
Peierls bounds from Toom contours

Jan M. Swart (Czech Academy of Sciences)
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Toom’s model

Assume that φ : {0, 1}Zd → {0, 1} is monotone and depends on
finitely many coordinates. Example: the North East Center
majority rule on Z2:

φNEC(x) :=

{
1 if x(0, 0) + x(0, 1) + x(1, 0) ≥ 2,

0 if x(0, 0) + x(0, 1) + x(1, 0) ≤ 1.

We are interested in the cellular automaton (Xn)n≥0 that evolves

Xn+1(i) =

{
φ
(
(Xn(i + j))j∈Zd

)
with probability 1− p,

0 with probability p,

independently for all n ≥ 0 and i ∈ Zd .
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Toom’s model

We can generalise a bit and let

Xn+1(i) =


φ
(
(Xn(i + j))j∈Zd

)
with probability 1− p − r ,

0 with probability p,

1 with probability r .

Let ρ(p, r) denote the density of the upper invariant law.

Toom (1980) lim
p→0

ρ(p, 0) = 1.
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Toom’s model
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Density of the upper invariant law for Toom’s model.
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Nearest neighbour voting

The Nearest Neighbor voting map is defined as

φNN(x) :=


1 if x(0, 0) + x(0, 1) + x(1, 0)

+x(0,−1) + x(−1, 0) ≥ 3,

0 if x(0, 0) + x(0, 1) + x(1, 0)
+x(0,−1) + x(−1, 0) ≤ 2.

Toom (1980) ρ(p, 0) = 0 for all p > 0.
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Nearest neighbour voting
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Density of the upper invariant law for nearest neighbour voting.
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Toom’s stability theorem

Def φ is an eroder if for the unperturbed cellular automaton, any
finite collection of zeros disappears in finite time.

Toom’s stability theorem (1980) If φ is an eroder, then
ρ(p) → 1 as p → 0. If φ is not an eroder,

then ρ(p) = 0 for all p > 0.

Jan M. Swart (Czech Academy of Sciences) Peierls bounds from Toom contours



The eroder property

Each monotone map φ : {0, 1}Zd → {0, 1} can uniquely be written
as

φ(x) =
∨

A∈A(φ)

∧
i∈A

x(i),

A ∈ A(φ) is a minimal collection of ones needed for φ(x) = 1.

Theorem (Toom 1980, Ponselet 2013) φ is an eroder if and only if⋂
A∈A(φ)

Conv(A) = ∅,

where Conv(A) is the convex hull of A.

By Helly’s theorem w.l.o.g. |A(φ)| ≤ d + 1.
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The eroder property

Toom’s model φNEC
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The eroder property

Nearest neighbour voting φNN.

Jan M. Swart (Czech Academy of Sciences) Peierls bounds from Toom contours



The eroder property

Nearest neighbour voting φNN.

Jan M. Swart (Czech Academy of Sciences) Peierls bounds from Toom contours



The eroder property

Nearest neighbour voting φNN.

Jan M. Swart (Czech Academy of Sciences) Peierls bounds from Toom contours



The eroder property

Nearest neighbour voting φNN.
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The eroder property

Def A linear polar function is a linear function

Rd ∋ z 7→
(
L1(z), . . . , Lσ(z)

)
∈ Rσ

such that
σ∑

s=1

Ls(z) = 0 (z ∈ Rd).

For x ∈ {0, 1}Zd
, let ℓs(x) := sup

i∈Zd : x(i)=0

Ls(i).

Then for the unperturbed cellular automaton:

ℓs(Xn) ≤ ℓs(X0)− δsn with δs := sup
A∈A(φ)

inf
i∈A

Ls(i).

The constants δs (1 ≤ s ≤ σ) are edge speeds.
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The eroder property

L1 = 0

L2 = 0

L3 = 1

δ3 = 1
δ1 = 0

δ2 = 0

Toom’s model

L1(z) := −z1, L2(z) := −z2, L3(z) := z1 + z2.
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The eroder property

Lemma (Toom 1980, Ponselet 2013) φ is an eroder if and only if
there exists a linear polar function L such that

δ :=
σ∑

s=1

δs > 0 with δs := sup
A∈A(φ)

inf
i∈A

Ls(i).

Proof of sufficiency Define the extent of x by

ext(x) :=
σ∑

s=1

ℓs(x) with ℓs(x) := sup
i∈Zd : x(i)=0

Ls(i).

Then ext(x) ≥ 0 if there is at least one zero since
σ∑

s=1

Ls(z) = 0.

Moreover ext(Xn) ≤ ext(X0)− δn.
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The maximal trajectory

Let Φ =
(
Φ(i ,t)

)
(i ,t)∈Zd×Z be an i.i.d. collection of maps with

P
[
Φ(i ,t) = φ0

]
= p and P

[
Φ(i ,t) = φ

]
= 1− p,

where φ0(x) := 0 denotes the trivial zero map. A trajectory of Φ is
a function (i , t) 7→ xt(i) such that

xt(i) = Φ(i ,t)

(
(xt−1(i + j))j∈Zd

)
∀(i , t).

Lemma There a.s. exists a maximal trajectory X .

Aim For small p, derive a lower bound on ρ(p) := P[X 0(0) = 1].
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Toom contours

Def A Toom graph is a directed graph with edges of σ different
charges and three types of vertices:

▶ At a source, σ directed edges emerge, one of each charge.

▶ At a sink, σ directed edges converge, one of each charge.

▶ At an internal vertex, there is one incoming edge and one
outgoing edge, and they are of the same charge.

In addition, there can be isolated vertices which we can think of as
a source and sink at the same time.

Jan M. Swart (Czech Academy of Sciences) Peierls bounds from Toom contours



Toom contours

A Toom graph with three charges.
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Peierls argument

Main idea A Toom contour is a connected Toom graph embedded
in the plain, with one special source called the root.

Theorem (incomplete statement) If X 0(0) = 0, then there
exists a Toom contour T rooted at (0, 0) such that the sinks of T
correspond to defective space-time points, where the trivial map
φ0 is applied. Consequently:

P
[
X 0(0) = 0

]
≤

∑
T

P
[
T is present in Φ

]
≤

∑
T

pnsink(T ).

This tends to zero as p → 0 provided

Nsink
n := #{T : nsink(T ) = n}

grows at most exponentially in n.
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Peierls argument

It is not hard to show that there exists a R <∞ such that

Nedge
n ≤ Rn with Nedge

n := #{T : nedge(T ) = n}.

Need to show that nsink(T ) ≥ cnedge(T ) for some c > 0.

Idea: edges with charge s move in the direction where Ls increases,
except for edges coming out of sources. As a result:

nsink(T ) = nsource(T ) ≥ cnedge(T )

for some c > 0.
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Toom contours

Def An embedding of a Toom graph with vertex set V is a map

V ∋ v 7→
(
ψ(v),−h(v)

)
∈ Zd × Z

▶ The height (=negative time) h increases by 1 along each
directed edge.

▶ Sinks do not overlap with any other vertices.

▶ Internal vertices of the same charge do not overlap.

A Toom contour is an embedded connected Toom graph with one
special source, the root, whose height is minimal among all
vertices.
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Toom contours

Let φ be an eroder. For each 1 ≤ s ≤ σ, choose As(φ) ∈ A(φ)
such that

δs := sup
A∈A(φ)

inf
i∈A

Ls(i) = inf
i∈As(φ)

Ls(i).

Def A Toom contour is present in Φ =
(
Φ(i ,t)

)
(i ,t)∈Zd×Z if:

▶ Sinks correspond to vertices where the trivial map φ0 is
applied.

▶ If (v ,w) is a directed edge of charge s coming out of an
internal vertex or the root, then ψ(w)− ψ(v) ∈ As(φ).

▶ For directed edges emerging at other sources
ψ(w)− ψ(v) ∈ ⋃σ

s=1 As(φ).

Theorem (complete statement) If X 0(0) = 0, then there is a
Toom contour rooted at (0, 0) present in Φ.
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Cooperative branching

The cooperative branching map is defined as

φcoop(x) :=
(
x(0, 1) ∧ x(1, 0)

)
∨ x(0, 0).

One has A(φcoop) = {A1,A2} with

A1 := {(0, 1), (1, 0)} and A2 := {(0, 0)}.

We choose the linear polar function

L1(z) := z1 + z2, L2(z) := −z1 − z2.

The corresponding edge speeds are given by

δ1 = sup
A∈A(φ)

inf
i∈A

L1(i) = inf
i∈A1

L1(i) = 1,

δ2 = sup
A∈A(φ)

inf
i∈A

L2(i) = inf
i∈A2

L2(i) = 0.
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Toom contours
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A Toom contour for the cooperative branching map.
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The Peierls argument

Lemma There exists a c > 0 such that nsink ≥ cnedge + 1.

Proof
σ∑

s=1

∑
(v ,w)∈Es

(
Ls(ψ(w))− Ls(ψ(v))

)
=

∑
v∈V

σ∑
s=1

{ ∑
u: (u,v)∈Es

Ls(ψ(v))−
∑

w : (v ,w)∈Es

Ls(ψ(v))
}
= 0.

Let E ◦
s denote the edges of charge s out of a source different from

the root and E ∗
s the other edges. Then

0=
σ∑

s=1

∑
(v ,w)∈E∗

s

(
Ls(ψ(w))− Ls(ψ(v))

)︸ ︷︷ ︸
≥δs

+
σ∑

s=1

∑
(v ,w)∈E◦

s

(
Ls(ψ(w))− Ls(ψ(v))

)︸ ︷︷ ︸
≥−K

.
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The Peierls argument

Lemma The number of Toom contours rooted at (0, 0) with N
edges is bounded by Rn for some R <∞.

Let T0 denote the set of all Toom contours rooted at (0, 0).
Let nsink(T ) denote the number of sinks of T .

Let Nedge
n denote the number of T ∈ T0 with n edges. Then

P
[
X 0(0) = 0

]
≤

∑
T∈T0

P
[
T is present in Φ

]
≤

∑
T∈T0

pnsink(T )

≤ p
∑
T∈T0

pcnedge(T ) = p
∞∑
n=0

Nedge
n pcn ≤ p

∞∑
n=0

Rnpcn.
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Intrinsic randomness

Let Φ =
(
Φ(i ,t)

)
(i ,t)∈Zd×Z be an i.i.d. collection of maps with

P
[
Φ(i ,t) = φ0

]
= p and P

[
Φ(i ,t) = φk

]
= (1− p)rk ,

where φ0 denotes the trivial zero map and φ1, . . . , φm are
nontrivial monotone local maps. A trajectory of Φ is a function
(i , t) 7→ xt(i) such that

xt(i) = Φ(i ,t)

(
(xt−1(i + j))j∈Zd

)
∀(i , t).

Lemma There a.s. exists a maximal trajectory X .

Aim Fix a probability law r1, . . . , rm. For small p,
derive a lower bound on ρ(p) := P[X 0(0) = 1].
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Intrinsic randomness

Example
φ1 = φNEC, φ2 = φNWC, φ3 = φSWC, φ4 = φSEC,
r1 = r2 = r3 = r4 = 1/4.
In spite of φNEC, φNWC, φSWC, φSEC being eroders, this random
cellular automaton is believed to be unstable.

Intuitively, the “edge speed” in each direction is zero.

On closer look, under the unperturbed evolution, half-space
configurations no longer evolve into half-space configurations,
so it is a priori not even clear how to define edge speeds in the
presence of intrinsic randomness.

Nevertheless, it is believed that
edge speeds should still determine stability.
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Continuous time

Consider the interacting particle system (Xt)t≥0 with

Xt(i) 7→
{
φNEC

(
(Xt(i + j))j∈Zd

)
with rate 1,

0 with rate p.

Gray (1999) lim
p→0

ρ(p) = 1.
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Toom’s model in continuous time

Jan M. Swart (Czech Academy of Sciences) Peierls bounds from Toom contours



Toom’s model in continuous time

Jan M. Swart (Czech Academy of Sciences) Peierls bounds from Toom contours



Toom’s model in continuous time

Jan M. Swart (Czech Academy of Sciences) Peierls bounds from Toom contours



Toom’s model in continuous time

Jan M. Swart (Czech Academy of Sciences) Peierls bounds from Toom contours



Toom’s model in continuous time

Jan M. Swart (Czech Academy of Sciences) Peierls bounds from Toom contours



Toom’s model in continuous time

Jan M. Swart (Czech Academy of Sciences) Peierls bounds from Toom contours



Toom’s model in continuous time

Jan M. Swart (Czech Academy of Sciences) Peierls bounds from Toom contours



Toom’s model in continuous time

Jan M. Swart (Czech Academy of Sciences) Peierls bounds from Toom contours



Toom’s model in continuous time

Jan M. Swart (Czech Academy of Sciences) Peierls bounds from Toom contours



Toom’s model in continuous time

Jan M. Swart (Czech Academy of Sciences) Peierls bounds from Toom contours



Continuous time

We can think of the continuous-time model as the ε→ 0 limit of a
discrete-time model that applies three maps:

φNEC with probability ε,
φ0 with probability εp,
φid with the remaining probability,

where φid(x) := x(0) is the identity map.

Gray (1999) has shown that combining the identity map with an
eroder can spoil stability. Let:

φ(x) :=


0 if x(−2, 0) = x(−1, 0) = 0,

1 if x(−3, k) = x(−2, k) = 1 ∀|k| ≤ n,

x(0, 0) in all other cases.
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Continuous time

speed ≈ 1

speed ≪ 2
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Toom contours and intrinsic randomness

Let Φ =
(
Φ(i ,t)

)
(i ,t)∈Zd×Z be an i.i.d. collection of maps with

P
[
Φ(i ,t) = φ0

]
= p and P

[
Φ(i ,t) = φk

]
= (1− p)rk ,

where φ0 denotes the trivial zero map and φ1, . . . , φm are
nontrivial monotone local maps.

Let L : Rd → Rσ be a linear polar function.

For each 1 ≤ s ≤ σ and 1 ≤ k ≤ m, choose As(φk) ∈ A(φk) such
that

δs(φk) := sup
A∈A(φk )

inf
i∈A

Ls(i) = inf
i∈As(φk )

Ls(i).
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Toom contours and intrinsic randomness

For a vertex v of a Toom contour, let κ(v) indicate the map that
is applied at

(
ψ(v),−h(v)

)
, i.e.,

Φ(ψ(v),−h(v)) = φκ(v),

where φ0 = φ0 is the zero map and φ1, . . . , φm are non-constant.

Def A Toom contour is present in Φ =
(
Φ(i ,t)

)
(i ,t)∈Zd×Z if:

▶ Sinks correspond to vertices where the trivial map φ0 is
applied.

▶ If (v ,w) is a directed edge of charge s coming out of an
internal vertex or the root, then ψ(w)− ψ(v) ∈ As(φκ(v)).

▶ For directed edges emerging at other sources
ψ(w)− ψ(v) ∈ ⋃σ

s=1 As(φκ(v)).

Theorem If X 0(0) = 0, then there is a Toom contour rooted at
(0, 0) present in Φ.
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Toom contours and intrinsic randomness

Question Is the Peierls sum finite?

Trivial case If

δ :=
σ∑

s=1

inf
k=1,...,m

δs(φk) > 0,

Then ext(Xn) ≤ ext(X0)− δn almost surely and Toom’s argument
carries over without a change.
This condition exlcudes many interesting cases, including the case
where φk = φid for some 1 ≤ k ≤ m.

Can we go beyond the trivial case?
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Intrinsic randomness: beyond the trivial case

Work in progress

Positive result Let m = 2, φ1 = φcoop, φ2 = φid, r1 > 0. Then
we can prove stability using Toom’s Peierls argument.

Negative result Let m = 2, φ1 = φcc, φ2 = φid, with

φcc(x) :=
(
x(0, 1) ∧ x(1, 0)

)
∨
(
x(−1, 1) ∧ x(0, 0) ∧ x(1,−1)

)
.

Then for r1 small enough the Peierls sum is infinite for any p > 0,
in spite of the heuristics and numerics suggesting stability.

In several other cases, we still don’t know. . .
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Previous work

Toom (1980) Simple necessary and sufficient conditions for a
monotone cellular automaton to be stable. Peierls argument.

Durrett & Gray (1985) Announce a number of deep results for
cooperative branching. Referee asks for revision that never
materialises.

Berman & Simon (1988), Gács & Reif (1988), Gács
(1995,2021) Alternative proofs in a more restricted setting.

Bramson & Gray (1991) Alternative proof of Toom’s result using
a multiscale block construction.

Chen (1992,1994) Stability w.r.t. initial state & other
perturbations. Proofs partly depend on [Durrett & Gray (1985)].

Gray (1999) Sufficient conditions for a monotone interacting
particle system to be stable. Combines Toom’s Peierls argument
with the multiscale approach.
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Previous work

Preskill (2007) Note on minimal explanations.

Maere & Ponselet (2011) Exponential decay of correlations.

Ponselet (2013) PhD thesis.

Our contributions

▶ Clean-up of Toom’s argument;
introduction of sources and sinks.

▶ Toom contours in the presence of intrinsic randomness.

▶ A probabilistic method for estimating the Peierls sum.

▶ Some explicit bounds.

Jan M. Swart (Czech Academy of Sciences) Peierls bounds from Toom contours



Explicit bounds

Cooperative branching discrete time pc ≥ 1/64. (Numerics
suggest pc ≈ 0.105.)

Cooperative branching continuous time λc ≤ 162. (Durrett &
Gray (1985) announced λc ≤ 110. Numerics suggest λc ≈ 12.4.)

Toom’s model pc ≥ 3−21. (Numerics suggest pc ≈ 0.053.)
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