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Lecture 1

Directed graphs

Directed graph G = (S,E). S vertex set E edge set.
e− starting vertex e+ endvertex.
For us always: S,E countable.

loop

multiple edge

Def simple graph = no multiple edges.

Ex,• := {e ∈ E : e− = x}, E•,y := {e ∈ E : e+ = y}, Ex,y := Ex,• ∩ E•,u

[m : n] := {k ∈ Z : m ≤ k ≤ n}, (m : n] := {k ∈ Z : m < k ≤ n}.

A walk is a pair of functions

[m : n] 3 k 7→ ωk ∈ S and (m : n] 3 k 7→ ~ωk ∈ E

with ~ω−k = ωk−1 and ~ω+
k = ωk ∀ k ∈ (m : n].

Starting and end- vertices ω− := ωm and ω+ := ωn.
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`ω := m− n ≥ 0 length of walk.

Set of walks Ω[m:n] = Ω[m:n](G), in particular Ωn := Ω[0:n].
As before: Ωn

x,•, Ωn
•,y, Ωn

x,y.
Ω :=

⋃∞
n=0 Ωn.

Def x G y ⇔ Ωx,y 6= ∅.
Def communicating class = equivalence class of !G.
Def period of x

sup{k ≥ 1 : Nx ⊂ kN}, with Nx := {n ≥ 0 : Ωn
x,x 6= ∅}.

The period is a class property i.e. constant on communicating classes.
Def x transitory if Nx = {0}.
All other communicating classes are irreducible classes.
Def G = (S,E) irreducible ⇔ S is an irreducible class.
Def G aperiodic ⇔ all vertices have period 1.

Note: if x has period k in G = (S,E), then x has period 1 in (S,Ωk).

Nonnegative matrices

Def weight function on G = (S,E) = function A : E → [0,∞].

A(ω) :=
n∏

k=m+1

A(~ωk) (ω ∈ Ω[m:n]).

Associated nonnegative matrix

A(x, y) :=
∑
e∈Ex,y

A(e) (x, y ∈ S).

If G simple, then A determines A.
For f : S → [0,∞], def

Af(x) :=
∑
y

A(x, y)f(y), fA(x) :=
∑
y

f(y)A(y, x),

(AB)(x, z) :=
∑
y

A(x, y)B(y, z).

An(x, y) =
∑

ω∈Ωnx,y

A(ω) (n ≥ 0),

with A0(x, y) := 1(x, y) = 1{x=y} identity matrix.
Def A irreducible ⇔ ∀x, y ∃n ≥ 1 s.t. An(x, y) > 0.
Equivalent: GA = (S,EA) irreducible with EA := {e ∈ E : A(e) > 0}.
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Lemma (Local growth rate) If x has period k, then

ρx(A) := lim
n∈kN

(
An(x, x)

)1/n
= sup

n∈kN

(
An(x, x)

)1/n ∈ (0,∞].

If x!A y, then ρx(A) = ρy(A) = lim
n

(
An(x, y)

)1/n
.

Proof Since An+m(x, x) ≥ An(x, x)Am(x, x) for n,m ≥ 1, the function
n 7→ logAn(x, x) is superadditive. The first statement now follows from
Fekete’s lemma.
If Am(x, y) > 0, then

lim inf
n

1

n
logAn(x, y) ≥ lim inf

n

1

n
log
(
An−m(x, x)Am(x, y)

)
= lim

n

1

n

[
logAn−m(x, x) + logAm(x, y)

]
= log ρx(A).

and

lim sup
n

1

n
logAn(y, x) = lim sup

n

1

n

[
logAn(y, x) + logAm(x, y)

]
≤ lim

n

1

n
log
(
An+m(y, y)

)
= ρy(A).

If A is irredicible, then ρ(A) = ρx(A) spectral radius of A.

One-dimensional Gibbs measures

If 0 < An−m(x, y) <∞, define Gibbs measure on Ω
[m:n]
x,y by

µA,[m:n]
x,y (ω) :=

A(ω)

An−m(x, y)
.

µA,nx,y = µ
A,[0:n]
x,y .

We call A the transfer operator.
Let c > 0, f : S → (0,∞).
Def A ∼c,f B ⇔

B(e) = c−1f(e−)−1A(e)f(e+) ∀e ∈ E.

Def A ∼c B ⇔ A ∼c,f B for some f .
Def A ∼ B ⇔ A ∼c B for some c.
Def A locally finite ⇔ An(x, y) <∞ ∀x, y, n.
Def Nx,y(A) := {n : An(x, y) > 0}.
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Proposition (Equivalence of weight functions) Let A,B
irreducible, locally finite, and Nx,y(A) = Nx,y(B) (x, y ∈ S).
Then the following are equivalent:

(i) µA,n = µB,n ∀x, y ∈ S, n ∈ Nx,y.

(ii) A ∼c,f B for some c > 0 and f : S → (0,∞).

In (ii), c is unique and f is unique up to scalar multiples.

Proof (ii)⇒(i): A ∼c,f B implies

B(ω) = c−`ωf(ω−)−1A(ω)f(ω+) ∀ω ∈ Ω.

Thus
B(ω) = CA(ω) ∀ω ∈ Ωn

x,ywith C := c−nf(x)−1f(y).

The constant C disappears in the normalization.
(i)⇒(ii) (sketch): Fix reference point z.

Def gm :=
Am(z, z)

Bm(z, z)
. Then

Am(z, z)An(z, z)

Am+n(z, z)
= µA,m+n

z,z [ωm = z] =
Bm(z, z)Bn(z, z)

Bm+n(z, z)
,

hence

gmgn =
Am(z, z)

Bm(z, z)

An(z, z)

Bn(z, z)
=
Am+n(z, z)

Bm+n(z, z)
= gm+n.

It follows gm = cm for some c > 0. Def

f(x) := c−`ω
A(ω)

B(ω)
f(z) ω ∈ Ωx,z, B(ω) > 0.

Show def. does not dep. on choice of ω and A ∼c,f B.

Def A probability kernel if
∑

y A(x, y) = 1 ∀x.
Def A Markovian ⇔ A probability kernel.

A Markovian ⇒ µ
A,[m:n]
x,y law of Markov chain with transition function A

started in x and conditioned to end in y.

Lemma (Positive eigenfunction) Af = cf if and only if
A ∼c,f P for a Markovian weight function P.

Proof ∑
y

P (x, y) =
∑
e∈Ex,•

c−1f(e−)−1A(e)f(e+)

=

∑
y A(x, y)f(y)

cf(x)
=
Af(x)

cf(x)
.
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Theorem (Perron (1907) Frobenius (1912)) Let A be a
finite irreducible nonnegative matrix. Then there exists a unique
c > 0 and a f : S → (0,∞) unique up to scalar multiples such
that Af = cf . Moreover, c = ρ(A).

Consequence: there exists a unique Markovian P s.t. A ∼ P.
Let νPx denote law of Markov chain with initial state x and transition kernel
P. Then

µA,nx,yn =⇒
n→∞

νPx ∀yn ∈ S.

For uncountable matrices:

• Limit need not exist.

• Limit may depend on choice of yn.

Conseq: positive eigenfunctions may fail to exist or there can be many.
We will see:

• In general eigenvalue c ≥ ρ(A).

• There is at most one recurrent P s.t. A ∼ P.

• If ∃ recurrent P ∼ A, then c = ρ(A) and Af = ρ(A)f has unique sol.

Note: finite probability kernels are always positive recurrent.
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Lecture 2

R-recurrence

Def subprobability kernel
∑

y P (x, y) ≤ 1.
Def subMarkovian weight function P recurrent to z if∑

ω ∈ Ωx,z

ωk 6= z ∀k < `ω

P(ω) = 1 (x 6= z).

Theorem (Equivalent recurrent weight function) Let A be
an irreducible weight function on a directed graph G = (S,E).
Then, for each ρ(A) ≤ r < ∞ and z ∈ S, there exists a unique
subMarkovian weight function Pr,z such that

(i) A ∼r Pr,z (ii) Pr,z is recurrent to z.

Remark:

• A ∼c B ⇒ ρ(A) = cρ(B).

• P subMarkovian ⇒ ρ(P ) ≤ 1.

• P recurrent Markovian ⇒ ρ(P ) = 1.

Hence:

• A ∼r P and P subMarkovian ⇒ r ≥ ρ(A).

• A ∼r P and P recurrent Markovian ⇒ r = ρ(A).

• Pr,z Markovian ⇒ r = ρ(A) and Pr,z = P does not depend on z.

• At most one equivalent recurrent Markovian weight function.

Def

• A R-transient if Pz := Pρ(A),z not Markovian.

• A R-recurrent if P = Pz Markovian.

• A R-positive if P positive recurrent.

• A strongly R-positive if P strongly positive recurrent.
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Here
σz := inf{k ≥ 1 : Xk = z} first return time

Def Markov chain (Xk)k≥0 strongly positive recurrent ⇔ Ez
[
eεσz ] <∞ for

some ε > 0 (class property).

Lemma (Alternative definitions) Let A be irreducible and
in (ii) also aperiodic. Fix z ∈ S.

(i) A is R-recurrent ⇔
∑
k

ρ(A)−kAk(z, z) =∞.

(ii) If A is R-recurrent, then limk ρ(A)−kAk(z, z) exists and = 0
resp. > 0 when A is R-null recurrent resp. R-positive.

Proof ρ(A)−kAk(z, z) = P kz (z, z) with

•
∑
k

P kz (z, z) = expected # returns <∞ iff Pz subMarkovian.

• Pk(z, z)→ π(z) invariant law if P pos. rec. and → 0 if null rec.

Using the alternative defs, Vere-Jones (1967) proved:

Theorem (Unique eigenfunction) A R-recurrent ⇒ ∃ f :
S → (0,∞) s.t. Af = ρ(A)f . If g : S → [0,∞) solves Ag ≤
ρ(A)g, then g = λf for some λ ≥ 0.

Proof Existence of f by arguments above. Ag ≤ ρ(A)g ⇒ g ≡ 0 or
g > 0. Def A ∼ρ(A),g P. Then Ag ≤ ρ(A)g ⇒ P subMarkovian. Also∑
k

ρ(A)−kAk(z, z) = ∞ ⇒
∑
k

P kz (z, z) = ∞ so P recurrent Markovian,

hence P unique and g = λf .

Lemma (Upper bound on spectral radius) Let A irre-
ducible. Then ρ(A) ≤ r ⇔ ∃f : S → (0,∞) s.t. Af ≤ rf .

Proof Af ≤ rf ⇒ Anf ≤ rnf ⇒ ρ(A) ≤ r.
Conversely, ρ(A) ≤ r ⇒ A ∼r,f Pr,z with Af ≤ rf .
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Excursions

Let A irreducible, fix z ∈ S.
Def Ω̂z := {ω ∈ Ω : `ω ≥ 1, ω− = ω+ = z, ωk 6= z ∀0 < k < `ω}.
Def νλ,z(ω) := eλ`ωA(ω) (ω ∈ Ω̂z).

Normalize ν̂λ,z := e−ψz(λ)νλ,z with

ψz(λ) := log
( ∑
ω∈Ω̂z

eλ`ω A(ω)
)

logarithmic moment generating function.

Different parametrization r =: e−λ. P(λ),z = Pe−λ,z
Assume P(λ),z subMarkovian,

(i) A ∼e−λ P(λ),z (ii) P(λ),z is recurrent to z.

Let X be the Markov chain with transition kernel P(λ),z and possibly finite
lifetime, started in z.

Proposition (Excursion decomposition) Assumptions ⇒
ψz(λ) ≤ 0 and X can be written as a finite or infinite concate-
nation

X = V1 ◦ V2 ◦ · · · ◦ VK or X = V1 ◦ V2 ◦ · · · ,

where V1, V2, . . . are i.i.d. with law ν̂λ,z and K is geometrically
distributed with

P[K = k] = ekψz(λ)(1− eψz(λ)) (k ≥ 0).

Proof P(λ),z(ω) = eλ`ωf(z)−1A(ω)f(z) (ω ∈ Ω̂z).

⇒ ψz(λ) ≤ 0. At each visit to z, X either killed with probab. eψz(λ) or
makes excursion with law ν̂λ,z.

Consequence: at most one P(λ),z satisfies (i) and (ii).

The Green’s function

Recall:

Theorem (Equivalent recurrent weight function) Let A be
an irreducible weight function on a directed graph G = (S,E).
Then, for each ρ(A) ≤ e−λ <∞ and z ∈ S, there exists a unique
subMarkovian weight function P(λ),z such that

(i) A ∼e−λ P(λ),z (ii) P(λ),z is recurrent to z.
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Uniqueness proved. Next step: existence when ψz(λ) < 0.
Def Green’s function

Gλ(x, y) :=

∞∑
k=0

eλkAk(x, y).

Proposition (Green’s function) If ψz(λ) < 0, then

(a) 0 < Gλ(x, y) <∞ ∀x, y ∈ S.

(b) (1− eλA)Gλ( · , y)(x) = 1{x=y}.

(c) Gλ(z, z) = (1− eψz(λ))−1.

(d) Setting f(x) := Gλ(x, z) and A ∼e−λ,f P(λ),z defines a sub-
Markovian P(λ),z that is recurrent to z.

If ψz(λ) ≥ 0, then Gλ(x, y) =∞ ∀x, y ∈ S.

Proof

Gλ(z, z) =
∞∑
n=0

eλnAn(z, z) =
∞∑
n=0

∑
ω∈Ωnz,z

eλ`ωA(ω)

=
∞∑
m=0

m∏
i=1

( ∑
ω(i)∈Ω̂z

eλ`ω(i)A(ω(i))
)

=
∞∑
m=0

emψz(λ) = (1− eψz(λ))−1

if ψz(λ) < 0 and =∞ otherwise.

To be continued next time.
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Lecture 3

Continuation of the proof of the proposition.

By irreducibility, either 0 < Gλ(x, y) < ∞ ∀x, y ∈ S, or Gλ(x, y) = ∞
∀x, y ∈ S. This proves (a) and (c). Part (b) follows from

eλAGλ =
∞∑
k=0

eλ(k+1)Ak+1 = Gλ − 1.

To prove (d), observe that by (b)∑
y

P(λ),z(x, y) = eλ
∑
y

Gλ(x, z)−1A(x, y)Gλ(y, z)

= Gλ(x, z)−1eλAGλ(x, z)

= Gλ(x, z)−1
(
Gλ(x, z)− 1{x=z}

)
= 1− 1{x=z}Gλ(z, z)−1.

Starting from z, the Markov process with kernel P(λ),z is eventually killed
at z with probability

∞∑
k=0

P k(λ),z(z, z)Gλ(z, z)−1 = Gλ(z, z)−1
∞∑
k=0

eλkAk(z, z) = 1.

⇒ recurrent to z.

The logarithmic moment generating function

ψz(λ)

λλz,+λ∗

∞ ψz(λ)

λλz,+λ∗

∞

ψz(λ)

λλ∗

∞ ψz(λ)

λ

λ∗

∞
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Recall

ψz(λ) = log
( ∞∑
m=1

eλmCz(m)
)

where Cz(m) :=
∑
ω∈Ω̂mz

A(ω).

Def
λz,+ := sup{λ ∈ R : ψz(λ) <∞},
λz,∗ := sup{λ ∈ R : ψz(λ) < 0}.

Proposition (Logarithmic moment generating function)
Assume A irreducible, 0 < ρ(A) <∞. Fix z ∈ S. Then:

(i) ψz is convex.

(ii) ψz is lower semi-continuous.

(iii) λ∗ = − log ρ(A) and −∞ < λ∗ ≤ λz,+ ≤ ∞.

(iv) ψz is infinitely differentiable on (−∞, λz,+).

(v) ψz is strictly increasing on (−∞, λz,+).

(vi) limλ→±∞ ψz(λ) = ±∞.

Let Vλ,z have law ν̂λ,z. Then, for all λ < λz,+,

(vii) ∂
∂λψz(λ) = E[`Vλ,z ].

(viii) ∂2

∂λ2
ψz(λ) = Var(`Vλ,z).

If ψz(λz,+) <∞, then moreover

(ix) lim
λ↑λz,+

∂
∂λψz(λ) = lim

ε↓0
ε−1
(
ψz(λz,+)− ψz(λz,+ − ε)

)
= E[`Vλz,+,z ].

Proof

∂
∂λψz(λ) = ∂

∂λ log
( ∞∑
m=1

eλmCz(m)
)

=

∑∞
m=1me

λmCz(m)∑∞
m=1 e

λmCz(m)
= E[`Vλ,z ].

Similarly
∂2

∂λ2
ψz(λ) = Var(`Vλ,z)

so ψz is convex and strictly increasing. Since

Ak(z, z) = ek log ρ(A) + o(k) as k →∞,

we have Gλ(z, z) < ∞ for λ > − log ρ(A) and Gλ(z, z) = ∞ for λ <
− log ρ(A). By earlier results Gλ(z, z) < ∞ ⇔ ψz(λ) < 0, hence λ∗ =
− log ρ(A).
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R-recurrence: proof of basic theorem

Recall:

Theorem (Equivalent recurrent weight function) Let A be
an irreducible weight function on a directed graph G = (S,E).
Then, for each ρ(A) ≤ e−λ <∞ and z ∈ S, there exists a unique
subMarkovian weight function P(λ),z such that

(i) A ∼e−λ P(λ),z (ii) P(λ),z is recurrent to z.

Uniqueness proved. Existence proved for ψz(λ) < 0.

Proof of existence in remaining case When ψz(λ) ≤ 0, define

Xλ := V1 ◦ V2 ◦ · · · ◦ VK or Xλ := V1 ◦ V2 ◦ · · · ,

where V1, V2, . . . are i.i.d. with law ν̂λ,z and K is geometrically distributed
with

P[K = k] = ekψz(λ)(1− eψz(λ)) (k ≥ 0).

If ψz(λ) < 0, then for e ∈ E, ω ∈ Ωz,e−

P(λ),z(e) = P[ ~Xλ
n+1 = e |Xλ

[0:n] = ω] =
P[Xλ

[0:n+1] = ω ◦ e]
P[Xλ

[0:n] = ω]
.

If ψz(λ) = 0, then λ = − log ρ(A) = λ∗. Now

P(λ),z(e) −→
λ↑λ∗

P(λ∗),z(e)

and Xλ∗ is a Markov chain with transition function P(λ∗),z. Since

Xλ∗ = V1 ◦ V2 ◦ · · ·

P(λ∗),z is recurrent. Letting λ ↑ λ∗ in

P(λ),z(ω) = eλ`ωA(ω) (ω ∈ Ωz,z),

using earlier results, we obtain A ∼e−λ∗ P(λ∗),z.
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The logarithmic moment generating function

ψz(λ)

λλz,+λ∗

∞

strong R-positivity

(case 1)

ψz(λ)

λλz,+λ∗

∞
strong R-positivity

(case 2)

ψz(λ)

λλ∗

∞
weak R-positivity

ψz(λ)

λλ∗

∞
R-null recurrence

ψz(λ)

λ

λ∗

∞
R-transience

Proposition (Characterization in terms of ψz) Let A be a
weight function on a directed graph G = (S,E) and let z ∈ S
satisfy 0 < ρz(A) <∞. Then

(a) z is R-recurrent if and only if ψz(λ∗) = 0.

(b) z is R-positive if and only if lim
ε↓0

ε−1
(
0− ψz(λ∗ − ε)

)
<∞.

(c) z is strongly R-positive if and only if λ∗ < λz,+.

Proof (a): z is R-recurrent ⇔ Pρz(A),z is Markovian ⇔ ψz(λ∗) = 0.
Assume R-recurrence. Let X Markov chain with transition function P =
Pρz(A),z started in z and σz := inf{k ≥ 1 : Xk = z} first return time. Then

σz
d
= `Vλ∗,z where Vλ∗,z has law ν̂λ∗,z(ω) := eλ∗`ωA(ω) (ω ∈ Ω̂z).

(b): ∂
∂λψz(λ) = E[`Vλ,z ].
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(c): Ez
[
eεσz ] =

∑
ω∈Ω̂z

eλ∗`ωA(ω)eε`ω = ψz(λ∗ + ε).

Finite matrices

View G = V ∪ E as the disjoint union of its vertex and edge set.
F ⊂ V ∪ E is a subgraph if

e−, e+ ∈ F ∩ S ∀e ∈ F ∩ E.

Set of excursions away from F

Ω̂(F ) :=
{
ω ∈ Ω(G) : `ω ≥ 1, ω− = ω+ = z, ωk 6= z ∀0 < k < `ω,

~ωk 6= z ∀0 < k ≤ `ω
}
.

Generalize:

ψFx,y(λ) := log φFx,y(λ) with φFx,y(λ) :=
∑

ω∈Ω̂x,y(F )

eλ`ωA(ω)

Proposition (Continuity of the l.m.g.f.) Let G be a finite
directed graph and A : E → [0,∞) a weight function. Then for
each subgraph F and vertices x, y ∈ F , the function ψFx,y : R→
[0,∞] is continuous.

Corollary (Finite matrices) Let A : S2 → [0,∞) be an irre-
ducible nonnegative matrix indexed by a finite set S. Then A is
strongly R-positive.

Further implications:

• Perron-Frobenius

• Finite irreducible probab. kernel is strongly pos. rec.

Proof of the proposition By induction, using two lemmas.

Lemma (Removal of an edge) Assume F a subgraph, e ∈
F ∩ E, and F ′ := F\{e}. Then

φF
′

x,y(λ) =

{
φFx,y(λ) + eλA(e) if e− = x, e+ = y,

φFx,y(λ) otherwise

(x, y ∈ F ∩ V , λ ∈ R).
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Proof Ω̂(F ′) = Ω̂(F ) ∪ {e}.

Lemma (Removal of an isolated vertex) Assume F, F ′ sub-
graphs, x ∈ F ∩ V , and F ′ := F\{z}. Then

φF
′

x,y(λ) = φFx,y(λ) + φFx,z(λ)φFz,y(λ)
(
1− φFz,z(λ)

)−1

(x, y ∈ F ′ ∩ V , λ ∈ R).

Proof Distinguishing excursions away from F ′ according to how often they
visit the vertex z, we have

φF
′

x,y(λ) =
∑
ωx,y

eλ`ωx,yA(ωx,y)

+

∞∑
k=0

∑
ωx,z

∑
ωz,y

∑
ω1
z,z

· · ·
∑
ωkz,z

e
λ(`ωx,z + `ωz,y + `ω1

z,z
+ · · ·+ `ωkz,z)

×A(ωx,z)A(ωz,y)A(ω1
z,z) · · ·A(ωkz,z),

where we sum over ωx,y ∈ Ω̂x,y(F ) etc. Rewriting gives

φF
′

x,y(λ) =
∑
ωx,y

eλ`ωx,yA(ωx,y)

+
(∑
ωx,z

eλ`ωx,zA(ωx,z)
)(∑

ωz,y

eλ`ωz,yA(ωz,y)
) ∞∑
k=0

(∑
ωz,z

eλ`ωz,zA(ωz,z)
)k
.

Finite modifications

Def EA,r := {e ∈ E : A(e) = r}
Def A,B finite modifications of each other ⇔

(i) EA,0 = EB,0 and EA,∞ = EB,∞.

(ii) {e ∈ E : A(e) 6= B(e)} is finite.

If A not irred., def ρ(A) := supz ρz(A).

Theorem (Strong R-positivity)
Assume A irreducible, ρ(A) <∞, A′ ≤ A, A′ 6= A.

(a) A strongly R-positive ⇒ ρ(A′) < ρ(A).

(b) ρ(A′) < ρ(A), A′ fin. modif. of A ⇒ A strongly R-positive.
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λFx,y,+ := sup{λ ∈ R : ψFx,y(λ) <∞},

λFx,y,∗ := sup{λ ∈ R : ψFx,y(λ) < 0}.

Proposition (Exponential moments of excursions)
Assume P subMarkovian irreducible. If

λFx,y,+ > 0 ∀x, y ∈ F ∩ S

holds for some finite subgraph F , then it holds for all finite sub-
graphs.

Proof (sketch) It suffices to prove the statement for two subgraphs that
differ by a single edge or vertex. Now use the lemmas before.

Proof of the theorem Def ψz, ψ
′
z in terms of A,A′.

(a): ψ′z < ψz on {λ : ψ′z(λ) <∞}. A strongly R-positive ⇒ λ∗ < λz,+. Now
λ′∗ > λ∗ ⇒ ρ(A′) < ρ(A).
(b): A ∼ρ(A),f P and A′ ∼ρ(A),f P′ for subMarkovian P,P′ with ρ(P) = 1.
Suffices to prove ρ(P′) < 1 ⇒ P strongly R-positive.
ρ(P′) = 1 ⇔ λ′∗ = 0 ⇔ λ′z,+ ≤ 0.
Choose finite F such that A = A′ outside F . Then

λz,+ = 0 ⇔ λFx,y,+ ≤ 0 for some x, y ∈ F ∩ S ⇔ λ′z,+ ≤ 0.

A strongly R-positive ⇔ λ′z,+ > 0.

R-transience

Theorem (R-transience) Assume A irreducible, A ≤ A′, A 6=
A′. Let E′ ⊂ E finite. Def Aε := A + ε1E′ .

(a) A R-transient ⇒ ρ(Aε) = ρ(A) for some ε > 0.

(b) ρ(A) = ρ(A′) ⇒ A R-transient.

Proof (a): Set S′ := {e− : e ∈ E′}. Then A ∼ρ(A),f P with P subMarkovian
and

∑
y P (x, y) < 1 (x ∈ S′). Then P + ε1E′ still subMarkovian ⇒ ρ(P′) =

1 = ρ(P).
(b): A 6= A′ ⇒ ψz(λ) < ψ′z(λ) on (−∞, λz,+] and ρ(A) = ρ(A′) ⇒ λ∗ = λ′∗.
Now ψz(λ∗) < ψ′z(λ

′
∗) ≤ 0 ⇒ A R-transient.
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Bibliographical notes

The Perron-Frobenius theorem was proved for strictly positive matrices by
Perron in [Per07] and then generalized to irreducible matrices by Frobenius
in [Fro12]. Krĕın and Rutman [KR48] proved a generalization of the Perron-
Frobenius theorem for Banach spaces of real functions. The basic facts about
R-recurrence were proved by Vere-Jones in [Ver62, Ver67]. His proof is based
on generating functions and does not mention Gibbs measures. For finite,
strictly positive matrices, equivalence is defined in [Geo88, formula (11.5)]
and it is proved there that two matrices are equivalent if and only if they
define the same Gibbs measures. In [Num84], the theory of R-recurrence
is extended to Markov chains with uncountable state space. After 1985,
the study of R-recurrence was largely forgotten by probabilists, but was
taken up by people working in ergodic theory. Salama [Sal88] proved the
characterization of strong R-positivity in terms of finite modifications for
matrices that can only take the values 0 and 1. His proof contained errors,
which were corrected in [Rue03]. As far as I am aware, the only published
proof of this theorem for general nonnegative matrices is in a survey paper
of Gurevich and Savchenko [GS98, Thm 3.15]. I am indebted to Sergey
Savchenko for pointing out the references to the literature in ergodic theory.
There is even a version of this sort of results for Gibbs measures that do not
have nearest-neighbor interactions [CS09]. I was not aware of the ergodic
theory literature when I wrote down my own proof of the characterization
of strong R-positivity in terms of finite modifications in [Swa17].
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