Lecture 3
 Monotone duality

Jan M. Swart

Rouen

September 21-22, 2023

Monotone maps

Let S be a finite lattice. A map $m: S \rightarrow S$ is monotone if

$$
x \leq y \quad \Rightarrow \quad m(x) \leq m(y)
$$

and additive if

$$
m(0)=0 \quad \text { and } \quad m(x \vee y)=m(x) \vee m(y)
$$

Note If m is monotone, then

$$
\begin{aligned}
x \leq x \vee y \quad & \Rightarrow \quad m(x) \leq m(x \vee y) \\
y \leq x \vee y \quad & \Rightarrow m(y) \leq m(x \vee y) \\
& \Rightarrow \quad m(x \vee y) \geq m(x) \vee m(y),
\end{aligned}
$$

so every monotone map is "superadditive".

Monotone maps

A typical example of a monotone map that is not additive is the cooperative branching map $\operatorname{coop}_{i j k}:\{0,1\}^{\wedge} \rightarrow\{0,1\}^{\wedge}$

$$
\operatorname{coop}_{i j k}(x)(I):= \begin{cases}(x(i) \wedge x(j)) \vee x(k) & \text { if } I=k \\ x(I) & \text { otherwise }\end{cases}
$$

Let $\Lambda=\{1,2,3\}$. Then

$$
\begin{aligned}
x & =(1,0,0) \xrightarrow{\text { coop }_{123}}(1,0,0), \\
y & =(0,1,0) \xrightarrow{\text { coop }_{123}}(0,1,0), \\
x \vee y & =(1,1,0) \xrightarrow{\text { coop }_{123}}(1,1,1) .
\end{aligned}
$$

And $\operatorname{coop}_{123}(x \vee y)>\operatorname{coop}_{123}(x) \vee \operatorname{coop}_{123}(y)$.

Monotone particle systems

Let S be a finite partially ordered set with least element 0 . Equip $\mathbf{S}:=S^{\wedge}$ with the product order and let $\underline{0}(i):=0(i \in \Lambda)$.
Let $\left(\mathbb{X}_{s, u}\right)_{s \leq u}$ be the stochastic flow of a particle system with generator

$$
G f(x)=\sum_{m \in \mathcal{G}} r_{m}\{f(m(x))-f(x)\} .
$$

Assume that each $m \in \mathcal{G}$ is monotone with $m(\underline{0})=\underline{0}$.
Let $T:=\{0,1\}$ and let $\mathcal{C}_{+}(\mathbf{S}, T)$ be the space of continuous monotone functions $f: S \rightarrow T$ with $f(\underline{0})=0$. Then

$$
f \in \mathcal{C}_{+}(\mathbf{S}, T) \quad \Rightarrow \quad \mathbb{F}_{u, s}(f)=f \circ \mathbb{X}_{s, u} \in \mathcal{C}_{+}(\mathbf{S}, T)
$$

so $\mathcal{C}_{+}(\mathbf{S}, T)$ is invariant under the backward stochastic flow.
Can we make a pathwise duality out of this?

Lower semi-continuous monotone functions

We need a way to characterise elements of $\mathcal{C}_{+}(\mathbf{S}, T)$.
Let $\mathcal{L}_{+}(\mathbf{S}, T)$ be the space of lower semi-continuous monotone functions $f: S \rightarrow T$ with $f(\underline{0})=0$. Then

$$
f \in \mathcal{L}_{+}(\mathbf{S}, T) \quad \Leftrightarrow \quad f=1_{A} \text { with } A \subset \mathbf{S} \text { open increasing, } \underline{0} \notin A \text {. }
$$

Moreover

$$
f \in \mathcal{L}_{+}(\mathbf{S}, T) \quad \Rightarrow \quad \mathbb{F}_{u, s}(f)=f \circ \mathbb{X}_{s, u} \in \mathcal{L}_{+}(\mathbf{S}, T)
$$

so also $\mathcal{L}_{+}(\mathbf{S}, T)$ is invariant under the backward stochastic flow.

Lower semi-continuous monotone functions

Recall A increasing $\Leftrightarrow A=A^{\uparrow}$ with

$$
A^{\uparrow}:=\{x \in \mathbf{S}: \exists y \in A \text { s.t. } y \leq x\} .
$$

A minimal element of A is an $y \in A$ s.t. there is no $y \neq y^{\prime} \in A$ with $y^{\prime} \leq y$. Let

$$
A^{\circ}:=\{y \in A: y \text { minimal }\} .
$$

Let

$$
\begin{aligned}
\mathbf{S}_{\mathrm{fin}} & :=\left\{x \in \mathbf{S}: 0<\sum_{i \in \Lambda} 1_{\{x(i) \neq 0\}}<\infty\right\}, \\
\mathcal{I}(\mathbf{S}) & :=\{A \subset \mathbf{S}: A \text { is open and increasing, } \underline{0} \notin A\}, \\
\mathcal{H}(\mathbf{S}) & :=\left\{Y \subset \mathbf{S}_{\mathrm{fin}}: Y^{\circ}=Y\right\}, \\
\mathcal{H}_{\mathrm{fin}}(\mathbf{S}) & :=\{Y \in \mathcal{H}(\mathbf{S}):|Y|<\infty\} .
\end{aligned}
$$

Encoding of open increasing sets

Recall that $1_{A} \in \mathcal{L}_{+}(\mathbf{S}, T) \quad \Leftrightarrow \quad A \in \mathcal{I}(\mathbf{S})$.
Lemma The map $Y \mapsto Y^{\uparrow}$ is a bijection from $\mathcal{H}(\mathbf{S})$ to $\mathcal{I}(\mathbf{S})$ and the map $A \mapsto A^{\circ}$ is its inverse.
Moreover $1_{Y \uparrow} \in \mathcal{C}_{+}(\mathbf{S}, T) \quad \Leftrightarrow \quad Y \in \mathcal{H}_{\mathrm{fin}}(\mathbf{S})$.
Recall that $\left(\mathbb{X}_{s, u}\right)_{s \leq u}$ is dual to $\left(\mathbb{F}_{u, s}\right)_{u \geq s}$ with duality function $\psi_{\text {back }}(x, f)=f(x)$. Through the bijection
$\mathcal{H}(\mathbf{S}) \ni Y \mapsto 1_{Y \uparrow} \in \mathcal{L}_{+}(\mathbf{S}, T)$, this abstract duality function now takes the concrete form

$$
\psi_{\operatorname{mon}}(x, Y):=1_{Y \uparrow}(x)=1_{\{\exists y \in Y \text { s.t. } x \geq y\}}
$$

$(x \in \mathbf{S}, \quad Y \in \mathcal{H}(\mathbf{S}))$.

Monotone duality

Proposition There exists a backward stochastic flow $\left(\mathbb{Y}_{u, s}\right)_{u \geq s}$ on $\mathcal{H}(\mathbf{S})$ such that

$$
\psi_{\operatorname{mon}}\left(\mathbb{X}_{s, u}(x), Y\right)=\psi_{\operatorname{mon}}\left(x, \mathbb{Y}_{u, s}(Y)\right)
$$

$(x \in \mathbf{S}, \quad Y \in \mathcal{H}(\mathbf{S}))$. One has

$$
Y \in \mathcal{H}_{\mathrm{fin}}(\mathbf{S}) \quad \Rightarrow \quad \mathbb{Y}_{u, s}(Y) \in \mathcal{H}_{\mathrm{fin}}(\mathbf{S})
$$

Remark The law of an \mathbf{S}-valued random variable X is uniquely determined by

$$
\left(\mathbb{E}\left[\psi_{\operatorname{mon}}(X, Y)\right]\right)_{Y \in \mathcal{H}_{\mathrm{fin}}(\mathbf{s})}
$$

The law of an $\mathcal{H}(\mathbf{S})$-valued random variable Y is uniquely determined by

$$
\left(\mathbb{E}\left[\prod_{i=1}^{n} \psi_{\operatorname{mon}}\left(x_{i}, Y\right)\right]\right)_{n \geq 1, x_{1}, \ldots, x_{n} \in \mathbf{S}_{\mathrm{fin}}}
$$

A cooperative contact process

Example

For $i \in \Lambda$, let $p_{1}(i, \cdot)$ and $p_{2}(i, \cdot)$ be probability laws on Λ and on $\left\{(j, k) \in \Lambda^{2}: j \neq k\right\}$, respectively.
Consider the interacting particle system with generator

$$
\begin{aligned}
G f(x):=(1-\alpha) & \sum_{i \in \Lambda} \sum_{j \in \Lambda} p_{1}(i, j)\left\{f\left(\mathrm{bra}_{j i}\right)-f(x)\right\} \\
& +\alpha \sum_{i \in \Lambda} \sum_{(j, k) \in \Lambda} p_{2}(i, j, k)\left\{f\left(\operatorname{coop}_{j k i}\right)-f(x)\right\} \\
& +\sum_{i \in \Lambda}\left\{f\left(\mathrm{dth}_{i}\right)-f(x)\right\} .
\end{aligned}
$$

For $\alpha=0$ this is a contact process, which is additive.

A cooperative contact process

For $Y \in \mathcal{H}(\mathbf{S})=\left\{Y \subset \mathbf{S}_{\mathrm{fin}}: Y^{\circ}=Y\right\}$, define

$$
\begin{aligned}
\widehat{\operatorname{bra}}_{j i}(Y) & :=\left(Y \cup\left\{\operatorname{dth}_{i}(y) \vee \delta_{j}: y \in \mathbf{S}_{\mathrm{fin}}, y(i)=1\right\}\right)^{\circ}, \\
\widehat{\operatorname{coop}}_{j k i}(Y) & :=\left(Y \cup\left\{\operatorname{dth}_{i}(y) \vee \delta_{j} \vee \delta_{k}: y \in \mathbf{S}_{\text {fin }}, y(i)=1\right\}\right)^{\circ}, \\
\widehat{\operatorname{dth}}_{i}(Y) & :=\{y \in Y: y(i)=0\} .
\end{aligned}
$$

Then

$$
\psi_{\operatorname{mon}}\left(\operatorname{bra}_{j i}(x), Y\right)=\psi_{\operatorname{mon}}\left(x, \widehat{\operatorname{bra}}_{j i}(Y)\right) \quad(x \in \mathbf{S}, Y \in \mathcal{H}(\mathbf{S})),
$$

etcetera. Indeed

$$
\exists y \in Y \text { s.t. } \operatorname{bra}_{j i}(x) \geq y \quad \Leftrightarrow \quad \exists y \in \widehat{\operatorname{bra}}_{j i}(Y) \text { s.t. } x \geq y .
$$

A cooperative contact process

The maps $\widehat{\mathrm{bra}}_{j i}$ and $\widehat{\mathrm{dth}}_{i}$ preserve the subspace

$$
\mathcal{H}_{\mathrm{add}}(\mathbf{S}):=\{Y \in \mathcal{H}(\mathbf{S}):|y|=1 \forall y \in Y\} .
$$

This reflects the fact that the contact process is additive.

The contact process

The contact process

Open paths

space \mathbb{Z}

Open paths

A cooperative contact process

A cooperative contact process

The dual state space

Lemma It is possible to equip $\mathcal{H}(\mathbf{S})$ with a metric such that

$$
Y_{n} \rightarrow Y \quad \Leftrightarrow \quad \psi_{\operatorname{mon}}\left(x, Y_{n}\right) \rightarrow \psi_{\operatorname{mon}}(x, Y) \quad \forall x \in \mathbf{S}_{\mathrm{fin}}
$$

and $\mathcal{H}(\mathbf{S})$ is compact in this topology.
We equip $\mathcal{H}(\mathbf{S})$ with a partial order by setting

$$
Y_{1} \leq Y_{2} \quad \Leftrightarrow \quad Y_{1}^{\uparrow} \subset Y_{2}^{\uparrow}
$$

Then $\mathcal{H}(\mathbf{S})$ has a least element \emptyset and a greatest element

$$
\top:=\left\{\delta_{i}: i \in \Lambda\right\} .
$$

The upper invariant laws

Lemma The process $X=\left(X_{t}\right)_{t \geq 0}$ started in $X_{0}=\underline{1}$ satisfies

$$
\mathbb{P}^{1}\left[X_{t} \in \cdot\right] \underset{t \rightarrow \infty}{\Longrightarrow} \bar{\nu}
$$

where $\bar{\nu}$ is an invariant law, called the upper invariant law. One has

$$
\begin{aligned}
& \mathbb{P}^{1}\left[X_{t}(i)=1\right]=\mathbb{P}^{1}\left[X_{t} \geq \delta_{i}\right]=\mathbb{P}^{\left\{\delta_{i}\right\}}\left[\exists y \in Y_{t} \text { s.t. } \underline{1} \geq y\right] \\
& =\mathbb{P}^{\left\{\delta_{i}\right\}}\left[Y_{t} \neq \emptyset\right] \underset{t \rightarrow \infty}{\longrightarrow} \mathbb{P}^{\left\{\delta_{i}\right\}}\left[Y_{t} \neq \emptyset \forall t \geq 0\right] .
\end{aligned}
$$

So $\bar{\nu}$ is nontrivial iff the dual process $Y=\left(Y_{t}\right)_{t \geq 0}$ started from an initial state of the form $\left\{\delta_{i}\right\}$ survives with positive probability.

The upper invariant laws

Lemma The process $Y=\left(Y_{t}\right)_{t \geq 0}$ started in $Y_{0}=\top$ satisfies

$$
\mathbb{P}^{\top}\left[Y_{t} \in \cdot\right] \underset{t \rightarrow \infty}{\Longrightarrow} \bar{\mu}
$$

where $\bar{\mu}$ is an invariant law. For each $x \in \mathbf{S}_{\text {fin }}$, one has

$$
\begin{aligned}
& \bar{\mu}(\{Y \in \mathcal{H}(\mathbf{S}): \exists y \in Y \text { s.t. } x \geq y\}) \\
& \quad=\lim _{t \rightarrow \infty} \mathbb{P}^{\top}\left[\exists y \in Y_{t} \text { s.t. } x \geq y\right]=\lim _{t \rightarrow \infty} \mathbb{P}^{1}\left[\exists y \in \top \text { s.t. } X_{t} \geq y\right] \\
& \quad=\lim _{t \rightarrow \infty} \mathbb{P}^{x}\left[X_{t} \neq \underline{0}\right]=\mathbb{P}^{x}\left[X_{t} \neq \underline{0} \forall t \geq 0\right]
\end{aligned}
$$

So $\bar{\mu}=\delta_{\emptyset}$ iff the forward process X dies out started from any finite initial state x.

Some simulations

For each $i=\left(i_{1}, i_{2}\right) \in \mathbb{Z}^{2}$, let
$i \rightarrow:=\left(i_{1}+1, i_{2}\right)$ and $i^{\uparrow}:=\left(i_{1}, i_{2}+1\right)$.

i^{\uparrow}	
i	i^{\rightarrow}

Let $p, d \in[0,1]$ and let $X=\left(X_{t}\right)_{t \in \mathbb{N}}$ be a Markov chain with values in $\{0,1\}^{\mathbb{Z}^{2}}$ such that independently for each i and t,

$$
\begin{array}{ll}
X_{t+1}(i)=X_{t}(i) \vee\left(X_{t}\left(i^{\rightarrow}\right) \wedge X_{t}\left(i^{\uparrow}\right)\right) & \text { w. prob. } p(1-d) \\
X_{t+1}(i)=X_{t}(i) \vee X_{t}\left(i^{\rightarrow}\right) & \text { w. prob. } \frac{1}{2}(1-p)(1-d) \\
X_{t+1}(i)=X_{t}(i) \vee X_{t}\left(i^{\uparrow}\right) & \text { w. prob. } \frac{1}{2}(1-p)(1-d) \\
X_{t+1}(i)=0 & \text { w. prob. } d .
\end{array}
$$

For $p=0$ this model is additive.
For $p=1$, it does not survive for any $d>0$.

Some simulations

Density of the upper invariant law.

Some simulations

Survival probability started from a single one.

Bibliography

Monotone duality:

- L. Gray. Duality for general attractive spin systems with applications in one dimension. Ann. Probab. 14(2) (1986), 371-396.
- A. Sturm and J.M. Swart. Pathwise duals of monotone and additive Markov processes. J. Theor. Probab. 31(2) (2018), 932-983.
- J.N. Latz and J.M. Swart. Monotone duality of interacting particle systems. In preparation.

