Interacting Particle Systems with Applications in Finance

Jan M. Swart

Lecture 0: Markov Chain Preliminaries

Probability Kernels

Let S be a finite set. A probability kernel on S is a function $K: S \times S \rightarrow[0,1]$ such that

- $K(x, y) \geq 0(x, y \in S)$,
- $\sum_{y \in S} K(x, y)=1(x \in S)$.

We calculate with kernels as with matrices, so we define the product of two kernels as:

$$
(K L)(x, z):=\sum_{y \in S} K(x, y) L(y, z)
$$

If $f: S \rightarrow \mathbb{R}$ is a real function on S, then we can let a kernel act on this function to the left or to the right:

$$
(f K)(y):=\sum_{x \in S} f(x) K(x, y) \quad \text { and } \quad(K f)(x):=\sum_{y \in S} K(x, y) f(y)
$$

Markov Chains

In particular, if $\mu: S \rightarrow[0,1]$ satisfies $\sum_{x \in S} \mu(x)=1$, i.e., μ is a probability law on S, then also
μK is a probability law on S.
For any probability law μ on S and function $f: S \rightarrow \mathbb{R}$ we define

$$
\mu f:=\sum_{x \in S} \mu(x) f(x)
$$

which is the expectation of f under μ.

Markov Chains

The Markov chain with transition kernel P and initial law μ is the discrete-time stochastic process $X=\left(X_{k}\right)_{k \geq 0}$ whose finite-dimensional distributions are given by

$$
\mathbb{P}\left[X_{0}=x_{0}, \ldots, X_{n}=x_{n}\right]=\mu\left(x_{0}\right) P\left(x_{0}, x_{1}\right) \cdots P\left(x_{n-1}, x_{n}\right)
$$

We observe that the law of X_{1} is given by

Similarly,

$$
\begin{gathered}
\mathbb{P}\left[X_{1}=x_{1}\right]=\sum_{x_{0}} \mathbb{P}\left[X_{0}=x_{0}, X_{1}=x_{1}\right] \\
\quad=\sum_{x_{0}} \mu\left(x_{0}\right) P\left(x_{0}, x_{1}\right)=(\mu P)\left(x_{1}\right) .
\end{gathered}
$$

$$
\mathbb{P}\left[X_{2}=x_{2}\right]=\sum_{x_{0}} \sum_{x_{1}} \mu\left(x_{0}\right) P\left(x_{0}, x_{1}\right) P\left(x_{1}, x_{2}\right)=\left(\mu P^{2}\right)\left(x_{1}\right) .
$$

and

$$
\mathbb{P}\left[X_{n}=x_{n} \mid X_{0}=x_{0}\right]=P^{n}\left(x_{0}, x_{n}\right)
$$

Markov Chains

If $f: S \rightarrow \mathbb{R}$ is a function, then

$$
\begin{aligned}
& \mathbb{E}\left[f\left(X_{n}\right) \mid X_{0}=x_{0}\right]=\sum_{x_{n}} \mathbb{P}\left[X_{n}=x_{n} \mid X_{0}=x_{0}\right] f\left(x_{n}\right) \\
& \quad=\sum_{x_{n}} P^{n}\left(x_{0}, x_{n}\right) f\left(x_{n}\right)=(P f)\left(x_{0}\right)
\end{aligned}
$$

Similarly, for the process with initial law μ,

$$
\mathbb{E}\left[f\left(X_{n}\right)\right]=\mu P^{n} f
$$

Invariant Laws

Let P be the transition kernel of a Markov chain.
A probability measure ν on S is an invariant law for this Markov chain if $\nu P=\nu$, or equivalently, if the Markov chain $\left(X_{k}\right)_{k \geq 0}$ with initial law ν is stationary.

By definition, P is irreducible if for each $x, y \in S$ there exists an $n \geq 1$ such that $P^{n}(x, y)>0$: every state can be reached from every state.

By definition, P is aperiodic if for some (ans hence for all) $x \in S$, the largest common divisor of $\left\{n \geq 1: P^{n}(x, x)>0\right\}$ is 1 .
If P is irreducible, then it has a unique invariant law.
If P is moreover aperiodic, then the Markov chain started in any initial law μ satisfies

$$
\mathbb{P}\left[X_{n}=x\right]=\mu P^{n}(x) \underset{n \rightarrow \infty}{\longrightarrow} \nu(x) \quad(x \in S)
$$

Traps

A point $z \in S$ is a trap if $P(z, z)=1$.
Lemma 1 Assume that there exists a subset $T \subset S$ such that:

- Each $z \in T$ is a trap.
- For each $x \notin T$ there is some $z \in T$ and $n \geq 1$ such that $P^{n}(x, z)>0$.
Then the Markov chain started in any initial law satisfies

$$
\mathbb{P}\left[X_{n} \in T \text { for some } n \geq 0\right]=1
$$

Continuous Time

Let S be a finite set and let $G: S \times S \rightarrow \mathbb{R}$ satisfy

- $G(x, y) \geq 0 \forall x \neq y$,
- $\sum_{y} G(x, y)=0$.

Then, by the finiteness of S, for $\varepsilon>0$ small enough, setting

$$
P_{\varepsilon}(x, y):=1_{\{x=y\}}+\varepsilon G(x, y) \quad(x, y \in S)
$$

defines a probability kernel on S. We can use this kernel to construct a Markov chain

$$
X_{0}, X_{\varepsilon}, X_{2 \varepsilon}, \ldots
$$

where we measure time in steps of size ε.

Continuous Time

Time step $\varepsilon=0.2$.

Continuous Time

Time step $\varepsilon=0.1$.

Continuous Time

Continuous Time

By convention, we take the limiting process right-continuous.

Continuous Time

In the limit, we obtain a continuous-time process $\left(X_{t}\right)_{t \geq 0}$ and a continuous family of transition probabilities $\left(P_{t}\right)_{t \geq 0}$. Here

$$
P_{t}=e^{t G}:=\sum_{n=0}^{\infty} \frac{1}{n!}(t G)^{n}
$$

satisfy

$$
P_{s} P_{t}=P_{s+t} \quad \text { and } \quad \lim _{t \downarrow 0} P_{t}=P_{0}=1
$$

One has

$$
P_{t}(x, y)=1_{\{x=y\}}+t G(x, y)+O\left(t^{2}\right)
$$

We interpret $G(x, y)$ as the rate of jumps from x to y.

Poisson construction of Markov processes

Each generator G has a random mapping representation

$$
G f(x)=\sum_{m \in \mathcal{M}} r_{m}\{f(m(x))-f(x)\},
$$

where $\left(r_{m}\right)_{m \in \mathcal{M}}$ are nonnegative rates and \mathcal{M} is a collection of maps $m: S \rightarrow S$. Let ω be a Poisson point set on $\mathcal{M} \times \mathbb{R}$ with intensity

$$
\mu(\{m\} \times A)=r_{m} \ell(A) \quad(A \in \mathcal{B}(\mathbb{R}))
$$

where $\mathcal{B}(\mathbb{R})$ is the Borel- σ-field on \mathbb{R} and ℓ denotes Lebesgue measure. We may order the elements of

$$
\omega \cap \mathcal{M} \times(s, t]=: \omega_{s, t}=\left\{\left(m_{1}, t_{1}\right), \ldots,\left(m_{n}, t_{n}\right)\right\}
$$

with $t_{1}<\cdots<t_{n}$.

Poisson construction of Markov processes

Define random maps $\mathbf{X}_{s, t}: S \rightarrow S(s \leq t)$ by

$$
\mathbf{X}_{s, t}:=m_{n} \circ \cdots \circ m_{1}
$$

(Poisson construction of Markov processes) Define maps $\left(\mathbf{X}_{s, t}\right)_{s \leq t}$ as above in terms of a Poisson point set ω. Let X_{0} be an S-valued random variable, independent of ω. Then

$$
X_{t}:=\mathbf{X}_{0, t}\left(X_{0}\right) \quad(t \geq 0)
$$

is a Markov process with generator G.
Remark The sample paths of X are cadlag, i.e., right-continuous with left limits. We get left-continuous paths by defining

$$
\mathbf{X}_{s, t-} \quad \text { in terms of } \omega_{s, t-}:=\omega \cap \mathcal{M} \times(s, t)
$$

Poisson construction of Markov processes

Example 1 Consider the Markov process with state space $\{0,1\}$ that jumps with the rates

$$
G(0,1):=2 \quad \text { and } \quad G(1,0):=1
$$

Consider $\mathcal{M}:=\{$ up, down $\}$, where

$$
\operatorname{up}(x):=1 \quad \text { and } \quad \operatorname{down}(x):=0 \quad \forall x=0,1
$$

Setting $r_{\text {up }}:=2$ and $r_{\text {down }}:=1$, we have

$$
G f(x)=r_{\mathrm{up}}\{f(\operatorname{up}(x))-f(x)\}+r_{\text {down }}\{f(\operatorname{down}(x))-f(x)\} .
$$

Poisson construction of Markov processes

Since it may happen that $m\left(X_{t}\right)=X_{t}$, not every time of the Poisson process corresponds to a jump of the Markov process.

Poisson construction of Markov processes

Random mapping representations are not unique!
Example 2 The same Markov process, that jumps

$$
0 \mapsto 1 \text { with rate } 2 \text { and } 1 \mapsto 0 \text { with rate } 1
$$

can also be represented as

$$
G f(x)=r_{\text {up }}\{f(\operatorname{up}(x))-f(x)\}+r_{\text {swap }}\{f(\operatorname{swap}(x))-f(x)\},
$$

with $r_{\text {up }}:=1, r_{\text {swap }}:=1$, and

$$
\operatorname{up}(x):=1 \quad \text { and } \quad \operatorname{swap}(x):=1-x \quad(x=0,1)
$$

Note that the total rate of jumps $0 \mapsto 1$ is $r_{\text {up }}+r_{\text {swap }}=2$.

Poisson construction of Markov processes

The representation of a generator in terms of maps is not unique.

