yt,1(y) ̸= 0

∣∣ |Yt,1(y)| = 0
]
P
[
|Yt,1(y)| = 0

]
+P

[
X0,1(X0) ∧ Yt,1(y) ̸= 0

∣∣ 0 < |Yt,1(y)| < N
]
P
[
0 < |Yt,1(y)| < N

]
+P

[
X0,1(X0) ∧ Yt,1(y) ̸= 0

∣∣N ≤ |Yt,1(y)|
]
P
[
N ≤ |Yt,1(y)|

]
.
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The contact process

Almost surely

∃t <∞ s.t. Yt,1(y) ̸= 0 or |Yt,1(y)| −→
t→∞

∞.

As a consequence

P
[
X0,1(X0) ∧ Yt,1(y) ̸= 0

∣∣ |Yt,1(y)| = 0
]︸ ︷︷ ︸

= 0

P
[
|Yt,1(y)| = 0

]
+P

[
X0,1(X0) ∧ Yt,1(y) ̸= 0

∣∣ 0 < |Yt,1(y)| < N
]
P
[
0 < |Yt,1(y)| < N

]︸ ︷︷ ︸
−→
t→∞

0

+ P
[
X0,1(X0) ∧ Yt,1(y) ̸= 0

∣∣N ≤ |Yt,1(y)|
]︸ ︷︷ ︸

≈ 1

P
[
N ≤ |Yt,1(y)|

]︸ ︷︷ ︸
−→
t→∞

ρ(y)

.
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The two-stage contact process

Krone (1999) has studied a two-stage contact process.
Here S = R = {0, 1, 2} and x ′ := 2− x . The duality function is

ψKrone(x , y) := 1{x(i) + y(i) > 2 for some i ∈ Λ} (x , y ∈ SΛ).

Let U be a partially ordered set and Pdec(U) := {A ⊂ U : A↓ = A}.
Then S :=

(
Pdec(U),⊂

)
is a distributive lattice

Birkhoff’s representation theorem says that each distributive lattice
S is of this form.
In Krone’s example, we can take U = {0, 1}.
Each additive duality on a distributive lattice has an interpretation
in terms of open paths.
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The two-stage contact process

0 1 0 2

0 1 2 0

X0

X0,t(X0)

0 2 2 1

2 0 1 2

Yt,0(Y0)

Y0
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Cancellative duality

Let ⊕ denote (componentwise) addition modulo 2.
A map m : {0, 1}Λ → {0, 1}Λ′

is cancellative if

m(0) = 0 and m(x ⊕ y) = m(x)⊕m(y)
(
x , y ∈ {0, 1}Λ

)
.

Let S = T = {0, 1}, let Λ be countable, and let S = SΛ.
Let Ccanc(S,T ) :=

{
m ∈ C(S,T ) : m cancellative

}
.

Lemma If m : S → S cancellative for all m ∈ G, then Ccanc(S,T )
is invariant under the backward stochastic flow (Fu,s)u≥s of the
backtracking process,

Proof Since the concatenation of cancellative maps is cancellative,
Fu,s(f ) = f ◦ Xs,u is cancellative for each f ∈ Ccanc(S,T ).
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Cancellative duality

For each y ∈ Sfin, define

fy (x) :=
⊕
i∈Λ

x(i)y(i) (x ∈ S).

Lemma fy ∈ Ccanc(S,T ) and for each f ∈ Ccanc(S,T ) there exists
a unique y ∈ Sfin such that f = fy .
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Cancellative duality

The abstract duality function

ψback(x , f ) := f (x)
(
x ∈ S, f ∈ Cadd(S,T )

)
now takes the concrete form

ψcanc(x , y) := ψback(x , fy ) =
⊕
i∈Λ

x(i)y(i) (x ∈ S, y ∈ Sfin).

The abstract theory now implies that for each continuous
cancellative map m : S → S, there exists a unique map
m̂ : Sfin → Sfin such that

ψcanc

(
m(x), y

)
= ψcanc

(
x , m̂(y)

)
(x ∈ S, y ∈ Sfin).

Remarkable fact m̂ is also cancellative. If m is local, then so is m̂.
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Cancellative duality

Theorem Let (Xs,u)s≤u be the cadlag stochastic flow of an
interacting particle system with state space S = SΛ and generator

Gf (x) =
∑
m∈G

rm
{
f
(
m(x)

)
− f

(
x
)}
.

Assume that S = {0, 1} and that all local maps m ∈ G are
cancellative. Then there exists a cadlag backward stochastic flow
(Yu,s)u≥s on Sfin such that

ψcanc

(
Xs,u(x), y

)
= ψcanc

(
x ,Yu,s(y)

)
(s ≤ u, x ∈ S, y ∈ Sfin).

The generator of the associated Markov process takes the form

Hf (y) =
∑
m∈G

rm
{
f
(
m̂(y)

)
− f

(
y
)}
.
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Cancellative duality

Remark Under suitable assumptions on the rates, the backward
stochastic flow (Yu,s)u≥s on Sfin can be extended to S.

However, the duality function

ψcanc(x , y) :=
⊕
i∈Λ

x(i)y(i) = 1{|xy | is odd}

may fail to be defined unless at least one of x and y lies in Sfin.
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The cancellative contact process

Lemma The cancellative contact process X = (Xt)t≥0 started in a
product law with intensity 1/2 satisfies

P
[
Xt ∈ ·

]
⇒ ν1/2,

where ν1/2 is an invariant law that is uniquely characterised by∫
ν(dx)ψcanc(x , y) =

1
2P

y
[
Yt ̸= 0 ∀t ≥ 0

]
(y ∈ Sfin),

where Y = (Yt)t≥0 is the cancellative contact process with
reversed infection rates λ†(j , i) := λ(i , j).

Proof

P
[
|Xty | is odd

]
= Py

[
|X0Yt | is odd

]
= 1

2P
y
[
Yt ̸= 0

]
−→
t→∞

Py
[
Yt ̸= 0 ∀t ≥ 0

]
.

Since this holds for all y ∈ Sfin, the claim follows.
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The cancellative contact process

Theorem Assume that Λ = Zd .
Assume that λ(j , i) = λ(j − i) depends only on the difference j − i .
Assume that P

[
X0 ∈ ·

]
is translation invariant and

P
[
X0 = 0

]
= 0. Then

P
[
Xt ∈ ·

]
⇒ ν1/2.

Proof idea Similar to what we did before:

P
[
|Xty | is odd

]
= P

[
|X0,1(X0)Yt,1(y)| is odd

]
= P

[
|X0,1(X0)Yt,1(y)| is odd

∣∣ |Yt,1(y)| = 0
]
P
[
|Yt,1(y)| = 0

]
+P

[
|X0,1(X0)Yt,1(y)| is odd

∣∣ 0 < |Yt,1(y)| < N
]
P
[
0 < |Yt,1(y)| < N

]
+P

[
|X0,1(X0)Yt,1(y)| is odd

∣∣N ≤ |Yt,1(y)|
]︸ ︷︷ ︸

≈1/2

P
[
N ≤ |Yt,1(y)|

]
.

Jan M. Swart Monoid duality



The threshold voter model

The threshold voter model has a random mapping representation
in terms of monotone maps

Gf (x)=
∑
i∈Λ

{
f
(
mini (x)

)
− f

(
x
)}

+
∑
i∈Λ

{
f
(
maxi (x)

)
− f

(
x
)}

(x ∈ {0, 1}Λ).

and another random mapping representation in terms of
cancellative maps

Gf (x) =
∑
i∈Λ

2−|Ni |
∑
∆⊂Ni

|∆| is odd

{
f
(
flipi ,∆(x)

)
− f

(
x
)}
.

Remarkably, the latter is more useful for proving ergodic
statements.
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Parity preservation

Except in the 1D nearest-neighbour case, it is known that the
threshold voter model (Xt)t≥0 has three extremal invariant laws,
and complete convergence holds: for arbitrary initial laws,

P
[
Xt ∈ ·

]
=⇒
t→∞

p0δ0 + p1δ1 + (1− p0 − p1)ν1/2,

where ps = P[∃t ≥ 0 s.t. Xt = s].

The cancellative dual (Yt)t≥0 is parity preserving:

|Y0| mod(2) = |Yt | mod(2) (t ≥ 0).

If P[X0 · ] is product law with intensity 1/2, then

P
[
Xt(i) ̸= Xt(j)

]
= P

[
|Xt(δi + δj)| is odd

]
= Pδi+δj

[
|X0Yt | is odd

]
= 1

2P
δi+δj

[
Yt ̸= 0

]
−→
t→∞

1
2P

δi+δj
[
Yt ̸= 0 ∀t ≥ 0

]
.
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Monoid duality

A semigroup is a set S equipped with an associative operation +.
A monoid is a semigroup S with a neutral element 0.
If S ,T are monoids, then we let H(S ,T ) denote the set of
homomorphisms h : S → T , which satisfy

h(0) = 0 and h(x + y) = h(x) + h(y) (x , y ∈ S).

Def Let S ,R,T be commutative monoids.
Then S is T-dual to R with duality function ψ : S × R → T if:

1. ψ(x1, y) = ψ(x2, y) for all y ∈ R implies x1 = x2 (x1, x2 ∈ S),

2. H(S ,T ) = {ψ( · , y) : y ∈ R},
3. ψ(x , y1) = ψ(x , y2) for all x ∈ S implies y1 = y2 (y1, y2 ∈ R),

4. H(R,T ) = {ψ(x , · ) : x ∈ S}.
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Monoid duality

Example Let S be a finite lattice, let R be its dual, and let
T = {0, 1}.
We view S ,R, and T as commutative monoids with neutral
element 0 and sum ∨.
Then SΛ is T -dual to RΛ with duality function
ψadd(x , y) = 1{x ̸≤y ′}.

Example Let S = T = {0, 1}, equipped with addition modulo 2.
Then SΛ is T -dual to SΛ with duality function
ψcanc(x , y) =

⊕
i∈Λ x(i)y(i).

Example Let S = {0, 1}2, equipped with the operation

(x1, x2) + (y1, y2) := (x1 ∨ x2, y1 ⊕ y2).

Let T = {−1, 0, 1} equipped with the usual product. Then SΛ is
T -dual to SΛ with duality function

ψ
(
(x1, x2), (y1, y2)

)
=

∏
i∈Λ

(
1− x1(i)y1(i)

)
(−1)x2(i)y2(i).
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Monoid duality

Theorem Assume that Λ = Zd .
Let (X ,Y ) be a combination of a contact process and a
cancellative contact process, constructed using
the same graphical representation.
Assume that λ(j , i) = λ(j − i) depends only on the difference j − i .
There exists an invariant law ν∗ such that for each initial law
P
[
(X0,Y0) ∈ ·

]
that is translation invariant and satisfies

P
[
X0 = 0 or Y0 = 0

]
= 0, one has

P
[
(Xt ,Yt) ∈ ·

]
⇒ ν∗.

Note The marginals of ν∗ are ν and ν1/2.
The law ν∗ is concentrated on

{
(x , y) : x ≥ y

}
.
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