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Probability Kernels

Let S be a finite set. A probability kernel on S is a function
K : S × S → [0, 1] such that

I K (x , y) ≥ 0 (x , y ∈ S),

I
∑

y∈S K (x , y) = 1 (x ∈ S).

We calculate with kernels as with matrices, so we define the
product of two kernels as:

(KL)(x , z) :=
∑
y∈S

K (x , y)L(y , z).

If f : S → R is a real function on S , then we can let a kernel act
on this function to the left or to the right:

(fK )(y) :=
∑
x∈S

f (x)K (x , y) and (Kf )(x) :=
∑
y∈S

K (x , y)f (y).

Jan M. Swart Particle Systems



Markov Chains

In particular, if µ : S → [0, 1] satisfies
∑

x∈S µ(x) = 1, i.e., µ is a
probability law on S , then also

µK is a probability law on S .

For any probability law µ on S and function f : S → R we define

µf :=
∑
x∈S

µ(x)f (x),

which is the expectation of f under µ.
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Markov Chains

The Markov chain with transition kernel P and initial law µ is the
discrete-time stochastic process X = (Xk)k≥0 whose
finite-dimensional distributions are given by

P
[
X0 = x0, . . . ,Xn = xn

]
= µ(x0)P(x0, x1) · · ·P(xn−1, xn).

We observe that the law of X1 is given by

P
[
X1 = x1

]
=
∑
x0

P
[
X0 = x0, X1 = x1

]
=
∑
x0

µ(x0)P(x0, x1) = (µP)(x1).
Similarly,

P
[
X2 = x2

]
=
∑
x0

∑
x1

µ(x0)P(x0, x1)P(x1, x2) = (µP2)(x1).

and
P
[
Xn = xn |X0 = x0

]
= Pn(x0, xn).
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Markov Chains

If f : S → R is a function, then

E
[
f (Xn)

∣∣X0 = x0
]

=
∑
xn

P
[
Xn = xn

∣∣X0 = x0
]
f (xn)

=
∑
xn

Pn(x0, xn)f (xn) = (Pf )(x0).

Similarly, for the process with initial law µ,

E
[
f (Xn)

]
= µPnf .
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Invariant Laws

Let P be the transition kernel of a Markov chain.
A probability measure ν on S is an invariant law for this Markov
chain if νP = ν, or equivalently, if the Markov chain (Xk)k≥0 with
initial law ν is stationary.

By definition, P is irreducible if for each x , y ∈ S there exists an
n ≥ 1 such that Pn(x , y) > 0: every state can be reached from
every state.

By definition, P is aperiodic if for some (ans hence for all) x ∈ S ,
the largest common divisor of {n ≥ 1 : Pn(x , x) > 0} is 1.

If P is irreducible, then it has a unique invariant law.
If P is moreover aperiodic, then the Markov chain started in any
initial law µ satisfies

P[Xn = x ] = µPn(x) −→
n→∞

ν(x) (x ∈ S).
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Traps

A point z ∈ S is a trap if P(z , z) = 1.

Lemma 1 Assume that there exists a subset T ⊂ S such
that:

I Each z ∈ T is a trap.
I For each x 6∈ T there is some z ∈ T and n ≥ 1 such

that Pn(x , z) > 0.

Then the Markov chain started in any initial law satisfies

P
[
Xn ∈ T for some n ≥ 0

]
= 1.

Jan M. Swart Particle Systems



Continuous Time

Let S be a finite set and let G : S × S → R satisfy

I G (x , y) ≥ 0 ∀x 6= y ,

I
∑

y G (x , y) = 0.

Then, by the finiteness of S , for ε > 0 small enough, setting

Pε(x , y) := 1{x=y} + εG (x , y) (x , y ∈ S)

defines a probability kernel on S . We can use this kernel to
construct a Markov chain

X0,Xε,X2ε, . . .

where we measure time in steps of size ε.
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Continuous Time
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Time step ε = 0.2.
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Continuous Time
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Time step ε = 0.1.
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Continuous Time
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Time step ε = 0.05.
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Continuous Time
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By convention, we take the limiting process right-continuous.
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Continuous Time

In the limit, we obtain a continuous-time process (Xt)t≥0 and a
continuous family of transition probabilities (Pt)t≥0. Here

Pt = e tG :=
∞∑
n=0

1

n!
(tG )n,

satisfy
PsPt = Ps+t and lim

t↓0
Pt = P0 = 1.

One has
Pt(x , y) = 1{x=y} + tG (x , y) + O(t2).

We interpret G (x , y) as the rate of jumps from x to y .
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Poisson construction of Markov processes

Each generator G has a random mapping representation

Gf (x) =
∑
m∈M

rm
{

f
(
m(x)

)
− f
(
x
)}
,

where (rm)m∈M are nonnegative rates and M is a collection of
maps m : S → S . Let ω be a Poisson point set on M× R with
intensity

µ
(
{m} × A

)
= rm `(A)

(
A ∈ B(R)

)
,

where B(R) is the Borel-σ-field on R and ` denotes Lebesgue
measure. We may order the elements of

ω ∩M× (s, t] =: ωs,t =
{

(m1, t1), . . . , (mn, tn)
}

with t1 < · · · < tn.
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Poisson construction of Markov processes

Define random maps Xs,t : S → S (s ≤ t) by

Xs,t := mn ◦ · · · ◦m1.

(Poisson construction of Markov processes) Define
maps (Xs,t)s≤t as above in terms of a Poisson point set
ω. Let X0 be an S-valued random variable, independent
of ω. Then

Xt := X0,t(X0) (t ≥ 0)

is a Markov process with generator G.

Remark The sample paths of X are cadlag, i.e., right-continuous
with left limits. We get left-continuous paths by defining

Xs,t− in terms of ωs,t− := ω ∩M× (s, t).
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Poisson construction of Markov processes

Example 1 Consider the Markov process with state space {0, 1}
that jumps with the rates

G (0, 1) := 2 and G (1, 0) := 1.

Consider M := {up, down}, where

up(x) := 1 and down(x) := 0 ∀x = 0, 1.

Setting rup := 2 and rdown := 1, we have

Gf (x) = rup
{

f
(
up(x)

)
− f
(
x
)}

+ rdown
{

f
(
down(x)

)
− f
(
x
)}
.
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Poisson construction of Markov processes
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Since it may happen that m(Xt) = Xt , not every time of the
Poisson process corresponds to a jump of the Markov process.
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Poisson construction of Markov processes

Random mapping representations are not unique!

Example 2 The same Markov process, that jumps

0 7→ 1 with rate 2 and 1 7→ 0 with rate 1

can also be represented as

Gf (x) = rup
{

f
(
up(x)

)
− f
(
x
)}

+ rswap
{

f
(
swap(x)

)
− f
(
x
)}
,

with rup := 1, rswap := 1, and

up(x) := 1 and swap(x) := 1− x (x = 0, 1).

Note that the total rate of jumps 0 7→ 1 is rup + rswap = 2.
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Poisson construction of Markov processes
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The representation of a generator
in terms of maps is not unique.
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