Strong R-positivity

Jan M. Swart

April 15, 2019

Lecture 1

Directed graphs

Directed graph $G=(S, E)$. S vertex set E edge set.
e^{-}starting vertex e^{+}endvertex.
For us always: S, E countable.

multiple edge

Def simple graph $=$ no multiple edges.

$$
\begin{gathered}
E_{x, \bullet}:=\left\{e \in E: e^{-}=x\right\}, \quad E_{\bullet, y}:=\left\{e \in E: e^{+}=y\right\}, \quad E_{x, y}:=E_{x, \bullet} \cap E_{\bullet}, u \\
{[m: n]:=\{k \in \mathbb{Z}: m \leq k \leq n\}, \quad(m: n]:=\{k \in \mathbb{Z}: m<k \leq n\} .}
\end{gathered}
$$

A walk is a pair of functions

$$
[m: n] \ni k \mapsto \omega_{k} \in S \quad \text { and } \quad(m: n] \ni k \mapsto \vec{\omega}_{k} \in E
$$

with $\vec{\omega}_{k}^{-}=\omega_{k-1}$ and $\vec{\omega}_{k}^{+}=\omega_{k} \forall k \in(m: n]$.
Starting and end- vertices $\omega^{-}:=\omega_{m}$ and $\omega^{+}:=\omega_{n}$.
$\ell_{\omega}:=m-n \geq 0$ length of walk.
Set of walks $\Omega^{[m: n]}=\Omega^{[m: n]}(G)$, in particular $\Omega^{n}:=\Omega^{[0: n]}$.
As before: $\Omega_{x, \bullet}^{n}, \Omega_{\bullet, y}^{n}, \Omega_{x, y}^{n}$.
$\Omega:=\bigcup_{n=0}^{\infty} \Omega^{n}$.
Def $x \rightsquigarrow_{G} y \Leftrightarrow \Omega_{x, y} \neq \emptyset$.
Def communicating class $=$ equivalence class of $\leadsto{ }^{m}$.
Def period of x

$$
\sup \left\{k \geq 1: N_{x} \subset k \mathbb{N}\right\}, \quad \text { with } \quad N_{x}:=\left\{n \geq 0: \Omega_{x, x}^{n} \neq \emptyset\right\}
$$

The period is a class property i.e. constant on communicating classes.
Def x transitory if $N_{x}=\{0\}$.
All other communicating classes are irreducible classes.
Def $G=(S, E)$ irreducible $\Leftrightarrow S$ is an irreducible class.
Def G aperiodic \Leftrightarrow all vertices have period 1.
Note: if x has period k in $G=(S, E)$, then x has period 1 in $\left(S, \Omega^{k}\right)$.

Nonnegative matrices

Def weight function on $G=(S, E)=$ function $\mathbb{A}: E \rightarrow[0, \infty]$.

$$
\mathbb{A}(\omega):=\prod_{k=m+1}^{n} \mathbb{A}\left(\vec{\omega}_{k}\right) \quad\left(\omega \in \Omega^{[m: n]}\right)
$$

Associated nonnegative matrix

$$
A(x, y):=\sum_{e \in E_{x, y}} \mathbb{A}(e) \quad(x, y \in S)
$$

If G simple, then A determines \mathbb{A}.
For $f: S \rightarrow[0, \infty]$, def

$$
\begin{gathered}
A f(x):=\sum_{y} A(x, y) f(y), \quad f A(x):=\sum_{y} f(y) A(y, x), \\
(A B)(x, z):=\sum_{y} A(x, y) B(y, z) . \\
A^{n}(x, y)=\sum_{\omega \in \Omega_{x, y}^{n}} \mathbb{A}(\omega) \quad(n \geq 0),
\end{gathered}
$$

with $A^{0}(x, y):=1(x, y)=1_{\{x=y\}}$ identity matrix.
Def A irreducible $\Leftrightarrow \forall x, y \exists n \geq 1$ s.t. $A^{n}(x, y)>0$.
Equivalent: $G^{\mathbb{A}}=\left(S, E^{\mathbb{A}}\right)$ irreducible with $E^{\mathbb{A}}:=\{e \in E: \mathbb{A}(e)>0\}$.

Lemma (Local growth rate) If x has period k, then

$$
\begin{aligned}
& \quad \rho_{x}(A):=\lim _{n \in k \mathbb{N}}\left(A^{n}(x, x)\right)^{1 / n}=\sup _{n \in k \mathbb{N}}\left(A^{n}(x, x)\right)^{1 / n} \in(0, \infty] . \\
& \text { If } x \text { th }_{A} y \text {, then } \rho_{x}(A)=\rho_{y}(A)=\lim _{n}\left(A^{n}(x, y)\right)^{1 / n} .
\end{aligned}
$$

Proof Since $A^{n+m}(x, x) \geq A^{n}(x, x) A^{m}(x, x)$ for $n, m \geq 1$, the function $n \mapsto \log A^{n}(x, x)$ is superadditive. The first statement now follows from Fekete's lemma.
If $A^{m}(x, y)>0$, then

$$
\begin{aligned}
& \liminf _{n} \frac{1}{n} \log A^{n}(x, y) \geq \liminf _{n} \frac{1}{n} \log \left(A^{n-m}(x, x) A^{m}(x, y)\right) \\
& =\lim _{n} \frac{1}{n}\left[\log A^{n-m}(x, x)+\log A^{m}(x, y)\right]=\log \rho_{x}(A)
\end{aligned}
$$

and

$$
\begin{aligned}
& \quad \underset{n}{\lim \sup } \frac{1}{n} \log A^{n}(y, x)=\underset{n}{\lim \sup } \frac{1}{n}\left[\log A^{n}(y, x)+\log A^{m}(x, y)\right] \\
& \quad \leq \lim _{n} \frac{1}{n} \log \left(A^{n+m}(y, y)\right)=\rho_{y}(A) .
\end{aligned}
$$

If A is irredicible, then $\rho(A)=\rho_{x}(A)$ spectral radius of A.

One-dimensional Gibbs measures

If $0<A^{n-m}(x, y)<\infty$, define Gibbs measure on $\Omega_{x, y}^{[m: n]}$ by

$$
\bar{\mu}_{x, y}^{\mathbb{A},[m: n]}(\omega):=\frac{\mathbb{A}(\omega)}{A^{n-m}(x, y)} .
$$

$\bar{\mu}_{x, y}^{\AA, n}=\bar{\mu}_{x, y}^{\mathbb{A},[0: n]}$.
We call A the transfer operator.
Let $c>0, f: \overline{S \rightarrow}(0, \infty)$.
$\operatorname{Def} \mathbb{A} \sim_{c, f} \mathbb{B} \Leftrightarrow$

$$
\mathbb{B}(e)=c^{-1} f\left(e^{-}\right)^{-1} \mathbb{A}(e) f\left(e^{+}\right) \quad \forall e \in E
$$

Def $\mathbb{A} \sim_{c} \mathbb{B} \Leftrightarrow \mathbb{A} \sim_{c, f} \mathbb{B}$ for some f.
$\operatorname{Def} \mathbb{A} \sim \mathbb{B} \Leftrightarrow \mathbb{A} \sim_{c} \mathbb{B}$ for some c.
Def \mathbb{A} locally finite $\Leftrightarrow A^{n}(x, y)<\infty \forall x, y, n$.
Def $N_{x, y}(A):=\left\{n: A^{n}(x, y)>0\right\}$.

Proposition (Equivalence of weight functions) Let \mathbb{A}, \mathbb{B} irreducible, locally finite, and $N_{x, y}(A)=N_{x, y}(B)(x, y \in S)$. Then the following are equivalent:
(i) $\bar{\mu}^{\mathbb{A}, n}=\bar{\mu}^{\mathbb{B}, n} \forall x, y \in S, n \in N_{x, y}$.
(ii) $\mathbb{A} \sim_{c, f} \mathbb{B}$ for some $c>0$ and $f: S \rightarrow(0, \infty)$.

In (ii), c is unique and f is unique up to scalar multiples.
Proof $($ ii $) \Rightarrow(\mathrm{i}): \mathbb{A} \sim_{c, f} \mathbb{B}$ implies

$$
\mathbb{B}(\omega)=c^{-\ell_{\omega}} f\left(\omega^{-}\right)^{-1} \mathbb{A}(\omega) f\left(\omega^{+}\right) \quad \forall \omega \in \Omega
$$

Thus

$$
\mathbb{B}(\omega)=C \mathbb{A}(\omega) \quad \forall \omega \in \Omega_{x, y}^{n} \text { with } \quad C:=c^{-n} f(x)^{-1} f(y) .
$$

The constant C disappears in the normalization.
(i) \Rightarrow (ii) (sketch): Fix reference point z.

Def $g_{m}:=\frac{A^{m}(z, z)}{B^{m}(z, z)}$. Then

$$
\frac{A^{m}(z, z) A^{n}(z, z)}{A^{m+n}(z, z)}=\bar{\mu}_{z, z}^{\mathbb{A}, m+n}\left[\omega_{m}=z\right]=\frac{B^{m}(z, z) B^{n}(z, z)}{B^{m+n}(z, z)}
$$

hence

$$
g_{m} g_{n}=\frac{A^{m}(z, z)}{B^{m}(z, z)} \frac{A^{n}(z, z)}{B^{n}(z, z)}=\frac{A^{m+n}(z, z)}{B^{m+n}(z, z)}=g_{m+n}
$$

It follows $g_{m}=c^{m}$ for some $c>0$. Def

$$
f(x):=c^{-\ell_{\omega}} \frac{\mathbb{A}(\omega)}{\mathbb{B}(\omega)} f(z) \quad \omega \in \Omega_{x, z}, \mathbb{B}(\omega)>0 .
$$

Show def. does not dep. on choice of ω and $\mathbb{A} \sim_{c, f} \mathbb{B}$.
Def A probability kernel if $\sum_{y} A(x, y)=1 \forall x$.
Def $\mathbb{A} \underline{\text { Markovian } \Leftrightarrow A \text { probability kernel. }}$
\mathbb{A} Markovian $\Rightarrow \bar{\mu}_{x, y}^{\mathbb{A},[m: n]}$ law of Markov chain with transition function \mathbb{A} started in x and conditioned to end in y.

Lemma (Positive eigenfunction) $A f=c f$ if and only if $\mathbb{A} \sim_{c, f} \mathbb{P}$ for a Markovian weight function \mathbb{P}.

Proof

$$
\begin{aligned}
& \sum_{y} P(x, y)=\sum_{e \in E_{x} \cdot \boldsymbol{\bullet}} c^{-1} f\left(e^{-}\right)^{-1} \mathbb{A}(e) f\left(e^{+}\right) \\
& \quad=\frac{\sum_{y} A(x, y) f(y)}{c f(x)}=\frac{A f(x)}{c f(x)} .
\end{aligned}
$$

Theorem (Perron (1907) Frobenius (1912)) Let A be a finite irreducible nonnegative matrix. Then there exists a unique $c>0$ and a $f: S \rightarrow(0, \infty)$ unique up to scalar multiples such that $A f=c f$. Moreover, $c=\rho(A)$.

Consequence: there exists a unique Markovian \mathbb{P} s.t. $\mathbb{A} \sim \mathbb{P}$.
Let $\nu_{x}^{\mathbb{P}}$ denote law of Markov chain with initial state x and transition kernel \mathbb{P}. Then

$$
\bar{\mu}_{x, y_{n}}^{\mathbb{A}, n} \underset{n \rightarrow \infty}{\Longrightarrow} \nu_{x}^{\mathbb{P}} \quad \forall y_{n} \in S
$$

For uncountable matrices:

- Limit need not exist.
- Limit may depend on choice of y_{n}.

Conseq: positive eigenfunctions may fail to exist or there can be many. We will see:

- In general eigenvalue $c \geq \rho(A)$.
- There is at most one recurrent \mathbb{P} s.t. $\mathbb{A} \sim \mathbb{P}$.
- If \exists recurrent $\mathbb{P} \sim \mathbb{A}$, then $c=\rho(A)$ and $A f=\rho(A) f$ has unique sol.

Note: finite probability kernels are always positive recurrent.

Lecture 2

R-recurrence

Def subprobability kernel $\sum_{y} P(x, y) \leq 1$.
Def subMarkovian weight function \mathbb{P} recurrent to z if

$$
\sum_{\substack{\omega \in \Omega_{x, z} \\ \omega_{k} \neq z \forall k<\ell_{\omega}}} \mathbb{P}(\omega)=1 \quad(x \neq z) .
$$

Theorem (Equivalent recurrent weight function) Let \mathbb{A} be an irreducible weight function on a directed graph $G=(S, E)$. Then, for each $\rho(A) \leq r<\infty$ and $z \in S$, there exists a unique subMarkovian weight function $\mathbb{P}_{r, z}$ such that
(i) $\mathbb{A} \sim_{r} \mathbb{P}_{r, z}$
(ii) $\mathbb{P}_{r, z}$ is recurrent to z.

Remark:

- $\mathbb{A} \sim_{c} \mathbb{B} \Rightarrow \rho(A)=c \rho(B)$.
- \mathbb{P} subMarkovian $\Rightarrow \rho(P) \leq 1$.
- \mathbb{P} recurrent Markovian $\Rightarrow \rho(P)=1$.

Hence:

- $\mathbb{A} \sim_{r} \mathbb{P}$ and \mathbb{P} subMarkovian $\Rightarrow r \geq \rho(A)$.
- $\mathbb{A} \sim_{r} \mathbb{P}$ and \mathbb{P} recurrent Markovian $\Rightarrow r=\rho(A)$.
- $\mathbb{P}_{r, z}$ Markovian $\Rightarrow r=\rho(A)$ and $\mathbb{P}_{r, z}=\mathbb{P}$ does not depend on z.
- At most one equivalent recurrent Markovian weight function.

Def

- A R-transient if $\mathbb{P}_{z}:=\mathbb{P}_{\rho(A), z}$ not Markovian.
- A R-recurrent if $\mathbb{P}=\mathbb{P}_{z}$ Markovian.
- $A \underline{\text { R-positive }}$ if \mathbb{P} positive recurrent.
- A strongly R-positive if \mathbb{P} strongly positive recurrent.

Here

$$
\sigma_{z}:=\inf \left\{k \geq 1: X_{k}=z\right\} \quad \text { first return time }
$$

Def Markov chain $\left(X_{k}\right)_{k \geq 0}$ strongly positive recurrent $\Leftrightarrow \mathbb{E}^{z}\left[e^{\varepsilon \sigma_{z}}\right]<\infty$ for some $\varepsilon>0$ (class property).

Lemma (Alternative definitions) Let \mathbb{A} be irreducible and in (ii) also aperiodic. Fix $z \in S$.
(i) A is R-recurrent $\Leftrightarrow \sum_{k} \rho(A)^{-k} A^{k}(z, z)=\infty$.
(ii) If A is R-recurrent, then $\lim _{k} \rho(A)^{-k} A^{k}(z, z)$ exists and $=0$ resp. >0 when A is R -null recurrent resp. R-positive.

Proof $\rho(A)^{-k} A^{k}(z, z)=P_{z}^{k}(z, z)$ with

- $\sum_{k} P_{z}^{k}(z, z)=$ expected $\#$ returns $<\infty$ iff P_{z} subMarkovian.
- $\mathbb{P}^{k}(z, z) \rightarrow \pi(z)$ invariant law if \mathbb{P} pos. rec. and $\rightarrow 0$ if null rec.

Using the alternative defs, Vere-Jones (1967) proved:
Theorem (Unique eigenfunction) A R-recurrent $\Rightarrow \exists f$: $S \rightarrow(0, \infty)$ s.t. $A f=\rho(A) f$. If $g: S \rightarrow[0, \infty)$ solves $A g \leq$ $\rho(A) g$, then $g=\lambda f$ for some $\lambda \geq 0$.

Proof Existence of f by arguments above. $A g \leq \rho(A) g \Rightarrow g \equiv 0$ or $g>0$. Def $\mathbb{A} \sim_{\rho(A), g} \mathbb{P}$. Then $A g \leq \rho(A) g \Rightarrow \mathbb{P}$ subMarkovian. Also $\sum_{k} \rho(A)^{-k} A^{k}(z, z)=\infty \Rightarrow \sum_{k} P_{z}^{k}(z, z)=\infty$ so \mathbb{P} recurrent Markovian, hence \mathbb{P} unique and $g=\lambda f$.

Lemma (Upper bound on spectral radius) Let A irreducible. Then $\rho(A) \leq r \Leftrightarrow \exists f: S \rightarrow(0, \infty)$ s.t. $A f \leq r f$.

Proof $A f \leq r f \Rightarrow A^{n} f \leq r^{n} f \Rightarrow \rho(A) \leq r$.
Conversely, $\rho(A) \leq r \Rightarrow \mathbb{A} \sim_{r, f} \mathbb{P}_{r, z}$ with $A f \leq r f$.

Excursions

Let \mathbb{A} irreducible, fix $z \in S$.
Def $\widehat{\Omega}_{z}:=\left\{\omega \in \Omega: \ell_{\omega} \geq 1, \omega^{-}=\omega^{+}=z, \omega_{k} \neq z \forall 0<k<\ell_{\omega}\right\}$.
$\operatorname{Def} \nu_{\lambda, z}(\omega):=e^{\lambda \ell_{\omega}} \mathbb{A}(\omega)\left(\omega \in \widehat{\Omega}_{z}\right)$.
Normalize $\hat{\nu}_{\lambda, z}:=e^{-\psi_{z}(\lambda)_{\nu, z}}$ with

$$
\psi_{z}(\lambda):=\log \left(\sum_{\omega \in \widehat{\Omega}_{z}} e^{\lambda \ell_{\omega}} \mathbb{A}(\omega)\right)
$$

logarithmic moment generating function.
Different parametrization $r=: e^{-\lambda} \cdot \mathbb{P}_{(\lambda), z}=\mathbb{P}_{e^{-\lambda}, z}$
Assume $\mathbb{P}_{(\lambda), z}$ subMarkovian,
(i) $\mathbb{A} \sim_{e^{-\lambda}} \mathbb{P}_{(\lambda), z}$
(ii) $\mathbb{P}_{(\lambda), z}$ is recurrent to z.

Let X be the Markov chain with transition kernel $\mathbb{P}_{(\lambda), z}$ and possibly finite lifetime, started in z.

Proposition (Excursion decomposition) Assumptions \Rightarrow $\psi_{z}(\lambda) \leq 0$ and X can be written as a finite or infinite concatenation

$$
X=V_{1} \circ V_{2} \circ \cdots \circ V_{K} \quad \text { or } \quad X=V_{1} \circ V_{2} \circ \cdots,
$$

where V_{1}, V_{2}, \ldots are i.i.d. with law $\hat{\nu}_{\lambda, z}$ and K is geometrically distributed with

$$
\mathbb{P}[K=k]=e^{k \psi_{z}(\lambda)}\left(1-e^{\psi_{z}(\lambda)}\right) \quad(k \geq 0) .
$$

Proof $\mathbb{P}_{(\lambda), z}(\omega)=e^{\lambda \ell_{\omega}} f(z)^{-1} \mathbb{A}(\omega) f(z) \quad\left(\omega \in \widehat{\Omega}_{z}\right)$.
$\Rightarrow \psi_{z}(\lambda) \leq 0$. At each visit to z, X either killed with probab. $e^{\psi_{z}(\lambda)}$ or makes excursion with law $\hat{\nu}_{\lambda, z}$.
Consequence: at most one $\mathbb{P}_{(\lambda), z}$ satisfies (i) and (ii).

The Green's function

Recall:
Theorem (Equivalent recurrent weight function) Let \mathbb{A} be an irreducible weight function on a directed graph $G=(S, E)$. Then, for each $\rho(A) \leq e^{-\lambda}<\infty$ and $z \in S$, there exists a unique subMarkovian weight function $\mathbb{P}_{(\lambda), z}$ such that
(i) $\mathbb{A} \sim_{e^{-\lambda}} \mathbb{P}_{(\lambda), z}$
(ii) $\mathbb{P}_{(\lambda), z}$ is recurrent to z.

Uniqueness proved. Next step: existence when $\psi_{z}(\lambda)<0$.
Def Green's function

$$
G_{\lambda}(x, y):=\sum_{k=0}^{\infty} e^{\lambda k} A^{k}(x, y) .
$$

Proposition (Green's function) If $\psi_{z}(\lambda)<0$, then
(a) $0<G_{\lambda}(x, y)<\infty \forall x, y \in S$.
(b) $\left(1-e^{\lambda} A\right) G_{\lambda}(\cdot, y)(x)=1_{\{x=y\}}$.
(c) $G_{\lambda}(z, z)=\left(1-e^{\psi_{z}(\lambda)}\right)^{-1}$.
(d) Setting $f(x):=G_{\lambda}(x, z)$ and $\mathbb{A} \sim_{e^{-\lambda, f}} \mathbb{P}_{(\lambda), z}$ defines a subMarkovian $\mathbb{P}_{(\lambda), z}$ that is recurrent to z.
If $\psi_{z}(\lambda) \geq 0$, then $G_{\lambda}(x, y)=\infty \forall x, y \in S$.

Proof

$$
\begin{aligned}
& G_{\lambda}(z, z)=\sum_{n=0}^{\infty} e^{\lambda n} A^{n}(z, z)=\sum_{n=0}^{\infty} \sum_{\omega \in \Omega_{z, z}^{n}} e^{\lambda \ell_{\omega}} \mathbb{A}(\omega) \\
& =\sum_{m=0}^{\infty} \prod_{i=1}^{m}\left(\sum_{\omega^{(i)} \in \widehat{\Omega}_{z}} e^{\left.\lambda \ell_{\omega^{(i)}} \mathbb{A}\left(\omega^{(i)}\right)\right)=\sum_{m=0}^{\infty} e^{m \psi_{z}(\lambda)}=\left(1-e^{\psi_{z}(\lambda)}\right)^{-1}}\right.
\end{aligned}
$$

if $\psi_{z}(\lambda)<0$ and $=\infty$ otherwise.
To be continued next time.

Lecture 3

Continuation of the proof of the proposition.

By irreducibility, either $0<G_{\lambda}(x, y)<\infty \forall x, y \in S$, or $G_{\lambda}(x, y)=\infty$ $\forall x, y \in S$. This proves (a) and (c). Part (b) follows from

$$
e^{\lambda} A G_{\lambda}=\sum_{k=0}^{\infty} e^{\lambda(k+1)} A^{k+1}=G_{\lambda}-1 .
$$

To prove (d), observe that by (b)

$$
\begin{aligned}
& \sum_{y} P_{(\lambda), z}(x, y)=e^{\lambda} \sum_{y} G_{\lambda}(x, z)^{-1} A(x, y) G_{\lambda}(y, z) \\
& =G_{\lambda}(x, z)^{-1} e^{\lambda} A G_{\lambda}(x, z) \\
& =G_{\lambda}(x, z)^{-1}\left(G_{\lambda}(x, z)-1_{\{x=z\}}\right)=1-1_{\{x=z\}} G_{\lambda}(z, z)^{-1} .
\end{aligned}
$$

Starting from z, the Markov process with kernel $P_{(\lambda), z}$ is eventually killed at z with probability

$$
\sum_{k=0}^{\infty} P_{(\lambda), z}^{k}(z, z) G_{\lambda}(z, z)^{-1}=G_{\lambda}(z, z)^{-1} \sum_{k=0}^{\infty} e^{\lambda k} A^{k}(z, z)=1
$$

\Rightarrow recurrent to z.

The logarithmic moment generating function

Recall

$$
\psi_{z}(\lambda)=\log \left(\sum_{m=1}^{\infty} e^{\lambda m} C_{z}(m)\right) \quad \text { where } \quad C_{z}(m):=\sum_{\omega \in \widehat{\Omega}_{z}^{m}} \mathbb{A}(\omega)
$$

Def

$$
\begin{aligned}
\lambda_{z,+} & :=\sup \left\{\lambda \in \mathbb{R}: \psi_{z}(\lambda)<\infty\right\} \\
\lambda_{z, *} & :=\sup \left\{\lambda \in \mathbb{R}: \psi_{z}(\lambda)<0\right\}
\end{aligned}
$$

Proposition (Logarithmic moment generating function)

Assume \mathbb{A} irreducible, $0<\rho(A)<\infty$. Fix $z \in S$. Then:
(i) ψ_{z} is convex.
(ii) ψ_{z} is lower semi-continuous.
(iii) $\lambda_{*}=-\log \rho(A)$ and $-\infty<\lambda_{*} \leq \lambda_{z,+} \leq \infty$.
(iv) ψ_{z} is infinitely differentiable on $\left(-\infty, \lambda_{z,+}\right)$.
(v) ψ_{z} is strictly increasing on $\left(-\infty, \lambda_{z,+}\right)$.
(vi) $\lim _{\lambda \rightarrow \pm \infty} \psi_{z}(\lambda)= \pm \infty$.

Let $V_{\lambda, z}$ have law $\hat{\nu}_{\lambda, z}$. Then, for all $\lambda<\lambda_{z,+}$,
(vii) $\frac{\partial}{\partial \lambda} \psi_{z}(\lambda)=\mathbb{E}\left[\ell_{V_{\lambda, z}}\right]$.
$($ viii $) \frac{\partial^{2}}{\partial \lambda^{2}} \psi_{z}(\lambda)=\operatorname{Var}\left(\ell_{V_{\lambda, z}}\right)$.
If $\psi_{z}\left(\lambda_{z,+}\right)<\infty$, then moreover

$$
\text { (ix) } \begin{aligned}
& \lim _{\lambda \uparrow \lambda_{z,+}} \frac{\partial}{\partial \lambda} \psi_{z}(\lambda)=\lim _{\varepsilon \downarrow 0} \varepsilon^{-1}\left(\psi_{z}\left(\lambda_{z,+}\right)-\psi_{z}\left(\lambda_{z,+}-\varepsilon\right)\right) \\
& =\mathbb{E}\left[\ell_{V_{\lambda_{z,+}, z}}\right] .
\end{aligned}
$$

Proof

$$
\frac{\partial}{\partial \lambda} \psi_{z}(\lambda)=\frac{\partial}{\partial \lambda} \log \left(\sum_{m=1}^{\infty} e^{\lambda m} C_{z}(m)\right)=\frac{\sum_{m=1}^{\infty} m e^{\lambda m} C_{z}(m)}{\sum_{m=1}^{\infty} e^{\lambda m} C_{z}(m)}=\mathbb{E}\left[\ell_{V_{\lambda, z}}\right]
$$

Similarly

$$
\frac{\partial^{2}}{\partial \lambda^{2}} \psi_{z}(\lambda)=\operatorname{Var}\left(\ell_{V_{\lambda, z}}\right)
$$

so ψ_{z} is convex and strictly increasing. Since

$$
A^{k}(z, z)=e^{k \log \rho(A)+o(k)} \quad \text { as } k \rightarrow \infty
$$

we have $G_{\lambda}(z, z)<\infty$ for $\lambda>-\log \rho(A)$ and $G_{\lambda}(z, z)=\infty$ for $\lambda<$ $-\log \rho(A)$. By earlier results $G_{\lambda}(z, z)<\infty \Leftrightarrow \psi_{z}(\lambda)<0$, hence $\lambda_{*}=$ $-\log \rho(A)$.

R-recurrence: proof of basic theorem

Recall:

Theorem (Equivalent recurrent weight function) Let \mathbb{A} be an irreducible weight function on a directed graph $G=(S, E)$. Then, for each $\rho(A) \leq e^{-\lambda}<\infty$ and $z \in S$, there exists a unique subMarkovian weight function $\mathbb{P}_{(\lambda), z}$ such that
(i) $\mathbb{A} \sim_{e^{-\lambda}} \mathbb{P}_{(\lambda), z}$
(ii) $\mathbb{P}_{(\lambda), z}$ is recurrent to z.

Uniqueness proved. Existence proved for $\psi_{z}(\lambda)<0$.
Proof of existence in remaining case When $\psi_{z}(\lambda) \leq 0$, define

$$
X^{\lambda}:=V_{1} \circ V_{2} \circ \cdots \circ V_{K} \quad \text { or } \quad X^{\lambda}:=V_{1} \circ V_{2} \circ \cdots,
$$

where V_{1}, V_{2}, \ldots are i.i.d. with law $\hat{\nu}_{\lambda, z}$ and K is geometrically distributed with

$$
\mathbb{P}[K=k]=e^{k \psi_{z}(\lambda)}\left(1-e^{\psi_{z}(\lambda)}\right) \quad(k \geq 0)
$$

If $\psi_{z}(\lambda)<0$, then for $e \in E, \omega \in \Omega_{z, e^{-}}$

$$
\mathbb{P}_{(\lambda), z}(e)=\mathbb{P}\left[\vec{X}_{n+1}^{\lambda}=e \mid X_{[0: n]}^{\lambda}=\omega\right]=\frac{\mathbb{P}\left[X_{[0: n+1]}^{\lambda}=\omega \circ e\right]}{\mathbb{P}\left[X_{[0: n]}^{\lambda}=\omega\right]}
$$

If $\psi_{z}(\lambda)=0$, then $\lambda=-\log \rho(A)=\lambda_{*}$. Now

$$
\mathbb{P}_{(\lambda), z}(e) \underset{\lambda \uparrow \lambda_{*}}{\longrightarrow} \mathbb{P}_{\left(\lambda_{*}\right), z}(e)
$$

and $X^{\lambda_{*}}$ is a Markov chain with transition function $\mathbb{P}_{\left(\lambda_{*}\right), z}$. Since

$$
X^{\lambda_{*}}=V_{1} \circ V_{2} \circ \cdots
$$

$\mathbb{P}_{\left(\lambda_{*}\right), z}$ is recurrent. Letting $\lambda \uparrow \lambda_{*}$ in

$$
\mathbb{P}_{(\lambda), z}(\omega)=e^{\lambda \ell_{\omega}} \mathbb{A}(\omega) \quad\left(\omega \in \Omega_{z, z}\right)
$$

using earlier results, we obtain $\mathbb{A} \sim_{e^{-\lambda_{*}}} \mathbb{P}_{\left(\lambda_{*}\right), z}$.

The logarithmic moment generating function

Proposition (Characterization in terms of ψ_{z}) Let \mathbb{A} be a weight function on a directed graph $G=(S, E)$ and let $z \in S$ satisfy $0<\rho_{z}(A)<\infty$. Then
(a) z is R-recurrent if and only if $\psi_{z}\left(\lambda_{*}\right)=0$.
(b) z is R-positive if and only if $\lim _{\varepsilon \downarrow 0} \varepsilon^{-1}\left(0-\psi_{z}\left(\lambda_{*}-\varepsilon\right)\right)<\infty$.
(c) z is strongly R-positive if and only if $\lambda_{*}<\lambda_{z,+}$.

Proof (a): z is R-recurrent $\Leftrightarrow \mathbb{P}_{\rho_{z}(A), z}$ is Markovian $\Leftrightarrow \psi_{z}\left(\lambda_{*}\right)=0$.
Assume R-recurrence. Let X Markov chain with transition function $\mathbb{P}=$ $\mathbb{P}_{\rho_{z}(A), z}$ started in z and $\sigma_{z}:=\inf \left\{k \geq 1: X_{k}=z\right\}$ first return time. Then $\sigma_{z} \stackrel{\mathrm{~d}}{=} \ell_{V_{\lambda_{*}, z}}$ where $V_{\lambda_{*}, z}$ has law $\hat{\nu}_{\lambda_{*}, z}(\omega):=e^{\lambda_{*} \ell_{\omega}}{ }_{\mathbb{A}}(\omega)\left(\omega \in \widehat{\Omega}_{z}\right)$.
(b): $\frac{\partial}{\partial \lambda} \psi_{z}(\lambda)=\mathbb{E}\left[\ell_{V_{\lambda, z}}\right]$.
(c): $\mathbb{E}^{z}\left[e^{\varepsilon \sigma_{z}}\right]=\sum_{\omega \in \widehat{\Omega}_{z}} e^{\lambda_{*} \ell_{\omega}} \mathbb{A}(\omega) e^{\varepsilon \ell_{\omega}}=\psi_{z}\left(\lambda_{*}+\varepsilon\right)$.

Finite matrices

View $G=V \cup E$ as the disjoint union of its vertex and edge set. $F \subset V \cup E$ is a subgraph if

$$
e^{-}, e^{+} \in F \cap S \quad \forall e \in F \cap E .
$$

Set of excursions away from F

$$
\begin{gathered}
\widehat{\Omega}(F):=\{\omega \in \Omega(G): \\
: \ell_{\omega} \geq 1, \omega^{-}=\omega^{+}=z, \omega_{k} \neq z \forall 0<k<\ell_{\omega}, \\
\left.\vec{\omega}_{k} \neq z \forall 0<k \leq \ell_{\omega}\right\} .
\end{gathered}
$$

Generalize:

$$
\psi_{x, y}^{F}(\lambda):=\log \phi_{x, y}^{F}(\lambda) \quad \text { with } \quad \phi_{x, y}^{F}(\lambda):=\sum_{\omega \in \widehat{\Omega}_{x, y}(F)} e^{\lambda \ell_{\omega}} \mathbb{A}(\omega)
$$

Proposition (Continuity of the l.m.g.f.) Let G be a finite directed graph and $\mathbb{A}: E \rightarrow[0, \infty)$ a weight function. Then for each subgraph F and vertices $x, y \in F$, the function $\psi_{x, y}^{F}: \mathbb{R} \rightarrow$ $[0, \infty]$ is continuous.

Corollary (Finite matrices) Let $A: S^{2} \rightarrow[0, \infty)$ be an irreducible nonnegative matrix indexed by a finite set S. Then A is strongly R-positive.

Further implications:

- Perron-Frobenius
- Finite irreducible probab. kernel is strongly pos. rec.

Proof of the proposition By induction, using two lemmas.

Lemma (Removal of an edge) Assume F a subgraph, $e \in$ $F \cap E$, and $F^{\prime}:=F \backslash\{e\}$. Then

$$
\phi_{x, y}^{F^{\prime}}(\lambda)= \begin{cases}\phi_{x, y}^{F}(\lambda)+e^{\lambda} \mathbb{A}(e) & \text { if } e^{-}=x, e^{+}=y, \\ \phi_{x, y}^{F}(\lambda) & \text { otherwise }\end{cases}
$$

$(x, y \in F \cap V, \lambda \in \mathbb{R})$.

Proof $\widehat{\Omega}\left(F^{\prime}\right)=\widehat{\Omega}(F) \cup\{e\}$.
Lemma (Removal of an isolated vertex) Assume F, F^{\prime} subgraphs, $x \in F \cap V$, and $F^{\prime}:=F \backslash\{z\}$. Then

$$
\begin{aligned}
& \quad \phi_{x, y}^{F^{\prime}}(\lambda)=\phi_{x, y}^{F}(\lambda)+\phi_{x, z}^{F}(\lambda) \phi_{z, y}^{F}(\lambda)\left(1-\phi_{z, z}^{F}(\lambda)\right)^{-1} \\
& \left(x, y \in F^{\prime} \cap V, \lambda \in \mathbb{R}\right) .
\end{aligned}
$$

Proof Distinguishing excursions away from F^{\prime} according to how often they visit the vertex z, we have

$$
\begin{aligned}
\phi_{x, y}^{F^{\prime}}(\lambda) & =\sum_{\omega_{x, y}} e^{\lambda \ell_{\omega_{x, y}}} \mathbb{A}\left(\omega_{x, y}\right) \\
+\sum_{k=0}^{\infty} \sum_{\omega_{x, z}} \sum_{\omega_{z, y}} \sum_{\omega_{z, z}^{1}} \cdots \sum_{\omega_{z, z}^{k}} e^{\lambda\left(\ell_{\omega_{x, z}}+\ell_{\omega_{z, y}}+\ell_{\omega_{z, z}^{1}}+\cdots+\ell_{\omega_{z, z}^{k}}\right)} & \times \mathbb{A}\left(\omega_{x, z}\right) \mathbb{A}\left(\omega_{z, y}\right) \mathbb{A}\left(\omega_{z, z}^{1}\right) \cdots \mathbb{A}\left(\omega_{z, z}^{k}\right),
\end{aligned}
$$

where we sum over $\omega_{x, y} \in \widehat{\Omega}_{x, y}(F)$ etc. Rewriting gives

$$
\begin{aligned}
& \phi_{x, y}^{F^{\prime}}(\lambda)=\sum_{\omega_{x, y}} e^{\lambda \ell_{\omega_{x, y}}} \mathbb{A}\left(\omega_{x, y}\right) \\
& +\left(\sum_{\omega_{x, z}} e^{\lambda \ell_{\omega_{x}, z}} \mathbb{A}\left(\omega_{x, z}\right)\right)\left(\sum_{\omega_{z, y}} e^{\lambda \ell_{\omega_{z, y}}} \mathbb{A}\left(\omega_{z, y}\right)\right) \sum_{k=0}^{\infty}\left(\sum_{\omega_{z, z}} e^{\lambda \ell_{\omega_{z, z}}} \mathbb{A}\left(\omega_{z, z}\right)\right)^{k} .
\end{aligned}
$$

Finite modifications

$\operatorname{Def} \mathcal{E}_{\mathbb{A}, r}:=\{e \in E: \mathbb{A}(e)=r\}$
$\operatorname{Def} \mathbb{A}, \mathbb{B}$ finite modifications of each other \Leftrightarrow
(i) $\mathcal{E}_{\mathbb{A}, 0}=\mathcal{E}_{\mathbb{B}, 0}$ and $\mathcal{E}_{\mathbb{A}, \infty}=\mathcal{E}_{\mathbb{B}, \infty}$.
(ii) $\{e \in E: A(e) \neq \mathbb{B}(e)\}$ is finite.

If A not irred., $\operatorname{def} \rho(A):=\sup _{z} \rho_{z}(A)$.

Theorem (Strong R-positivity)

Assume \mathbb{A} irreducible, $\rho(A)<\infty, \mathbb{A}^{\prime} \leq \mathbb{A}, \mathbb{A}^{\prime} \neq \mathbb{A}$.
(a) A strongly R-positive $\Rightarrow \rho\left(A^{\prime}\right)<\rho(A)$.
(b) $\rho\left(A^{\prime}\right)<\rho(A), A^{\prime}$ fin. modif. of $\mathbb{A} \Rightarrow A$ strongly R-positive.

$$
\begin{aligned}
& \lambda_{x, y,+}^{F}:=\sup \left\{\lambda \in \mathbb{R}: \psi_{x, y}^{F}(\lambda)<\infty\right\} \\
& \lambda_{x, y, *}^{F}:=\sup \left\{\lambda \in \mathbb{R}: \psi_{x, y}^{F}(\lambda)<0\right\}
\end{aligned}
$$

Proposition (Exponential moments of excursions)

Assume \mathbb{P} subMarkovian irreducible. If

$$
\lambda_{x, y,+}^{F}>0 \forall x, y \in F \cap S
$$

holds for some finite subgraph F, then it holds for all finite subgraphs.

Proof (sketch) It suffices to prove the statement for two subgraphs that differ by a single edge or vertex. Now use the lemmas before.

Proof of the theorem Def $\psi_{z}, \psi_{z}^{\prime}$ in terms of $\mathbb{A}, \mathbb{A}^{\prime}$.
(a): $\psi_{z}^{\prime}<\psi_{z}$ on $\left\{\lambda: \psi_{z}^{\prime}(\lambda)<\infty\right\}$. A strongly R-positive $\Rightarrow \lambda_{*}<\lambda_{z,+}$. Now $\lambda_{*}^{\prime}>\lambda_{*} \Rightarrow \rho\left(A^{\prime}\right)<\rho(A)$.
(b): $\mathbb{A} \sim_{\rho(A), f} \mathbb{P}$ and $\mathbb{A}^{\prime} \sim_{\rho(A), f} \mathbb{P}^{\prime}$ for subMarkovian $\mathbb{P}, \mathbb{P}^{\prime}$ with $\rho(\mathbb{P})=1$.

Suffices to prove $\rho\left(\mathbb{P}^{\prime}\right)<1 \Rightarrow \mathbb{P}$ strongly R-positive.
$\rho\left(\mathbb{P}^{\prime}\right)=1 \Leftrightarrow \lambda_{*}^{\prime}=0 \Leftrightarrow \lambda_{z,+}^{\prime} \leq 0$.
Choose finite F such that $\mathbb{A}=\mathbb{A}^{\prime}$ outside F. Then

$$
\lambda_{z,+}=0 \quad \Leftrightarrow \quad \lambda_{x, y,+}^{F} \leq 0 \text { for some } x, y \in F \cap S \quad \Leftrightarrow \quad \lambda_{z,+}^{\prime} \leq 0
$$

A strongly R-positive $\Leftrightarrow \lambda_{z,+}^{\prime}>0$.

R-transience

Theorem (R-transience) Assume \mathbb{A} irreducible, $\mathbb{A} \leq \mathbb{A}^{\prime}, \mathbb{A} \neq$ \mathbb{A}^{\prime}. Let $E^{\prime} \subset E$ finite. Def $\mathbb{A}_{\varepsilon}:=\mathbb{A}+\varepsilon 1_{E^{\prime}}$.
(a) A R-transient $\Rightarrow \rho\left(A_{\varepsilon}\right)=\rho(A)$ for some $\varepsilon>0$.
(b) $\rho(A)=\rho\left(A^{\prime}\right) \Rightarrow A$ R-transient.

Proof (a): Set $S^{\prime}:=\left\{e^{-}: e \in E^{\prime}\right\}$. Then $\mathbb{A} \sim_{\rho(A), f} \mathbb{P}$ with \mathbb{P} subMarkovian and $\sum_{y} P(x, y)<1\left(x \in S^{\prime}\right)$. Then $\mathbb{P}+\varepsilon 1_{E^{\prime}}$ still subMarkovian $\Rightarrow \rho\left(\mathbb{P}^{\prime}\right)=$ $1=\rho(\mathbb{P})$.
(b): $\mathbb{A} \neq \mathbb{A}^{\prime} \Rightarrow \psi_{z}(\lambda)<\psi_{z}^{\prime}(\lambda)$ on $\left(-\infty, \lambda_{z,+}\right]$ and $\rho(A)=\rho\left(A^{\prime}\right) \Rightarrow \lambda_{*}=\lambda_{*}^{\prime}$. Now $\psi_{z}\left(\lambda_{*}\right)<\psi_{z}^{\prime}\left(\lambda_{*}^{\prime}\right) \leq 0 \Rightarrow A$ R-transient.

Bibliographical notes

The Perron-Frobenius theorem was proved for strictly positive matrices by Perron in [Per07] and then generalized to irreducible matrices by Frobenius in [Fro12]. Kreĭn and Rutman [KR48] proved a generalization of the PerronFrobenius theorem for Banach spaces of real functions. The basic facts about R-recurrence were proved by Vere-Jones in [Ver62, Ver67]. His proof is based on generating functions and does not mention Gibbs measures. For finite, strictly positive matrices, equivalence is defined in [Geo88, formula (11.5)] and it is proved there that two matrices are equivalent if and only if they define the same Gibbs measures. In [Num84], the theory of R-recurrence is extended to Markov chains with uncountable state space. After 1985, the study of R-recurrence was largely forgotten by probabilists, but was taken up by people working in ergodic theory. Salama [Sal88] proved the characterization of strong R-positivity in terms of finite modifications for matrices that can only take the values 0 and 1 . His proof contained errors, which were corrected in [Rue03]. As far as I am aware, the only published proof of this theorem for general nonnegative matrices is in a survey paper of Gurevich and Savchenko [GS98, Thm 3.15]. I am indebted to Sergey Savchenko for pointing out the references to the literature in ergodic theory. There is even a version of this sort of results for Gibbs measures that do not have nearest-neighbor interactions [CS09]. I was not aware of the ergodic theory literature when I wrote down my own proof of the characterization of strong R-positivity in terms of finite modifications in [Swa17].

References

[CS09] V. Cyr and O. Sarig. Spectral gap and transience for Ruelle operators on countable Markov shifts. Commun. Math. Phys. 292 (2009), 637-666.
[Fro12] G. Frobenius. Über Matrizen aus nicht negativen Elementen. Sitzungsber. Königl. Preuss. Akad. Wiss. (1912), 456-477.
[Geo88] H.-O. Georgii. Gibbs Measures and Phase Transitions. De Gruyter, Berlin, 1988.
[GS98] B.M. Gurevich and S.V. Savchenko. Thermodynamic formalism for countable symbolic Markov chains. Russian Mathematical Surveys 53(2) (1998), 245-344.
[KR48] M.G. Kreĭn and M.A. Rutman. Linear operators leaving invariant a cone in a Banach space [in Russian]. Uspehi Matem. Nauk 3 (1948), No. 1(23), 3-95.
[Num84] E. Nummelin. General Irreducible Markov Chains and Non-negative Operators. Cambridge University Press, 1984.
[Per07] O. Perron. Zur Theorie der Matrices. Mathematische Annalen 64(2) (1907), 248-263. Doi:10.1007/BF01449896
[Rue03] S. Ruette. On the Vere-Jones classification and existence of maximal measures for countable topological Markov chains. Pacific J. Math. 209(2) (2003), 365-380.
[Sal88] I.A. Salama. Topological entropy and recurrence of countable chains. Pacific J. Math. 134 (1988), 325-341.
[Swa17] J.M. Swart. Necessary and sufficient conditions for a nonnegative matrix to be strongly R-positive. Preprint, 2017, arXiv:1709.09459.
[Ver62] D. Vere-Jones. Geometric ergodicity in denumerable Markov chains. Quart. J. Math. Oxford Ser. 213 (1962), 7-28.
[Ver67] D. Vere-Jones. Ergodic properties of non-negative matrices - I. Pacific J. Math. 22 (1967), 361-386.

