Lecture 3 Monotone duality

Jan M. Swart

Rouen

September 21-22, 2023

Monotone maps

Let S be a finite lattice. A map $m: S \rightarrow S$ is monotone if

$$x \leq y \quad \Rightarrow \quad m(x) \leq m(y)$$

and additive if

$$m(0) = 0$$
 and $m(x \lor y) = m(x) \lor m(y)$.

Note If m is monotone, then

$$x \le x \lor y \Rightarrow m(x) \le m(x \lor y)$$

 $y \le x \lor y \Rightarrow m(y) \le m(x \lor y)$
 $\Rightarrow m(x \lor y) \ge m(x) \lor m(y),$

so every monotone map is "superadditive".

Monotone maps

A typical example of a monotone map that is not additive is the cooperative branching map $\operatorname{coop}_{ijk}:\{0,1\}^{\Lambda}\to\{0,1\}^{\Lambda}$

$$\operatorname{coop}_{ijk}(x)(I) := \left\{ egin{array}{ll} (x(i) \wedge x(j)) \vee x(k) & & \text{if } I = k, \\ x(I) & & \text{otherwise.} \end{array} \right.$$

Let $\Lambda=\{1,2,3\}.$ Then

$$x = (1,0,0) \xrightarrow{\operatorname{coop}_{123}} (1,0,0),$$

$$y = (0,1,0) \xrightarrow{\operatorname{coop}_{123}} (0,1,0),$$

$$x \vee y = (1,1,0) \xrightarrow{\operatorname{coop}_{123}} (1,1,1).$$

And $coop_{123}(x \lor y) > coop_{123}(x) \lor coop_{123}(y)$.

Monotone particle systems

Let S be a finite partially ordered set with least element 0. Equip $\mathbf{S} := S^{\Lambda}$ with the product order and let $\underline{0}(i) := 0$ $(i \in \Lambda)$.

Let $(X_{s,u})_{s\leq u}$ be the stochastic flow of a particle system with generator

$$Gf(x) = \sum_{m \in \mathcal{G}} r_m \{f(m(x)) - f(x)\}.$$

Assume that each $m \in \mathcal{G}$ is monotone with $m(\underline{0}) = \underline{0}$.

Let $T:=\{0,1\}$ and let $\mathcal{C}_+(\mathbf{S},T)$ be the space of continuous monotone functions $f:S\to T$ with $f(\underline{0})=0$. Then

$$f \in \mathcal{C}_{+}(\mathbf{S}, T) \quad \Rightarrow \quad \mathbb{F}_{u,s}(f) = f \circ \mathbb{X}_{s,u} \in \mathcal{C}_{+}(\mathbf{S}, T),$$

so $C_{+}(S, T)$ is invariant under the backward stochastic flow.

Can we make a pathwise duality out of this?

Lower semi-continuous monotone functions

We need a way to characterise elements of $C_+(S, T)$.

Let $\mathcal{L}_+(\mathbf{S},T)$ be the space of *lower semi-continuous* monotone functions $f:S\to T$ with $f(\underline{0})=0$. Then

$$f \in \mathcal{L}_{+}(\mathbf{S}, T) \quad \Leftrightarrow \quad f = 1_{A} \text{ with } A \subset \mathbf{S} \text{ open increasing, } \underline{0} \not\in A.$$

Moreover

$$f \in \mathcal{L}_{+}(\mathbf{S}, T) \quad \Rightarrow \quad \mathbb{F}_{u,s}(f) = f \circ \mathbb{X}_{s,u} \in \mathcal{L}_{+}(\mathbf{S}, T),$$

so also $\mathcal{L}_+(\textbf{S},\mathcal{T})$ is invariant under the backward stochastic flow.

Lower semi-continuous monotone functions

Recall A increasing $\Leftrightarrow A = A^{\uparrow}$ with

$$A^{\uparrow} := \{ x \in \mathbf{S} : \exists y \in A \text{ s.t. } y \leq x \}.$$

A minimal element of A is an $y \in A$ s.t. there is no $y \neq y' \in A$ with $y' \leq y$. Let

$$A^{\circ} := \{ y \in A : y \text{ minimal} \}.$$

Let

$$\begin{split} \mathbf{S}_{\mathrm{fin}} &:= \big\{ x \in \mathbf{S} : 0 < \sum_{i \in \Lambda} \mathbf{1}_{\{x(i) \neq 0\}} < \infty \big\}, \\ \mathcal{I}(\mathbf{S}) &:= \big\{ A \subset \mathbf{S} : A \text{ is open and increasing, } \underline{0} \not\in A \big\}, \\ \mathcal{H}(\mathbf{S}) &:= \big\{ Y \subset \mathbf{S}_{\mathrm{fin}} : Y^{\circ} = Y \big\}, \\ \mathcal{H}_{\mathrm{fin}}(\mathbf{S}) &:= \big\{ Y \in \mathcal{H}(\mathbf{S}) : |Y| < \infty \big\}. \end{split}$$

Encoding of open increasing sets

Recall that $1_A \in \mathcal{L}_+(S, T) \Leftrightarrow A \in \mathcal{I}(S)$.

Lemma The map $Y \mapsto Y^{\uparrow}$ is a bijection from $\mathcal{H}(\mathbf{S})$ to $\mathcal{I}(\mathbf{S})$ and the map $A \mapsto A^{\circ}$ is its inverse.

Moreover $1_{Y^{\uparrow}} \in \mathcal{C}_{+}(S, T) \Leftrightarrow Y \in \mathcal{H}_{fin}(S)$.

Recall that $(\mathbb{X}_{s,u})_{s\leq u}$ is dual to $(\mathbb{F}_{u,s})_{u\geq s}$ with duality function $\psi_{\mathrm{back}}(x,f)=f(x)$. Through the bijection $\mathcal{H}(\mathbf{S})\ni Y\mapsto 1_{Y^\uparrow}\in\mathcal{L}_+(\mathbf{S},T)$, this abstract duality function now takes the concrete form

$$\psi_{\mathrm{mon}}(x,Y) := 1_{Y\uparrow}(x) = 1_{\{\exists y \in Y \text{ s.t. } x \ge y\}}$$

 $(x \in S, Y \in \mathcal{H}(S)).$

Monotone duality

Proposition There exists a backward stochastic flow $(\mathbb{Y}_{u,s})_{u\geq s}$ on $\mathcal{H}(\mathbf{S})$ such that

$$\psi_{\mathrm{mon}}(\mathbb{X}_{s,u}(x),Y)=\psi_{\mathrm{mon}}(x,\mathbb{Y}_{u,s}(Y))$$

 $(x \in S, Y \in \mathcal{H}(S))$. One has

$$Y \in \mathcal{H}_{\mathrm{fin}}(\mathbf{S}) \quad \Rightarrow \quad \mathbb{Y}_{u,s}(Y) \in \mathcal{H}_{\mathrm{fin}}(\mathbf{S}).$$

Remark The law of an **S**-valued random variable X is uniquely determined by

$$\left(\mathbb{E}\big[\psi_{\mathrm{mon}}\big(X,Y\big)\big]\right)_{Y\in\mathcal{H}_{\mathrm{fin}}(S)}.$$

The law of an $\mathcal{H}(\mathbf{S})$ -valued random variable Y is uniquely determined by

$$\left(\mathbb{E}\big[\prod_{i=1}^n \psi_{\mathrm{mon}}\big(x_i,Y\big)\big]\right)_{n\geq 1,\ x_1,\ldots,x_n\in\mathbf{S}_{\mathrm{fin}}}.$$

Example

For $i \in \Lambda$, let $p_1(i, \cdot)$ and $p_2(i, \cdot)$ be probability laws on Λ and on $\{(j, k) \in \Lambda^2 : j \neq k\}$, respectively.

Consider the interacting particle system with generator

$$egin{aligned} Gf(x) &:= (1-lpha) \sum_{i \in \Lambda} \sum_{j \in \Lambda} p_1(i,j) ig\{ fig(\mathrm{bra}_{ji} ig) - fig(x ig) ig\} \ &+ lpha \sum_{i \in \Lambda} \sum_{(j,k) \in \Lambda} p_2(i,j,k) ig\{ fig(\mathrm{coop}_{jki} ig) - fig(x ig) ig\} \ &+ \sum_{i \in \Lambda} ig\{ fig(\mathrm{dth}_i ig) - fig(x ig) ig\}. \end{aligned}$$

For $\alpha = 0$ this is a contact process, which is additive.

For
$$Y \in \mathcal{H}(\mathbf{S}) = \big\{ Y \subset \mathbf{S}_{\mathrm{fin}} : Y^{\circ} = Y \big\}$$
, define
$$\widehat{\mathtt{bra}}_{ji}(Y) := \big(Y \cup \big\{ \mathtt{dth}_i(y) \vee \delta_j : y \in \mathbf{S}_{\mathrm{fin}}, \ y(i) = 1 \big\} \big)^{\circ},$$

$$\widehat{\mathtt{coop}}_{jki}(Y) := \big(Y \cup \big\{ \mathtt{dth}_i(y) \vee \delta_j \vee \delta_k : y \in \mathbf{S}_{\mathrm{fin}}, \ y(i) = 1 \big\} \big)^{\circ},$$

$$\widehat{\mathtt{dth}}_i(Y) := \big\{ y \in Y : y(i) = 0 \big\}.$$

Then

$$\psi_{\mathrm{mon}}\big(\mathrm{bra}_{ji}(x),Y\big)=\psi_{\mathrm{mon}}\big(x,\widehat{\mathrm{bra}}_{ji}(Y)\big)\qquad \big(x\in \mathbf{S},\ Y\in \mathcal{H}(\mathbf{S})\big),$$

etcetera. Indeed

$$\exists y \in Y \text{ s.t. } bra_{ji}(x) \geq y \quad \Leftrightarrow \quad \exists y \in \widehat{bra}_{ji}(Y) \text{ s.t. } x \geq y.$$

The maps $\widehat{\mathtt{bra}}_{ji}$ and $\widehat{\mathtt{dth}}_i$ preserve the subspace

$$\mathcal{H}_{\mathrm{add}}(\mathbf{S}) := \big\{ Y \in \mathcal{H}(\mathbf{S}) : |y| = 1 \ \forall y \in Y \big\}.$$

This reflects the fact that the contact process is additive.

The contact process

The contact process

 $\text{space } \mathbb{Z}$

 $\text{space } \mathbb{Z}$

$$Y_t = \{y_1, y_2, y_3, y_4\}$$

The dual state space

Lemma It is possible to equip $\mathcal{H}(S)$ with a metric such that

$$Y_n \to Y \quad \Leftrightarrow \quad \psi_{\text{mon}}(x, Y_n) \to \psi_{\text{mon}}(x, Y) \quad \forall x \in \mathbf{S}_{\text{fin}}$$

and $\mathcal{H}(S)$ is compact in this topology.

We equip $\mathcal{H}(S)$ with a partial order by setting

$$Y_1 \leq Y_2 \quad \Leftrightarrow \quad Y_1^{\uparrow} \subset Y_2^{\uparrow}.$$

Then $\mathcal{H}(\mathbf{S})$ has a least element \emptyset and a greatest element

$$\top := \{\delta_i : i \in \Lambda\}.$$

The upper invariant laws

Lemma The process $X = (X_t)_{t \ge 0}$ started in $X_0 = \underline{1}$ satisfies

$$\mathbb{P}^{\underline{1}}[X_t \in \cdot\,] \underset{t \to \infty}{\Longrightarrow} \overline{\nu},$$

where $\overline{\nu}$ is an invariant law, called the *upper invariant law*. One has

$$\mathbb{P}^{\underline{1}}[X_t(i) = 1] = \mathbb{P}^{\underline{1}}[X_t \ge \delta_i] = \mathbb{P}^{\{\delta_i\}}[\exists y \in Y_t \text{ s.t. } \underline{1} \ge y]$$
$$= \mathbb{P}^{\{\delta_i\}}[Y_t \ne \emptyset] \xrightarrow[t \to \infty]{} \mathbb{P}^{\{\delta_i\}}[Y_t \ne \emptyset \ \forall t \ge 0].$$

So $\overline{\nu}$ is nontrivial iff the dual process $Y=(Y_t)_{t\geq 0}$ started from an initial state of the form $\{\delta_i\}$ survives with positive probability.

The upper invariant laws

Lemma The process $Y = (Y_t)_{t \geq 0}$ started in $Y_0 = \top$ satisfies

$$\mathbb{P}^{\top}\big[Y_t\in\,\cdot\,\big]\underset{t\to\infty}{\Longrightarrow}\overline{\mu},$$

where $\overline{\mu}$ is an invariant law. For each $x \in \mathbf{S}_{\mathrm{fin}}$, one has

$$\begin{split} &\overline{\mu}\big(\big\{Y\in\mathcal{H}(\mathbf{S}):\exists y\in Y \text{ s.t. } x\geq y\big\}\big)\\ &=\lim_{t\to\infty}\mathbb{P}^\top\big[\exists y\in Y_t \text{ s.t. } x\geq y\big]=\lim_{t\to\infty}\mathbb{P}^{\underline{1}}\big[\exists y\in \top \text{ s.t. } X_t\geq y\big]\\ &=\lim_{t\to\infty}\mathbb{P}^x\big[X_t\neq\underline{0}\big]=\mathbb{P}^x\big[X_t\neq\underline{0}\ \forall t\geq 0\big]. \end{split}$$

So $\overline{\mu}=\delta_{\emptyset}$ iff the forward process X dies out started from any finite initial state x.

Some simulations

$$\begin{array}{c|c} i^{\uparrow} \\ \hline i & i^{\rightarrow} \end{array}$$

For each
$$i = (i_1, i_2) \in \mathbb{Z}^2$$
, let $i^{\to} := (i_1 + 1, i_2)$ and $i^{\uparrow} := (i_1, i_2 + 1)$.

Let $p, d \in [0,1]$ and let $X = (X_t)_{t \in \mathbb{N}}$ be a Markov chain with values in $\{0,1\}^{\mathbb{Z}^2}$ such that independently for each i and t,

$$egin{aligned} X_{t+1}(i) &= X_t(i) \lor \left(X_t(i^
ightarrow) \land X_t(i^
ightarrow) \end{aligned} & ext{w. prob. } p(1-d), \ X_{t+1}(i) &= X_t(i) \lor X_t(i^
ightarrow) \end{aligned} & ext{w. prob. } rac{1}{2}(1-p)(1-d), \ X_{t+1}(i) &= X_t(i) \lor X_t(i^
ightarrow) \end{aligned} & ext{w. prob. } rac{1}{2}(1-p)(1-d), \ X_{t+1}(i) &= 0 \end{aligned}$$

For p = 0 this model is additive.

For p = 1, it does not survive for any d > 0.

Some simulations

Density of the upper invariant law.

Some simulations

Survival probability started from a single one.

Bibliography

Monotone duality:

- ▶ L. Gray. Duality for general attractive spin systems with applications in one dimension. *Ann. Probab.* 14(2) (1986), 371–396.
- A. Sturm and J.M. Swart. Pathwise duals of monotone and additive Markov processes. J. Theor. Probab. 31(2) (2018), 932–983.
- ▶ J.N. Latz and J.M. Swart. Monotone duality of interacting particle systems. In preparation.