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The Neuhauser-Pacala model

Denote a point in Zd by i = (i1, . . . , id).

Def neighborhood of a site Ni := {j ∈ Zd : 0 < ‖i − j‖∞ ≤ R}.

(Here R = 1, d = 2).
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The Neuhauser-Pacala model

Def local frequency fτ (i) := |Ni |−1|{j ∈ Ni : x(j) = τ}|.

1 0 1 1 0 0

1 1 0 1 1 1

1 1 0 0 1 1

0 0 1 1 1 0

1 0 1 1 1 0

Here f0(i) = 3/8, f1(i) = 5/8.
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The Neuhauser-Pacala model

Fix rates α01, α10 ≥ 0.

1 0 1 1 0 0

1 1 0 1 1 1

1 1 0 1 1

0 0 1 1 1 0

1 0 1 1 1 0

†

With rate f0 + α01f1 an organism of type 0 dies. . .
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The Neuhauser-Pacala model

1 0 1 1 0 0

1 1 0 1 1 1

1 1 1 0 1 1

0 0 1 1 1 0

1 0 1 1 1 0

. . . and is replaced by a random type from the neighborhood.
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The Neuhauser-Pacala model

Neuhauser & Pacala (1999): Markov process in the space

{0, 1}Zd
of spin configurations x = (x(i))i∈Zd , where spin x(i) flips:

0 7→ 1 with rate f1(f0 + α01f1),

1 7→ 0 with rate f0(f1 + α10f0),

with

fτ (i) :=
|{j ∈ Ni : x(j) = τ}|

|Ni |
Ni := {j : 0 < ‖i − j‖∞ ≤ R}.

the local frequency of type τ = 0, 1.

Interpretation: Interspecific competition rates α01, α10. Organism
of type 0 dies with rate f0 + α01f1 and is replaced by type sampled
at random from distance ≤ R.
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The Neuhauser-Pacala model

Parameter α01 measures the strength of competition felt by type 0
from type 1 (compared to strength 1 from its own type).
If α01 < 1, then type 0 dies less often due to competition from type
1 than from competition with its own type: balancing selection.
If α01 > 1, then type 0 dies more often due to competition from
type 1 than from competition with its own type, i.e., type 1 is an
agressive species.

By definition, type 0 survives if starting from a single organism of
type 0 and all other organisms of type 1, there is a positive
probability that the organisms of type 0 never die out.

By definition, one has coexistence if there exists an invariant law
concentrated on states where both types are present.
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Mean field model

In the mean field model, the lattice Zd is replaced by a complete
graph with N vertices. The neighborhood Ni of a vertex i is simply
all sites except i .
In the limit N →∞, the frequencies Fτ (t) of type τ = 0, 1 satisfy
a differential equation:

∂
∂t F0(t) = F1(t)

(
F0(t) + α01F1(t)

)
− F0(t)

(
F1(t) + α10F0(t)

)
,

∂
∂t F1(t) =− ∂

∂t F0(t).
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Mean field model
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1’s survive
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Dimension d ≥ 3
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Dimension d = 2
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Dimension d = 1, range R ≥ 2
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Dimension d = 1, range R = 1

0’s survive

1’s survive
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Special models

α01

α10

1

1 pure voter model

cancellative system
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Cancellative systems

Equip {0, 1} with the usual product and with addition modulo 2,

denoted as ⊕. Then {0, 1} is a finite field. We may view {0, 1}Zd

(equipped with ⊕) as a linear space over {0, 1}.

A cancellative system X = (Xt)t≥0 is a linear system w.r.t. to the
finite field {0, 1}, that evolves as

x 7→ x ⊕ Ax with rate r(A) ≥ 0,

where
Ax(i) :=

⊕
j∈Zd

A(i , j)x(j)

with A(i , j) = 1 for finitely many i , j and A(i , j) = 0 otherwise.
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Graphical representation

Draw an arrow i → j whenever
A(j , i) = 1.

A =


0 1 0 0
1 0 1 0
1 0 0 0
0 0 0 1

.
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Graphical representation
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The symmetric model

Claim The symmetric Neuhauser-Pacala model with
α := α01 = α10 ≤ 1 is cancellative.

Proof For each i :

I With rate α, choose uniform j ∈ Ni , draw two arrows i 7→ i
and j 7→ i .

I With rate 1− α, choose uniform, independent j , k ∈ Ni . If
j = k, do nothing; if j 6= k , draw two arrows j 7→ i and k 7→ i .

Check that this yields the desired flip rates.
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Graphical representation

Xt

X0

A

A′

Xt(i) = 1 iff there is a odd number of paths from X0 to (i , t).
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Graphical representation

Xt

X0

A

A′

Xt(i) = 1 iff there is a odd number of paths from X0 to (i , t).
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Graphical representation of dual model

Yt

Y0

A†

A′†

Time runs backwards and all arrows are reversed.
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Dual of the Neuhauser-Pacala model

Yt

Y0

A†

A′†

The dual Y is a parity preserving system of double branching and
annihilating random walks.
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Cancellative system duality

Rates of the dual model:

rY (A†) = rX (A),

where A†(i , j) = A(j , i) denotes the adjoint of A.

Duality:

P
[
|XtY0| is odd

]
= P

[
|X0Yt | is odd

]
(t ≥ 0)

whenever X and Y are independent, where

|x | :=
∑

i x(i) and xy(i) := x(i)y(i).

Alternative formulation

E
[
‖XtY0‖

]
= P

[
‖X0Yt‖

]
(t ≥ 0),

where
‖xy‖ :=

⊕
i x(i)y(i) = 1{|xy | is odd}.
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Duality

Y0

X0

A†

A′†

|X0Yt | is odd ⇔ # paths from X0 to Y0 is odd ⇔ |XtY0| is odd.
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Duality in general

Def A cancellative system X is type symmetric if the transition
x 7→ x ′ has the same rate as (1− x) 7→ (1− x ′).

Def A cancellative system X is parity preserving if a.s. |Xt | is odd
iff |X0| is odd (t ≥ 0).

I X type symmetric iff jumps only for A with |{j : A(i , j) = 1}|
even for all i . Even number of incoming arrows at each site.

I X parity preserving iff jumps only for A with |{j : A(j , i) = 1}|
even for all i . Even number of outgoing arrows at each site.

Consequence X type symmetric ⇔ dual Y is parity preserving.
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Interfaces

From now on, restrict to one dimension.

Let Z + 1
2 := {k + 1

2 : k ∈ Z} and let I = Z or = Z + 1
2 .

Define a gradient operator ∇ : {0, 1}I → {0, 1}I+
1
2 by

∇x(i) := x(i − 1
2)⊕ x(i + 1

2).

If (Xt)t≥0 is type symmetric, then (∇Xt)t≥0 is a Markov process:
the interface model of X .

0

1

1

0

1

0

1

1

0

0

0

1

1

1

0X

∇X

Interface models are always parity preserving.
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Interfaces and duality

[S. ’13] The interface model of a type symmetric cancellative spin
system is a parity preserving cancellative spin system. Conversely,
every parity preserving cancellative spin system is the interface
model of a unique type symmetric cancellative spin system.
Moreover, the following commutative diagram holds:

Y ′ X ′

X Y
interface

interface

dual dual

Here X ,X ′ are type symmetric and Y ,Y ′ are parity preserving.
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Interfaces and duality

Proof (sketch) Recall the duality function

‖xy‖ =
⊕
i

x(i)y(i) = 1{|xy | is odd}.

Then

‖x∇y‖ = ‖(∇x)y‖ (x ∈ {0, 1}I, y ∈ {0, 1}I+
1
2 ).

If A is type symmetric, then A† is the dual action and ∇A∇−1 is
the corresponding action on interfaces. Now

(∇A∇−1)† = ∇−1A†∇

correspond to the dual of the interface model resp. the model
whose interface model is the dual.
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Classification of behavior

Let Y be parity preserving.

Def Y persists if there exists an invariant law that is concentrated
on states other than 0 (all zero).

Def Y survives if Py [Yt 6= 0 ∀t ≥ 0] > 0 for some even initial
state y .

If |Y0| is finite and odd, then let lt := inf{i ∈ Z + 1
2 : Yt(i) = 1}

denote the left-most one and let

Ŷt(i) := Y (lt + i) (t ≥ 0, i ∈ N)

denote the process Y viewed from the left-most one.

Def Y is stable if Ŷ is positively recurrent.

Def Y is strongly stable if Ŷ is stable and E
[
|Ŷ∞|

]
<∞ in

equilibrium.
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Classification of behavior

Let X be type symmetric.

Def X exhibits coexistence if there exists an invariant law that is
concentrated on states other than 0 and 1.

Def X survives if Py [Xt 6= 0 ∀t ≥ 0] > 0 for some finite initial
state y .

Def X exhibits (strong) interface tightness if its interface model is
(strongly) stable.

Interface tightness introduced for the contact process by Cox &
Durrett (1995) and studied by Belhaouari, Mountford & Valle
(2007) and & Sturm & S. (2008).
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Abstract results

Y ′ X ′

X Y
interface

interface

dual dual

Claim
interface model Y persists ⇔ X coexists ⇔ dual Y ′ survives.

Proof of second claim
Start X in product measure with intensity 1/2. Then
P
[
Xt(i) 6= Xt(j)

]
= P

[
|Xt(δi + δj)| is odd

]
=

Pδi+δj
[
|X0Y ′t | is odd

]
= 1

2P
δi+δj

[
Y ′t 6= 0

]
−→
t→∞

1
2P

δi+δj
[
Y ′t 6= 0 ∀t ≥ 0

]
. Odd upper invariant law.

Claim X survives ⇔ dual Y ′ persists. (Similar.)

Thm [S. ’13] Strong interface tightness implies noncoexistence.
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Strong interface tightness implies noncoexistence

Lemma Assume that strong interface tightness holds for X . Then

h(x) :=
∑

i∈Z+ 1
2

E
[
‖(Ŷ∞ + i)x‖

]
is a harmonic function for the process X ′ (dual of interface model
of X ). Moreover, there exist constants 0 < c ≤ C <∞ s.t.

c |x | ≤ h(x) ≤ C |x |.

Proof of Thm (sketch) By martingale convergence, h(X ′t)
converges a.s., which implies that X ′ dies out a.s. The same holds
for its interface model Y ′ which is dual to X , so by duality X
exhibits noncoexistence.
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Facts and conjectures

Symmetric Neuhauser-Pacala model in d = 1 with range R ≥ 2.

Conjecture There exists an 0 < αc < 1 such that

I Survival, coexistence, no interface tightness for 0 ≤ α < αc.

I Extinction, noncoexistence, no interface tightness at α = αc.

I Strong interface tightness and (hence) noncoexistence for
α > αc.

Known Survival, coexistence, no interface tightness for α small,
strong interface tightness and noncoexistence at α = 1.

Open problems Monotonicity in α, (strong) interface tightness &
coexistence at any α < 1, equivalence of survival and coexistence.
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The rebellious voter model

In the rebellious voter model the type at i flips with rate

α
[
1
21{x(i − 1) 6= x(i)} + 1

21{x(i) 6= x(i + 1)}
]

+(1− α)
[
1
21{x(i − 2) 6= x(i − 1)} + 1

21{x(i + 1) 6= x(i + 2)}
]
.

This model is self-dual in the sense that X = X ′, i.e.,

Y

X

dual interface

Consequence Survival equivalent to coexistence.
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The disagreement voter model

The d = 1 Neuhauser-Pacala model X with range R = 1 is up to
reparametrization equal to the disagreement voter model, in which
the type at i flips with rate

α
[
1
21{x(i − 1) 6= x(i)} + 1

21{x(i) 6= x(i + 1)}
]

+(1− α)1{x(i − 1) 6= x(i + 1)}.

The interface model Y of this is a mixture of annihilating random
walk and exclusion dynamics.

Clearly Y dies out for all α > 0 hence X exhibits noncoexistence.
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The exclusion process

Recall that in the symmetric, nearest-neighbor exclusion process,
pairs of neighboring 0’s and 1’s make the transitions 01↔ 10 at
rate one. This model is both type symmetric and parity preserving.
It is part of a commutative diagram where:
X = pure disagreement dynamics
Y = exclusion process
Z = double branching annihilating process

Z Y X

X Y Z

interfaceinterface

interface interface

dualdualdual
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Ergodic results

[Sturm & S. ’08] A symmetric Neuhauser-Pacala or rebellious
voter model have at most one spatially homogeneous coexisting
invariant law. If moreover α > 0 and the dual model Y ′ is not
stable, then this is the long-time limit law started from any
spatially homogeneous coexisting initial law.

[Sturm & S. ’08] For the rebellious voter model with α
sufficiently close to zero, there is a unique coexisting invariant law
ν and one has complete convergence

P[Xt ∈ · ] =⇒
t→∞

ρ0δ0 + ρ1δ1 + (1− ρ0 − ρ1)ν,

where ρτ := P[Xt = τ for some t ≥ 0].

[Cox & Perkins ’14] There exists some α′ < 1 such that the
symmetric Neuhauser-Pacala model in dimensions d ≥ 2 exhibits
complete convergence for α ∈ (α′, 1).
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Ergodic results

Idea of proof Recall that if law of X0 is product measure with
intensity 1/2, then

P
[
|Xty | is odd

]
= Py

[
|X0Y ′t | is odd

]
= 1

2P
y
[
Y ′t 6= 0

]
.

As a consequence, P[Xt ∈ · ] converges weakly to
ν1/2 := P[X∞ ∈ · ] characterized by

P
[
|X∞y | is odd

]
= 1

2P
y
[
Y ′t 6= 0 ∀t ≥ 0

]
.

For more general initial laws, convergence will follow if

Py
[
|X0Y ′t | is odd

]
≈ 1

2P
y
[
Y ′t 6= 0

]
as t →∞.

This requires one to show that conditional on survival, Y ′t is large
and sufficiently random so that |X0Y ′t | is odd with probab. ≈ 1/2.
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