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Set-up

Let G = (V , ~E ) be an infinite oriented graph.
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Set-up

On each edge, we place a barrier.
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Set-up

Barriers can be in three states:

closed frozen open
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Set-up

A barrier percolates if
there starts an infinite open path just above it.
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Dynamics

We assign i.i.d. Unif[0, 1] activation times (τi)i∈B
to the barriers i ∈ B.

We fix a set Ξ ⊂ (0, 1] of freezing times.

I Initially, all barriers are closed.

I At its activation time, a barrier opens, provided it is not
frozen.

I At each freezing time t ∈ Ξ, all closed barriers that percolate
are frozen.
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Dynamics

Barriers open at their activation times.
bla
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Dynamics

Barriers open at their activation times.
bla
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Dynamics

At the first freezing time t ∈ Ξ,
we freeze all closed barriers that percolate.
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Dynamics

At the first freezing time t ∈ Ξ,
we freeze all closed barriers that percolate.
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Dynamics

And we continue. . .
bla
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Dynamics

And we continue. . .
bla
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Notation

At :=
{

i ∈ B : τi ≤ t
}
,

F :=
{

i ∈ B : i frozen at the final time 1
}
.

Then At\F are the open barriers at time t.

We write i
At\F−→ ∞ if i percolates at time t.
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The Frozen Percolation Equation

The Frozen Percolation Equation (FPE) reads:

F =
{

i ∈ B : i
At\F−→ ∞ for some t ∈ (0, τi] ∩ Ξ

}
.

If Ξ is finite, then (FPE) has a solution, which is a.s. unique.

Questions for infinite Ξ:

I Existence of solutions?

I Uniqueness of solutions?

I Uniqueness in which sense?
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Existence

If Ξ = (0, 1], then clusters freeze as soon as they reach infinite size.
This leads to self-organised criticality.

Frozen percolation can also be defined on unoriented graphs.
Just replace each unoriented edge by two oriented edges whose
barriers are activated at the same time.

For Ξ = (0, 1], David Aldous (2000) proved that (FPE) has a
solution on the unoriented 3-regular tree, or equivalently on the
oriented binary tree.

For Ξ = (0, 1], Itai Benjamini and Oded Schramm (2001) proved
that (FPE) has no solution on the unoriented square lattice Z2.
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Existence

A natural approach is to choose finite Ξn that converge to (0, 1]
in the sense that for each open O ⊂ (0, 1],
Ξn ∩ O 6= ∅ for all n large enough.

On the 3-regular tree, the solutions to (FPE)Ξn

converge to a solution of (FPE)(0,1].

But on Z2 this does not work: the limit exists, but does not solve
(FPE)(0,1] since infinite clusters form but do not freeze.

Jan M. Swart (Czech Academy of Sciences) Frozen percolation on the binary tree



Existence

The reason is that at the first time t ∈ Ξn with t > pc, a very
sparse cluster freezes that blocks all further paths to infinity.

Existence on Z3 is an open problem.
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Distributional uniqueness

G1 G2

G3

U

On the oriented binary tree, we impose natural conditions:
The subtrees G1,G2,G3 should be i.i.d., equally distributed with
the original tree G , and independent of U.
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Freezing times

∅
[∅]

1
[1]

2
[2]

11

[11]

12

[12]

21

[21]

22

[22]

We label barriers in the obvious way and let
[i] denote the point just below i.
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Freezing times

The freezing time of the root

Y[∅] := inf
{
t ∈ Ξ : [∅]

At\F−→ ∞
}

solves the Recursive Distributional Equation (RDE)

Y[∅]
d
= γ(τ∅,Y[1],Y[2]) :=

{
Y[1] ∧ Y[2] if τ∅ < Y[1] ∧ Y[2],

∞ otherwise.
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Distributional uniqueness

[Ráth, S., Szőke ’21] For each closed Ξ ⊂ (0, 1], there exists a
unique solution ρΞ to (RDE) that yields a solution F of (FPE).

Consequence For each closed Ξ ⊂ (0, 1], (FPE) has a solution
that satisfies the natural conditions, and the joint law of(
(τi)i∈B,F

)
is uniquely determined.

Aldous (2000) proved

ρ(0,1](dy) =
dy

2y2
1

[ 1
2 , 1]

(y) ρ
(
{∞}

)
= 1

2 .

We discovered the problem becomes easier if we place a
geometrically distributed number of barriers with mean one on
each edge.
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The MBBT

We call this the Marked Binary Branching Tree.
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The MBBT

[∅]

[1]

[11]

[111]

[1111]
[112]

[2]

[21]
[22]

[222]

We call this the Marked Binary Branching Tree.

Jan M. Swart (Czech Academy of Sciences) Frozen percolation on the binary tree



Scaling of the MBBT

∅

If we are only interested in the time interval [0, r ], then we can

restrict ourselves to the pruned tree
{

[i] : [i]
Ar−→∞

}
.

bla
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Scaling of the MBBT

∅

For the MBBT, P
[
[∅]

Ar−→∞
]

= r and conditional on this event,
the pruned tree is equally distributed with a scaled version of the
original tree.
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The MBBT

Letting κi denote the number of offspring of i , the Recursive
Distributional Equation (RDE) now takes the form

Y[∅]
d
= γ(τ∅, κ∅,Y[1],Y[2]) :=


Y[1] ∧ Y[2] if κ∅ = 2,

Y[1] if κ∅ = 1 and τ∅ < Y[1],

∞ otherwise.

A probability measure ρ on [0, 1] ∪ {∞} solves this RDE iff∫
[0,t]

ρ(dy)y = ρ
(
[0, t]

)2
(0 ≤ t ≤ 1).

Aldous’ solution takes the simple form

ρ(0,1](dy) = 1
2 1[0, 1](y)dy ρ

(
{∞}

)
= 1

2 .
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Almost sure uniqueness

Let F,F′ be solutions to (FPE) that satisfy the natural conditions
and are conditionally independent given (τi)i∈B.

Then (Y[∅],Y
′
[∅]) solves the bivariate RDE

(Y[∅],Y
′
[∅])

d
=
(
γ(τ∅,Y[1],Y[2]), γ(τ∅,Y

′
[1],Y

′
[2])
)
.

David Aldous and Antar Bandyopadhyay (2005) proved that
F = F′ a.s. if and only if each solution ρ(2) to the bivariate RDE
that has marginals ρΞ is concentrated on the diagonal.
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Nontrivial solution of the bivariate RDE
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For Ξ = (0, 1], numerical calculations by Bandyopadhyay (2004)
suggested the existence of a nontrivial solution, that is not

concentrated on the diagonal.
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Almost sure uniqueness

For 15 years, nobody could prove this.
Several people tried, no one harder than Balázs Ráth.

The bivariate RDE gives an integral equation for

F (s, t) := P
[
Y[∅] ≤ s, Y ′[∅] ≤ t

]
.

For the MBBT, scaling gives F (rs, rt) = rF (s, t) (r , s, t ∈ [0, 1]).

The bivariate RDE now reduces to an integral equation for a
function of one variable, which can be solved.

[Ráth, S., Terpai accepted AoP] For Ξ = (0, 1], frozen
percolation on the binary tree is not a.s. unique.
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Other sets of freezing times

For 0 < θ < 1, set Ξθ := {θn : n ≥ 0}.

[Ráth, S., Szőke ’21] There exists a parameter θ∗ = 0.636 . . .
such that all solutions of the bivariate RDE with marginals ρΞθ

are
concentrated on the diagonal if and only if 0 < θ ≤ θ∗.

In other words, if F,F′ are solutions to (FPE) for Ξθ, that satisfy
the natural conditions and are conditionally independent given
(τi)i∈B, then F = F′ a.s. if and only if θ ≤ θ∗.
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Open problems

I Uniqueness of (scale invariant) nontrivial solutions to the
bivariate RDE?

I Do there exist solutions to (FPE) that do not satisfy the
natural conditions?

I For θ ≤ θ∗, are solutions to (FPE) a.s. unique even if we drop
the natural conditions?

I other sets of freezing times,

I n-regular oriented trees with n ≥ 3,

I other graphs such as Z3.
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