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Probability Kernels

Let S be a finite set. A probability kernel on S is a function
K:S xS —[0,1] such that

» K(x,y) >0 (x,y €5),
> Y esKixy)=1(x€5S).

We calculate with kernels as with matrices, so we define the
product of two kernels as:

(KL)(x,z) : Zny (v,z
y€ES

If f:S — Ris a real function on S, then we can let a kernel act
on this function to the left or to the right:

(FK)(y) == D _F()K(x,y) and (KF)(x):=>_ K(x,y)f

XES y€eS
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Markov Chains

In particular, if 1 : S — [0, 1] satisfies > _su(x) =1, ie, pisa
probability law on S, then also

1K is a probability law on S.

For any probability law y on S and function f : S — R we define

pf = Z M(X)f(X),

XES

which is the expectation of f under .
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Markov Chains

The Markov chain with transition kernel P and initial law p is the
discrete-time stochastic process X = (Xx)k>0 whose
finite-dimensional distributions are given by

]P’[Xo =xg,...,Xp = x,,] = u(x0)P(x0,x1) - - P(Xn—1, Xn)-

We observe that the law of Xj is given by
P[X1=x] = ZIP [Xo = x0, X1 = xi]

—ZM x0)P(x0,x1) = (1P)(x1)-

Similarly,

ZZM x0)P(x0, x1)P(x1, x2) = (uPz)(xl).

X0 X1

and
P[Xn = xn | Xo = x0] = P"(x0, Xn).
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Markov Chains

If f: S — Ris a function, then
E[f(Xn)| Xo = x0] = > P[Xa = xa | Xo = x0] f(xn)

= Z P"(x0, xn)f (xn) = (Pf)(x0)-

Xn

Similarly, for the process with initial law p,

E[f(X,)] = uP"f.
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Invariant Laws

Let P be the transition kernel of a Markov chain.

A probability measure v on S is an invariant law for this Markov
chain if vP = v, or equivalently, if the Markov chain (Xk)x>0 with
initial law v is stationary.

By definition, P is irreducible if for each x,y € S there exists an
n > 1 such that P"(x,y) > 0: every state can be reached from
every state.

By definition, P is aperiodic if for some (ans hence for all) x € S,
the largest common divisor of {n > 1: P"(x,x) > 0} is 1.

If P is irreducible, then it has a unique invariant law.
If P is moreover aperiodic, then the Markov chain started in any
initial law p satisfies

P[X, = x] = uP"(x) — v(x)  (x € S).

n—oo
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A point z € Sis a trap if P(z,z) = 1.

Lemma 1 Assume that there exists a subset T C S such
that:

» Eachz € T is a trap.
> For each x ¢ T there is somez € T and n> 1 such
that P"(x,z) > 0.
Then the Markov chain started in any initial law satisfies

P[X, € T for some n > 0] = 1.
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Continuous Time

Let S be a finite set and let G : § x S — R satisfy
> G(x,y) >0 Vx#y,

> %, Glx.y) =0,
Then, by the finiteness of S, for £ > 0 small enough, setting

Pa(x))/) = 1{X=y}+€G(X)Y) (X,yES)

defines a probability kernel on S. We can use this kernel to
construct a Markov chain

X07X67X2€a s

where we measure time in steps of size ¢.
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Continuous Time

Time step € = 0.2.
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Continuous Time
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Time step € =0.1.
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Continuous Time

Time step € = 0.05.
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Continuous Time

By convention, we take the limiting process right-continuous.
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Continuous Time

In the limit, we obtain a continuous-time process (X;)¢>0 and a
continuous family of transition probabilities (Pt)¢>0. Here

tG . 1
Pt:e :Zﬁ(tG)na
n=0
satisfy
PsP; = Psyy and |limP; = Py =1.
t}0
One has

Pt(Xay) = 1{x:y} + tG(X7y) + O(t2)‘

We interpret G(x,y) as the rate of jumps from x to y.
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Poisson construction of Markov processes

Each generator G has a random mapping representation

GF(x) = D rm{f(m(x)) = F(x)},

meM

where (rm)meam are nonnegative rates and M is a collection of
maps m: S — S. Let w be a Poisson point set on M x R with
intensity

W({m} < A) = rmt(A) (A€ B(R).

where B(R) is the Borel-o-field on R and ¢ denotes Lebesgue
measure. We may order the elements of

WNM X (s, t] =t wsy = {(m1, tl),..-7(mn,tn)}

with t; < -+ < tp.
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Poisson construction of Markov processes

Define random maps Xs::S — S (s < t) by

Xsti=mpo---omy.

(Poisson construction of Markov processes) Define
maps (Xs ¢)s<t as above in terms of a Poisson point set
w. Let Xo be an S-valued random variable, independent
of w. Then

Xt = XOJ_—(XO) (t Z 0)
is a Markov process with generator G.

Remark The sample paths of X are cadlag, i.e., right-continuous
with left limits. We get left-continuous paths by defining

Xst— interms of ws; :=wnNM X (s,t).
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Poisson construction of Markov processes

Example 1 Consider the Markov process with state space {0,1}
that jumps with the rates

G(0,1):=2 and G(1,0):=1.
Consider M := {up, down}, where
up(x) :=1 and down(x):=0  Vx=0,1.
Setting ryp := 2 and rgom = 1, we have

Gf(x) = rp{f(up(x)) — f(x)} + raown{f (down(x)) — () }.
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Poisson construction of Markov processes

w
R t
®
down up 0 1
e e —
M Xt

Since it may happen that m(X;) = X;, not every time of the
Poisson process corresponds to a jump of the Markov process.
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Poisson construction of Markov processes

Random mapping representations are not unique!
Example 2 The same Markov process, that jumps
0+— 1 with rate2 and 1+ 0 with rate 1
can also be represented as
GF(x) = rup {F(up(x)) — F(x)} + rusp{ F(swaB(x)) — F(x)}.
with ryp :=1, reuap := 1, and
up(x):=1 and swap(x):=1-x (x=0,1).

Note that the total rate of jumps 0+ 1 is ryp + rewap = 2.
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Poisson construction of Markov processes

w
R t
swap up 0 1
_— _—
M Xt

The representation of a generator
in terms of maps is not unique.
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