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Cadlag functions

Let [s, u] be a compact real interval.
Let (X , d) be a metric space.

Def a function f : [s, u] → X is cadlag
(continue à droite, limite à gauche) if

(i) f (t) = lim
r↓t

f (r) ∀t ∈ [s, u),

(ii) f (t−) := lim
r↑t

f (r) exists ∀t ∈ (s, u],

Def a function f : [s, u] → X is caglad
(continue à gauche, limite à droite) if

(i) f (t+) := lim
r↓t

f (r) exists ∀t ∈ [s, u),

(ii) f (t) := lim
r↑t

f (r) ∀t ∈ (s, u].
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Cadlag functions

Def D[s,u](X ) is the space of all functions

[s, u] ∋ t 7→
(
f (t−), f (t+)

)
that satisfy the equivalent conditions:

(i) t 7→ f (t+) is cadlag and f (t−) = limr↑t f (r+) ∀t ∈ (s, u].

(ii) t 7→ f (t−) is caglad and f (t+) = limr↓t f (r−) ∀t ∈ [s, u).

Def D[s,u](X ) is the space of all functions f ∈ D[s,u](X ) such that
f (s−) = f (s+) and f (u−) = f (u+).

An element of D[s,u](X ) is uniquely determined by
either t 7→ f (t−) or t 7→ f (t+).

We call t 7→ f (t−) the caglad modification of t 7→ f (t+).
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Skorohod’s J1 topology

For brevity, write f (t) = f (t+).

[Skorohod 1956] There exists a metric dS on D[s,u](X ) such that
dS(fn, f ) → 0 iff there exist λn such that:

(i) λn : [s, u] → [s, u] is continuous and strictly increasing with
λn(s) = s and λn(u) = u

(ii) sup
t∈[s,u]

∣∣λn(t)− t
∣∣ −→
n→∞

0,

(iii) sup
t∈[s,u]

d
(
fn(λn(t)), f (t)

)
−→
n→∞

0.

If (X , d) is separable, then so is D[s,u](X ).
If (X , d) is complete, then dS can be chosen complete too.
If d , d ′ define the same topology on X , then
dS, d

′
S define the same topology on D[s,u](X ).

Skorohod also derived a compactness criterion.
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Cadlag functions

The split real line is the set Rs consisting of all pairs t± consisting
of a real number t ∈ R and a sign ± ∈ {−,+}.
For an element τ = t± of Rs we let τ := t denote its real part and
s(τ) := ± its sign.
We equip Rs with the lexographic order, in which σ ≤ τ if and
only if σ < τ or σ = τ and s(σ) ≤ s(τ).
We write σ < τ iff σ ≤ τ and σ ̸= τ and define intervals

((σ, ρ)) := {τ ∈ Rs : σ < τ < ρ}, [[σ, ρ)) := {τ ∈ Rs : σ ≤ τ < ρ},
((σ, ρ]] := {τ ∈ Rs : σ < τ ≤ ρ}, [[σ, ρ]] := {τ ∈ Rs : σ ≤ τ ≤ ρ}.

There is some redundency, e.g., ((s−, r+]] = [[s+, r+]].
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Cadlag functions

We equip the split real line Rs with the order topology.
A basis for the topology is formed by all open intervals ((σ, ρ)) with
σ, ρ ∈ Rs, σ < ρ.

(i) τn → t+ iff τn → t and τn ≥ t+ for n sufficiently large.

(ii) τn → t− iff τn → t and τn ≤ t− for n sufficiently large.

Lemma Rs is first countable, Hausdorff and separable,
but not second countable and not metrisable.

Lemma For C ⊂ Rd
s , the following are equivalent:

(i) C is compact,

(ii) C is sequentially compact,

(iii) C is closed and bounded.
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Cadlag functions

[Kolmogorov 1956] A function f : [[s−, u+]] → X is continuous
iff t 7→

(
f (t−), f (t+)

)
is an element of D[s,u](X ).

Similarly, continuous functions f : [[s+, u−]] → X
correspond to elements of D[s,u](X ).

Advantages of this approach:

▶ Symmetry with respect to time reversal.

▶ Functions in D[s,u](X ) can jump at
the endpoints s and u of the interval.

▶ Cadlag functions of several variables.
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The closed graph

The closed graph of a function f ∈ D[s,u](X ) is defined as

G(f ) :=
{(

τ , f (τ)
)
: τ ∈ [[s−, u+]]

}
=

{(
t, f (t±)

)
: t ∈ [s, u]

}
.

It is easy to see that G(f ) ⊂ [s, u]×X is compact.

Idea: define a metric on the space D[s,u](X )
by measuring the distance between closed graphs.
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The Hausdorff metric

Let (X , d) be a metric space.
Let K+(X ) be the set of nonempty compact subsets of X .
The Hausdorff metric dH is defined as

dH(K1,K2) := sup
x1∈K1

d(x1,K2) ∨ sup
x2∈K2

d(x2,K1),

where d((x ,K ) := infy∈K d(x , y).
A correspondence between two sets A1,A2 is a set R ⊂ A1 × A2

such that
∀x1 ∈ A1 ∃x2 ∈ A2 s.t. (x1, x2) ∈ R,

∀x2 ∈ A2 ∃x1 ∈ A1 s.t. (x1, x2) ∈ R.

Let Cor(A1,A2) denote the set of all correspondences between A1

and A2.

dH(K1,K2) = inf
R∈Cor(K1,K2)

sup
(x1,x2)∈R

d(x1, x2).

Jan M. Swart (Czech Academy of Sciences) On Skorohod’s topologies



The Hausdorff metric

Convergence criterion dH(Kn,K ) −→
n→∞

0 ⇔

(i) ∃ compact C such that Kn ⊂ C ∀n,
(ii) K = {x ∈ X : ∃xn ∈ Kn s.t. xn → x},
(iii) K = {x ∈ X : ∃xn ∈ Kn s.t. x is a cluster point of (xn)n∈N}.

Corollary If d , d ′ generate the same topology on X ,
then dH, d

′
H generate the same topology on K+(X ).

Note For (ii) and (iii) suffices to check

(ii)’ K ⊂ {x ∈ X : ∃xn ∈ Kn s.t. xn → x},
(iii)” K ⊃ {x ∈ X : ∃xn ∈ Kn s.t. x is a cluster point of (xn)n∈N}.
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The Hausdorff metric

Lemma
If (X , d) is separable, then so is (K+(X ), dH).
If (X , d) is complete, then so is (K+(X ), dH).

Lemma
A ⊂ K+(X ) is precompact ⇔
∃ compact C such that K ⊂ C ∀K ∈ A.

Lemma
dH(Kn,K ) −→

n→∞
0 and Kn connected ∀n ⇒ K connected.
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The ordered Hausdorff metric

Let X be a metrisable space and let ⪯ be a partial order on X .

Def ⪯ is compatible with the topology if

X ⟨2⟩ :=
{
(x , y) ∈ X 2 : x ⪯ y

}
is a closed subset of X 2, equipped with the product topology.
In other words: xn ⪯ yn, xn −→

n→∞
x , yn −→

n→∞
y ⇒ x ⪯ y .

Def Kpart(X ) is the set of pairs (K ,⪯) such that K ∈ K+(X )
and ⪯ is a partial order on K that is compatible
with the induced topology from X .

Ktot(X ) :=
{
(K ,⪯) ∈ Kpart(X ) : ⪯ is a total order

}
.

We often denote elements of Kpart(X ),Ktot(X ) simply as K .
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The ordered Hausdorff metric

Note d2
(
(x1, y1), (x2, y2)

)
:= d(x1, x2) ∨ d(y1, y2) generates the

product topology.

Def dpart(K1,K2) := d2
H(K

⟨2⟩
1 ,K

⟨2⟩
2 )

(
K1,K2 ∈ Kpart(X )

)
,

where d2
H is the Hausdorff metric associated with d2.

Def Cor+(K1,K2) is the set of correspondences R ∈ Cor(K1,K2)
that are monotone in the sense that:

̸ ∃ (x1, x2), (y1, y2) ∈ R such that x1 ≺ y1 and y2 ≺ x2,

where x ≺ y means x ⪯ y and x ̸= y .

Def dtot(K1,K2) := inf
R∈Cor+(K1,K2)

sup
(x1,x2)∈R

d(x1, x2)(
K1,K2 ∈ Ktot(X )

)
.
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The ordered Hausdorff metric

Lemma dH(K1,K2) ≤ dpart(K1,K2) ≤ dtot(K1,K2)(
K1,K2 ∈ Ktot(X )

)
, but the opposite inequalities do not hold:

∀ε > 0 ∃K1,K2 ∈ Ktot(X ) s.t. dpart(K1,K2) ≤ εdtot(K1,K2).

Theorem dpart and dtot generate the same topology on Ktot(X ).

Def mismatch modulus mε(K ) as

mε(K ) := sup
{
d(x1, y1) ∨ d(x2, y2) : x1, y1, x2, y2 ∈ K

d(x1, x2) ∨ d(y1, y2) ≤ ε, x1 ⪯ y1, y2 ⪯ x2
}
.

Theorem A ⊂ Ktot(X ) is precompact ⇔
(i) ∃ compact C ⊂ X s.t. K ⊂ C ∀K ∈ A,

(ii) lim
ε→0

sup
K∈A

mε(K ) = 0.
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The ordered Hausdorff metric

Recall that a topological space X is Polish if:

(i) X is separable,

(ii) there exists a complete metric generating the topology on X .

Note There are in general also many noncomplete metrics
generating the same topology, unless X is compact.

Theorem If X is a Polish space, then so is Ktot(X ),
equipped with the ordered Hausdorff topology.
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Skorohod’s J1 topology

Recall: the closed graph of a function f ∈ D[s,u](X ) is defined as

G(f ) :=
{(

τ , f (τ)
)
: τ ∈ [[s−, u+]]

}
=

{(
t, f (t±)

)
: t ∈ [s, u]

}
.

We equip G(f ) with a total order such that(
σ, f (σ)

)
⪯

(
τ , f (τ)

)
⇔ σ ≤ τ.

Then G(f ) ∈ Ktot

(
R×X

)
, and

dS
part(f , g) := dpart

(
G(f ),G(g)

)
,

dS
tot(f , g) := dtot

(
G(f ),G(g)

)
both generate Skorohod’s J1 topology on D[s,u](X ).
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Skorohod’s J1 topology

To see this, equip R×X with the metric

ρ
(
(t1, x1), (t2, x2)

)
:= d(x1, x2) + |t1 − t2|.

Let Λ+ denote the space of continuous increasing functions
λ : [s, u] → [s, u] with λ(s) = s and λ(u) = u.

Lemma For f , g ∈ D[s,u](X ), one has:

dS
tot(f , g) = inf

λ∈Λ+

sup
t∈[s,u]

{
d
(
f (λ(t)), g(t)

)
+
∣∣λ(t)− t

∣∣}.
Proof idea The closure of{(

(λ(t), f (λ(t))), (t, g(t))
)
: t ∈ [s, t]

}
is a monotone correspondence between G(f ) and G(g),
and every monotone correspondence can be approximated by
monotone correspondences of this form.
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Skorohod’s J1 topology

Remark 1 The previous lemma holds only for f , g ∈ D[s,u](X ), but

dS
tot is well-defined on D[s,u](X ).

Remark 2 The topology generated by dS
tot depends only on the

topology on X and not on the choice of the metric d on X .

Theorem If X is a Polish space, then so is D[s,u](X ), equipped
with the J1 topology.

Proposition The space C[s,u](X ) of continuous functions

f : [s, u] → X is a closed subset of D[s,u](X ).

Proof f ∈ C[s,u](X ) ⇔ G(f ) connected, and
convergence in the Hausdorff metric preserves connectedness.
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Compactness criterion

For each δ > 0, the Skorohod modulus of continuity is defined as

mS
δ (f ) := sup

τ1≤τ2≤τ3

τ3−τ1≤δ

d
(
f (τ2), {f (τ1), f (τ3)}

)
.

Theorem A ⊂ D[s,u](X ) is precompact ⇔
(i) ∃ compact C ⊂ X s.t. f (t±) ∈ C ∀f ∈ A, t ∈ [s, u],

(ii) lim
δ→0

sup
f ∈A

mS
δ (f ) = 0.

For precompactness in D[s,u](X ), one in addition needs

(iii) lim
δ→0

sup
f ∈A

sup
t≤s+δ

d
(
f (s), f (t)

)
= 0,

(iv) lim
δ→0

sup
f ∈A

sup
t≥u−δ

d
(
f (t), f (u)

)
= 0,

as proved by Skorohod (1956).
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Unbounded time intervals

Billingsley (1968), Ethier & Kurtz (1986), and Whitt (2002) have
extended the J1 topology to D[0,∞)(X ) by showing that there
exists a metric d ′

S such that d ′
S(fn, f ) −→

n→∞
0 ⇔

dS
(
fn
∣∣
[0,t]

, f
∣∣
[0,t]

)
−→
n→∞

0 ∀t > 0 s.t. f (t−) = f (t),

where f
∣∣
[0,t]

denotes the restriction of f to [0, t].

Note The map f 7→ f
∣∣
[0,t]

is not continuous.
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Squeezed space

Def squeezed space R(X ) := (R×X ) ∪
{
(−∞, ∗), (∞, ∗)

}
.

Lemma There exists a metric dsqz on R(X ) such that
d
(
(tn, xn), (t, x)

)
−→
n→∞

0 ⇔

(i) tn → t in the topology on R,
(ii) if t ∈ R, then also xn → x in the topology on X .

Proof Let dR generate the topology on R = [−∞,∞].
Let φ : R → [0,∞) satisfy φ(t) > 0 ⇔ t ∈ R.

Then dsqz
(
(s, x), (t, y)

)
:=(

φ(s) ∧ φ(t)
)(
d(x , y) ∧ 1

)
+
∣∣φ(s)− φ(t)

∣∣+ dR(s, t)
does the trick.

Idea: care less about spatial distances
when the time coordinates are large.
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Squeezed space

Lemma
If (X , d) is separable, then so is (R(X ), dsqz).
If (X , d) is complete, then so is (R(X ), dsqz).

Lemma
A ⊂ R(X ) is precompact ⇔
∀T < ∞ ∃ compact C ⊂ X
such that x ∈ C ∀(t, x) ∈ A, t ∈ [−T ,T ].
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Path space

For each I ⊂ R set Is :=
{
t± : t ∈ I}.

By definition, a path is a pair (I , f ), where I ⊂ R is closed and
f : Is → X is continuous. For brevity, write f = (I , f ) and I (f ) = I .

Def The closed graph of a path is

G(f ) :=
{
(t, x) : t ∈ I (f ), x ∈ {f (t−), f (t+)}

}
∪
{
(−∞, ∗), (∞, ∗)

}
.

Naturally G(f ) ∈ Ktot

(
R(X )

)
.

Equip the path space Π(X ) with the metric

dS
tot(f , g) := dtot

(
G(f ),G(g)

)
.

Proposition Restricted to D[0,∞)(X ), this generates the topology
of Billingsley, Ethier & Kurtz, and Whitt.
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Path space

Advantages of this approach:

▶ Comparison of functions with different domains.

▶ No need to interpolate.

▶ No need to extrapolate.

Example Let (Xn)n≥0 be a random walk in the domain of
attraction of an α-stable Lévy process L = (Lt)t≥0.
Define X ε ∈ Π(R) by

X ε
εαn := εXn with domain {εαn : n ∈ N}.

Then
P
[
X ε ∈ ·

]
=⇒
ε→0

P
[
L ∈ ·

]
,

where ⇒ denotes weak convergence of probability laws on Π(R).
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Path space

Theorem If X is a Polish space, then so is Π(X ), equipped with
the J1 topology.

For each T < ∞ and δ > 0, define

mS
T ,δ(f ) := sup

τ1≤τ2≤τ3

−T≤τ1, τ3≤T

τ3−τ1≤δ

d
(
f (τ2), {f (τ1), f (τ3)}

)
.

Theorem A ⊂ Π(X ) is precompact ⇔
(i) ∀T < ∞ ∃ compact C ⊂ X s.t. f (t±) ∈ C

∀f ∈ A, t ∈ I (f ) ∩ [−T ,T ],

(ii) lim
δ→0

sup
f ∈A

mS
T ,δ(f ) = 0 ∀T < ∞.
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Betweenness

Def a betweenness on X is a a function that assigns to each pair
x , z of elements of X a subset ⟨x , z⟩ of X , such that:

(i) ⟨x , z⟩ = ⟨z , x⟩,
(ii) x ∈ ⟨x , z⟩,
(iii) y ∈ ⟨x , z⟩ ⇒ ⟨x , y⟩ ∩ ⟨y , z⟩ = {y},
(iv) y ∈ ⟨x , z⟩ ⇒ ⟨x , y⟩ ∪ ⟨y , z⟩ = ⟨x , z⟩.
Def total order ≤ on the segment ⟨x , z⟩ by

y ≤ y ′ ⇔ ⟨x , y⟩ ⊂ ⟨x , y ′⟩.

Def a betweenness is compatible with the topology if
⟨x , z⟩ is compact and X 2 ∋ (x , z) 7→ ⟨x , z⟩ ∈ Ktot(X )
is continuous.
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Betweenness

Linear betweenness If X is a topological vector space, then
⟨x , z⟩ :=

{
(1− p)x + pz : p ∈ [0, 1]

}
is a betweenness that is

compatible with the topology.

Trivial betweenness ⟨x , z⟩ := {x , z} is always a betweenness that
is compatible with the topology.

Geodesic betweenness If (X , d) has unique geodesics, then
letting ⟨x , z⟩ denote the geodesic with endpoints x , z defines a
betweenness. If closed balls are compact, then this betweennness is
compatible with the topology.

Order betweenness If X ⊂ R is closed, then
⟨x , z⟩ :=

{
y : x ≤ y ≤ z or z ≤ y ≤ x

}
is a betweenness that is compatible with the topology.
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The M1 topology

Assume that X is equipped with a betweenness that is compatible
with the topology.

Def The filled graph of a path is

G(f ) :=
{
(t, x) : t ∈ I (f ), x ∈ ⟨f (t−), f (t+)⟩

}
∪
{
(−∞, ∗), (∞, ∗)

}
.

Naturally G(f ) ∈ Ktot

(
R(X )

)
.

Equip the path space Π(X ) with the metric

dS
tot(f , g) := dtot

(
G(f ),G(g)

)
.

For the trivial betweenness, this yields the J1 topology.
For the linear betweenness, this yields the M1 topology.
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Path space

Fix a betweenness on X that is compatible with the topology and
equip Π(X ) with the associated Skorohod topology. Then:

Theorem If X is a Polish space, then so is Π(X ).

For each T < ∞ and δ > 0, define

mS
T ,δ(f ) := sup

τ1≤τ2≤τ3

−T≤τ1, τ3≤T

τ3−τ1≤δ

d
(
f (τ2), ⟨f (τ1), f (τ3)⟩

)
.

Theorem A ⊂ Π(X ) is precompact ⇔
(i) ∀T < ∞ ∃ compact C ⊂ X s.t. f (t±) ∈ C

∀f ∈ A, t ∈ I (f ) ∩ [−T ,T ],

(ii) lim
δ→0

sup
f ∈A

mS
T ,δ(f ) = 0 ∀T < ∞.
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