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Lecture 1

Directed graphs

Directed graph G = (S, E). S vertex set E edge set.
e~ starting vertex et endvertex.
For us always: S, E countable.

A/\
multiple edge

Def simple graph = no multiple edges.
E,e:={ec€FE:e” =212}, Eey:={e€FE:et =y}, Eyy:=E;eNEsy,

m:n|:={k€Z - m<k<n}, (m:nj:={k€Z:m<k<n}.

A walk is a pair of functions
[m:n|>k—w,e€S and (m:n]>2k—d;y €F

with &, = wy_1 and & =w; V k € (m: n].
Starting and end- vertices w™ = w,, and wT = w,,.



l, :=m —n > 0 length of walk.

Set of walks Q™" = QIm(@), in particular Q" := QU7
As before: 0y ,, QF ,, Q7 .

Q= , Q"

Def x gy < Qpy # 0.

Def communicating class = equivalence class of «w .

Def period of =

sup{k > 1: N, CkN}, with Np:={n>0:Q3, #0}.

The period is a class property i.e. constant on communicating classes.
Def z transitory if N, = {0}.

All other communicating classes are irreducible classes.

Def G = (S, E) irreducible < S is an irreducible class.

Def G aperiodic < all vertices have period 1.

Note: if  has period k in G = (S, E), then z has period 1 in (S, Q).

Nonnegative matrices

Def weight function on G = (S, E) = function A : E — [0, c0].

Aw):= ] A@)  (wealmm).

Associated nonnegative matrix

Alz,y) == > Ale)  (z,y€9).

e€ly y
If G simple, then A determines A.
For f:S — [0,00], def
Af@) =Y A i), fA@) =3 f@)AW ),

) Yy
(AB)(2,2) == 3 Al y) By, 2).
Yy

Ay = 3 AW (n>0),

weg

with A%(z,y) := 1(z,y) = 1{4—,) identity matrix.
Def A irreducible < Vz,y 3n > 1 s.t. A™(x,y) > 0.
Equivalent: G* = (S, E*) irreducible with E* := {e € E : A(e) > 0}.



Lemma (Local growth rate) If x has period k, then

pz(A) := lim (A”(a:,a:))l/n = sup (A”(a?,w))l/n € (0, 00].
nekN nekN

If 2 s 4 y, then pu(A) = py(A) = lim (A" (2, y)) /"

Proof Since A" (z,z) > A"(z,z)A™(x,z) for n,m > 1, the function
n — log A"(x,x) is superadditive. The first statement now follows from
Fekete’s lemma.
If A™(x,y) > 0, then

.1 .1 _

hn%lnf - log A" (x,y) > hmnmf - log (A" "™(z,2) A" (z,y))

= lim 1 [log A" ™(z, ) 4 log A™(x,y)]| = log p(A).
non
and

1 1
lim sup — log A" (y, ) = limsup — [log A"(y,x) + log A™(x, y)]
n non

n

. nt+m

If A is irredicible, then p(A) = p,(A) spectral radius of A.

One-dimensional Gibbs measures

If 0 < A" "™(z,y) < 0o, define Gibbs measure on Qgr;"} by

TESW) = e

_An __ _A0n]
Hay = Hzy -

We call A the transfer operator.
Let ¢ >0, f: S — (0,00).
Def A~ ;B <

B(e) = ¢ tf(e”) tA(e) f(eT) Ve € E.

Def A ~.B < A~y B for some f.

Def A~ B < A ~,. B for some c.

Def A locally finite & A™(z,y) < oo Vz,y,n.
Def Ny y(A) :={n: A™(x,y) > 0}.



Proposition (Equivalence of weight functions) Let A,B
irreducible, locally finite, and N, y(A) = Npu(B) (z,y € 5).
Then the following are equivalent:
(i) gt =B Vo,y € S, n € Nyy.
(i) A ~¢ ¢ B for some ¢ >0 and f:S5 — (0,00).
In (ii), ¢ is unique and f is unique up to scalar multiples.
Proof (ii)=(i): A ~. s B implies
B(w) = ¢ f(w™) T AWw) f(wT) Yw € Q.
Thus
B(w) = CA(w) Vw e Q with C:= ()T ().

The constant C disappears in the normalization.
(i)=(ii) (sketch): Fix reference point z.
A" (z, 2)

Def g, := ————%. Th
ef g B(z,2) en
A" (2, 2)A" (2, 2z Aman B™(z,2)B™(z, 2z
et pingy, = - DT
Amtn(z, 2) Bmtn(z, z)
hence

A™(z,2) AM(z,2)  A™T(z,z)
Bm(zvz) Bn(z’ Z) N Bm+n(2,z) = 9m+n-

It follows g,, = ¢™ for some ¢ > 0. Def

ImGn =

A
f(z) = CJUJIB%E:; (2) we Dy, Blw)>0.
Show def. does not dep. on choice of w and A ~ ; B. [ |

Def A probability kernel if 3 A(z,y) =1 V.

Def A Markovian < A probability kernel.

A Markovian = ﬁﬁ’g[/mm] law of Markov chain with transition function A
started in « and conditioned to end in y.

Lemma (Positive eigenfunction) Af = cf if and only if
A ~ ¢ P for a Markovian weight function P.

Proof
> Play)= Y e ) A(e)f(eh)
Y eEl; o
2 Ay fy)  Af(a)
a cf(x) - cf(x)’



Theorem (Perron (1907) Frobenius (1912)) Let A be a
finite irreducible nonnegative matrix. Then there exists a unique

¢>0anda f:S5 — (0,00) unique up to scalar multiples such
that Af = cf. Moreover, ¢ = p(A).

Consequence: there exists a unique Markovian P s.t. A ~ P.
Let v£ denote law of Markov chain with initial state = and transition kernel
P. Then
s — P Yyn € S
TYn oo T " '
For uncountable matrices:
e Limit need not exist.

e Limit may depend on choice of y,,.

Conseq: positive eigenfunctions may fail to exist or there can be many.
We will see:

e In general eigenvalue ¢ > p(A).
e There is at most one recurrent P s.t. A ~ P.
e If 3 recurrent P ~ A, then ¢ = p(A) and Af = p(A)f has unique sol.

Note: finite probability kernels are always positive recurrent.



Lecture 2

R-recurrence

Def subprobability kernel > P(z,y) < 1.
Def subMarkovian weight function P recurrent to z if

> Pw)=1 (z#2).
we Q.
wi # 2z Yk < L,

Theorem (Equivalent recurrent weight function) Let A be
an irreducible weight function on a directed graph G = (S, E).
Then, for each p(A) < r < oo and z € S, there exists a unique
subMarkovian weight function P,. . such that

(i) A~y Pr (ii) P, . is recurrent to z.

Remark:
o A~ B = p(A) =cp(B).
e P subMarkovian = p(P) < 1.
e P recurrent Markovian = p(P) = 1.
Hence:
e A ~, P and P subMarkovian = r > p(A).
o A ~, P and PP recurrent Markovian = r = p(A).
e P, . Markovian = r = p(A) and P, , = P does not depend on z.
e At most one equivalent recurrent Markovian weight function.
Def
e A R-transient if P, := P4 . not Markovian.
e A R-recurrent if P = P, Markovian.
e A R-positive if P positive recurrent.

e A strongly R-positive if P strongly positive recurrent.




Here
o, :=1inf{k >1: X} =2} first return time

€02]

Def Markov chain (Xj)x>0 strongly positive recurrent < [E? [e < oo for

some ¢ > 0 (class property).

Lemma (Alternative definitions) Let A be irreducible and
in (ii) also aperiodic. Fix z € S.

(i) A is R-recurrent < Zp(A)*kAk(z, z) = 00.
k
(ii) If A is R-recurrent, then limy, p(A)"*AF(z, 2) exists and = 0
resp. > 0 when A is R-null recurrent resp. R-positive.

Proof p(A)~FA*(z,2) = PF(z, 2) with

° Z PF¥(z,2) = expected # returns < oo iff P, subMarkovian.
k

o P¥(z,2) — m(2) invariant law if P pos. rec. and — 0 if null rec.

Using the alternative defs, Vere-Jones (1967) proved:

Theorem (Unique eigenfunction) A R-recurrent = 3 f :
S — (0,00) st. Af = p(A)f. If g : S — [0,00) solves Ag <
p(A)g, then g = Af for some A\ > 0.

Proof Existence of f by arguments above. Ag < p(A)g = g = 0 or
g > 0. Def A ~,4) 4, P. Then Ag < p(A)g = P subMarkovian. Also
Zp(A)_kAk(z,z) =00 = ZPf(z,z) = 00 so P recurrent Markovian,

k k
hence P unique and g = \f. [ |

Lemma (Upper bound on spectral radius) Let A irre-
ducible. Then p(A) <r < 3f : S — (0,00) s.t. Af <rf.

Proof Af <rf = A"f <r"f = p(4) <r.
Conversely, p(A) <r = A ~, ; P, with Af <rf. ]



Excursions
Let A irreducible, fix z € S.
Def Q, i={weQ:l,>1, w =w =2, wp #2V0<k</,}.
Def vy, (w) == e MwA(w) (e Q).
Normalize 7y , := e_@bz()‘)w\’z with
000 =log (Y e Aw))
weﬁz

logarithmic moment generating function.

Different parametrization r =: e Poy,.=P
Assume Py, . subMarkovian,

e~z

(1) A ~er Py 2 (ii) P(y),- is recurrent to z.

Let X be the Markov chain with transition kernel P(y) . and possibly finite
lifetime, started in z.

Proposition (Excursion decomposition) Assumptions =

¥,(A\) <0 and X can be written as a finite or infinite concate-
nation

X=VioVso--roVg or X=ViolVyo- -,

where V1, Vs, ... are i.i.d. with law 7y, , and K is geometrically
distributed with

PIK = k] = F=N (1= =Ny (k> 0).

Proof Py .(w) = e’\gwf(z)_lA(w)f(z) (we (A)Z)

= 1,(A) < 0. At each visit to z, X either killed with probab. e¥=(A) or
makes excursion with law 7y .. [ |

Consequence: at most one Py . satisfies (i) and (ii).

The Green’s function

Recall:

Theorem (Equivalent recurrent weight function) Let A be
an irreducible weight function on a directed graph G = (S, E).
Then, for each p(A) < e™ < oo and z € S, there exists a unique
subMarkovian weight function P(y) . such that

(1) A ~en Py 2 (ii) P(y),. is recurrent to z.

8



Uniqueness proved. Next step: existence when 1, () < 0.
Def Green’s function

o)

Ga(z,y) = e A (z,y).
k=0

Proposition (Green’s function) If 1,(\) < 0, then

(a) 0 < Gi(z,y) <ooVz,yeS.

(b) (1 = A)GA(+,9) (@) = Lizmy)-

() Galz,2) = (1 — e¥=M),

(d) Setting f(x) := Ga(w,2) and A ~.-x ¢ P(y . defines a sub-

Markovian Py . that is recurrent to 2.

If ¥, (A) > 0, then Gy(z,y) = oo Vz,y € S.

Proof

Grz2) =Y eMa(z,2) =Y Y eMoaw)

n=0 n=0weN?
m

= i H( Z @)‘Ew(“A(w(i))) — i ez (A) — (1 — =)L
m=01i=1 w(i)eﬁz m—0

if 1.(A\) < 0 and = oo otherwise.

To be continued next time.



Lecture 3
Continuation of the proof of the proposition.

By irreducibility, either 0 < Gy(z,y) < oo Vz,y € S, or Gy(z,y) = oo
Vz,y € S. This proves (a) and (c). Part (b) follows from

e/\AG)\ _ ZeA(k+1)Ak+1 =G, — 1.
k=0

To prove (d), observe that by (b)

ZP(A),z(xay) - 6)\ZG/\((IZ,Z)ilA((E,y)G)\(y,Z)
Y Y
= Gy(z,2) ) AG) (2, 2)
= G)\(;U,Z)_l(G)\(.%,Z) - 1{x:z}) =1- 1{x:z}G)\(Zaz)_1'

Starting from z, the Markov process with kernel P, . is eventually killed
at z with probability

ZP@)’Z(z,z)GA(z,z)_l = G(z,2)7 ! ZeAkAk(z,z) =1
k=0 k=0

= recurrent to z. [ |

The logarithmic moment generating function

AN/JZ()‘) ‘700 A¢Z(/\) o 00
/\* >‘z,+ i A )\* >\z,+ i A
M;Z)z()‘) o 00 sz()‘) o———00
| | T
SV /)\*
/ /
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Recall

o0

1/1Z()\):log<26)‘m02(m)) where Ci(m):= Y A(w).

m=1 welm

Def
Azt :=sup{A € R : ¢,()\) < o0},

Az i=sup{A € R: ¢,(X\) < 0}.

Proposition (Logarithmic moment generating function)
Assume A irreducible, 0 < p(A) < co. Fix z € S. Then:

(i) 1, is convex.
(ii) ¢, is lower semi-continuous.

)
)
) A= —logp(A) and —oco < A\ < A, 4 < o0.
)
)
i) 1

(iii
(iv
(v
(vi
Let V), have law ) ,. Then, for all A < X, 4,
(vii) gx=(A) = E[fv, .].
(viii) Z512(\) = Var(ly, ).
If 9. (A; +) < 0o, then moreover
. . p)
(ix) )\%&Iir m@bz( ) = hins (¢Z( z,+ +) - Q/)Z()‘Z,+ - 5))
= E[gvAz;lﬂz]'

1, is infinitely differentiable on (—oo, A, ).
(&

. is strictly increasing on (—oo, A, +).

my 400 wz( ) = Zo0.

> ©_meC,(m
%@bz(/\) = % log ( Z eAmCZ(m)) = szfll eAmCCZ’(fn)) = E[EVA,Z]-

Similarly
2502 (N) = Var(fy, )

S0 1, is convex and strictly increasing. Since
Ak (2, 2) = eklogp(A) +olk) 5 00,

we have Gx(z,2) < oo for A > —logp(A) and Gyr(z,2) = oo for A <
—logp(A). By earlier results Gy(z,2) < 0o < 1,(\) < 0, hence A\, =
—log p(A). n

11



R-recurrence: proof of basic theorem

Recall:

Theorem (Equivalent recurrent weight function) Let A be
an irreducible weight function on a directed graph G = (S, E).
Then, for each p(A) < e™ < oo and z € S, there exists a unique
subMarkovian weight function P(y) . such that

(1) A ~en Py 2 (ii) P(y),. is recurrent to z.
Uniqueness proved. Existence proved for ¢,(\) < 0.
Proof of existence in remaining case When v,(\) < 0, define

XY =VioVao---oVg or X':=VioVho---,

where V1, Vs, ... are i.i.d. with law 7, , and K is geometrically distributed
with

PIK = k] = eF=(N (1= =Ny (k> 0).
If 1.(\) <0, then fore € E, w € Q, -

P[X2 =woe
. [0:n+1]
Py .-(e) = P[X) = e X[%):n] =w]= IP’[X[%), | = w]

If ¢,(A) =0, then A = —log p(A) = A«. Now

Poy,-(e) ey Poyy,2(e)

and X** is a Markov chain with transition function P(y,),z- Since
XM =VioVyo---
P(x,),z is recurrent. Letting A T A« in
Po.(@) = eMohw) (e ),

using earlier results, we obtain A ~, . Py, .. [ |
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The logarithmic moment generating function

?1/12()\) — 0 ?1/}2()\) o 00

strong R-positivity strong R-positivity

(case 1) (case 2)

/l )\z,+ i A

V"Z“) e W) o

V

weak R-positivity R-null recurrence

R

R-transience

Proposition (Characterization in terms of 1),) Let A be a
weight function on a directed graph G = (S, F) and let z € S
satisfy 0 < p,(A) < co. Then

(a) zis R-recurrent if and only if 1. (\s) = 0.

(b) z is R-positive if and only if hms 10— 1a(A —€)) < 0.

(c) z is strongly R-positive if and only if A <Az 4.

Proof (a): z is R-recurrent < P,_(4) . is Markovian < ,(\s) = 0.
Assume R-recurrence. Let X Markov chain with transition function P =
P,.(a),. started in z and o := inf{k > 1: X}, = 2} first return time. Then

P by, . where V), . has law 7, .(w) = eA*gwA(w) (we QZ)
( ) a)\¢2( ) [ZVA ]

13



(c): E*[ef%%] = 3 eMbon(w)e® = . (\ + o).

weﬁz

Finite matrices

View G = V U F as the disjoint union of its vertex and edge set.
F C V UEFE is a subgraph if

e et e FNS Yee FNE.

Set of excursions away from F

Q(F)::{wGQ(G):&,Zl, wo=wh =2, wp #2V0< k<4,
Dp £ 2 Y0 < k< ly}.

Generalize:

WE, ) =logel (V) with ¢l ()= Y eMeAw)
W€y (F)

Proposition (Continuity of the l.m.g.f.) Let G be a finite
directed graph and A : E — [0,00) a weight function. Then for
each subgraph F' and vertices z,y € F, the function 1/;57 y R—
[0, 00] is continuous.

Corollary (Finite matrices) Let A : S? — [0,00) be an irre-
ducible nonnegative matrix indexed by a finite set S. Then A is
strongly R-positive.

Further implications:
e Perron-Frobenius
e Finite irreducible probab. kernel is strongly pos. rec.

Proof of the proposition By induction, using two lemmas.

Lemma (Removal of an edge) Assume F' a subgraph, e €
FNE,and F' := F\{e}. Then

o (3) = oL, (\) + e A(e) ife-=x, et =y,
oy qﬁi y(AN) otherwise

(x,ye FNV, X €R).

14



Proof Q(F') = Q(F) U {e}. |

Lemma (Removal of an isolated vertex) Assume F, F’ sub-
graphs, z € FNV, and F' := F\{z}. Then

' ~1
(z,y e FFNV, X €R).

Proof Distinguishing excursions away from F’ according to how often they
visit the vertex z, we have

F =3 eMorAfwgy)

wwy

sz—i_ng + 4y, +"'+£w
DHNN IS WA

k= szzwzywl

xA(wx,z)A(wz,y)A(wl Yo AWE)),

2,2

where we sum over w, , € €, (F') etc. Rewriting gives

ng/ Z 6)\£wx yA(W:E,y)

Wz, y

(X eMors A ) (3 Mo Ay Z > Mo Aw.,)"
k=

Wz, z Wz,y Wz, z

Finite modifications

Def &y, :={e€c E:Ae) =71}
Def A, B finite modifications of each other <

(i) a0 =Epo and Ep 0 = EBo-
(ii) {e € E: A(e) # B(e)} is finite.
If A not irred., def p(A) := sup, p.(A).

Theorem (Strong R-positivity)
Assume A irreducible, p(A) < oo, A’ < A, A" #£ A.

(a) A strongly R-positive = p(4") < p(4).
(b) p(A”) < p(A), A" fin. modif. of A = A strongly R-positive.

15



T,Y,+ *
AL . =sup{A € R: ¢k (A) <0}

AL, =sup{A e Rl (N) < oo},
T,Y,*

Proposition (Exponential moments of excursions)
Assume P subMarkovian irreducible. If

My >0Vs,ye FNS

holds for some finite subgraph F', then it holds for all finite sub-
graphs.

Proof (sketch) It suffices to prove the statement for two subgraphs that
differ by a single edge or vertex. Now use the lemmas before. |

Proof of the theorem Def 1., in terms of A, A’.

(a): Y. <1, on {\:9Y.L(N) < oco}. A strongly R-positive = A\ < A, . Now
X, > A= p(4) < p(A).

(b): A ~,a),r Pand A" ~,4) ¢ P’ for subMarkovian P, P’ with p(P) = 1.
Suffices to prove p(P') < 1 = P strongly R-positive.
p(P)=1e XN, =0 )\, <0.

Choose finite F' such that A = A’ outside F'. Then

Ay=0 & AL

cy+ <0forsomez,ye FNS & )\;7+§0.

A strongly R-positive < ) , > 0. |

R-transience

Theorem (R-transience) Assume A irreducible, A < A’, A #
A’. Let E' C E finite. Def A, := A +¢elp.

(a) A R-transient = p(A.;) = p(A) for some & > 0.
(b) p(A) = p(A’) = A R-transient.

Proof (a): Set S’ := {e” : e € E'}. Then A ~ 4 s P with P subMarkovian
and 3°, P(z,y) <1 (v € §'). Then P+ elp still subMarkovian = p(P') =
(b): A # A’ = 1. (A) < $(A) on (—00, Au 4] and p(A) = p(A') = A, = X,
Now () < ¥L(N,) <0 = A R-transient. [
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Bibliographical notes

The Perron-Frobenius theorem was proved for strictly positive matrices by
Perron in [Per07] and then generalized to irreducible matrices by Frobenius
in [Frol2|. Krein and Rutman [KR48] proved a generalization of the Perron-
Frobenius theorem for Banach spaces of real functions. The basic facts about
R-recurrence were proved by Vere-Jones in [Ver62, Ver67]. His proof is based
on generating functions and does not mention Gibbs measures. For finite,
strictly positive matrices, equivalence is defined in [Geo88, formula (11.5)]
and it is proved there that two matrices are equivalent if and only if they
define the same Gibbs measures. In [Num84], the theory of R-recurrence
is extended to Markov chains with uncountable state space. After 1985,
the study of R-recurrence was largely forgotten by probabilists, but was
taken up by people working in ergodic theory. Salama [Sal88] proved the
characterization of strong R-positivity in terms of finite modifications for
matrices that can only take the values 0 and 1. His proof contained errors,
which were corrected in [Rue03]. As far as I am aware, the only published
proof of this theorem for general nonnegative matrices is in a survey paper
of Gurevich and Savchenko [GS98, Thm 3.15]. I am indebted to Sergey
Savchenko for pointing out the references to the literature in ergodic theory.
There is even a version of this sort of results for Gibbs measures that do not
have nearest-neighbor interactions [CS09]. I was not aware of the ergodic
theory literature when I wrote down my own proof of the characterization
of strong R-positivity in terms of finite modifications in [Swal7].
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