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Interacting Particle Systems

I Interacting particle systems are mathematical models for
collective behavior.

I Applications in physics (atoms & molecules), biology
(organisms) & sociology, financial mathematics (people).

I Simple rules lead to complicated behavior.

I Markovian dynamics.

I Easy to simulate, but not always easy to prove; open problems.

I Rigorous methods lead to better understanding.
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Poisson construction of Markov processes

Let S be a finite set. A probability kernel on S is a function
K : S2 → [0, 1] such that

∑
y K (x , y) = 1. We calculate with

kernels as with matrices:

KL(x , z) :=
∑
y

K (x , y)L(y , z) and Kf (x) :=
∑
y

K (x , y)f (y).

Let X = (Xt)t≥0 be a stochastic process with values in S . By
definition, X is a (time-homogeneous) Markov process if

P
[
Xu ∈ ·

∣∣ (Xs)0≤s≤t
]

= Pu−t(Xt , · ) a.s. (0 ≤ t ≤ u),

where the transition kernels (Pt)t≥0 form a collection of probability
kernels on S such

PsPt = Ps+t and lim
t↓0

Pt = P0 = 1.
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Poisson construction of Markov processes

Each such Markov semigroup (Pt)t≥0 is of the form

Pt = e tG :=
∞∑
n=0

1

n!
(tG )n,

where the generator G is a matrix of the form

G (x , y) ≥ 0 (x 6= y) and
∑
y

G (x , y) = 0.

We interpret G (x , y) (x 6= y) as the rate of transitions x 7→ y .
The process X = (Xt)t≥0 arises as the limit of discrete-time
Markov chains with transition kernel of the form

Pε(x , y) = 1{x = y} + εG (x , y) + O(ε2).
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Poisson construction of Markov processes

Let (Ω,F , µ) be a measurable space with σ-finite, nonatomic
measure µ. Recall that a Poisson point set with intensity µ is a
random subset ω ⊂ Ω such that∣∣ω ∩ A

∣∣ is Poisson distributed with mean µ(A)

whenever A ∈ F , µ(A) <∞, and∣∣ω ∩ A1

∣∣, . . . , ∣∣ω ∩ An

∣∣ are independent (1)

whenever A1, . . . ,An are disjoint.
Since µ is nonatomic, for each ε > 0 we can find a countable
partition {Aεi : i ∈ I} of Ω such that µ(Aεi ) ≤ ε ∀i . Then

P
[
|ω∩Aεi | = 1

]
= µ(Aεi ) + O(ε2) and P

[
|ω∩Aεi | ≥ 2

]
= O(ε2).

(2)
Any sequence of random sets satisfying (1) and (2) converges as
ε ↓ 0 to a Poisson point set with intensity µ.
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Poisson construction of Markov processes

Each generator G has a random mapping representation

Gf (x) =
∑
m∈M

rm
{

f
(
m(x)

)
− f
(
x
)}
,

where (rm)m∈M are nonnegative rates and M is a collection of
maps m : S → S . Let ω be a Poisson point set on M× R with
intensity

µ
(
{m} × A

)
= rm `(A)

(
A ∈ B(R)

)
,

where B(R) is the Borel-σ-field on R and ` denotes Lebesgue
measure. We may order the elements of

ω ∩M× (s, t] =: ωs,t =
{

(m1, t1), . . . , (mn, tn)
}

with t1 < · · · < tn.
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Poisson construction of Markov processes

Define random maps Xs,t : S → S (s ≤ t) by

Xs,t := mn ◦ · · · ◦m1.

(Poisson construction of Markov processes) Define
maps (Xs,t)s≤t as above in terms of a Poisson point set
ω. Let X0 be an S-valued random variable, independent
of ω. Then

Xt := X0,t(X0) (t ≥ 0)

is a Markov process with generator G.

Remark The sample paths of X are cadlag, i.e., right-continuous
with left limits. We get left-continuous paths by defining

Xs,t− in terms of ωs,t− := ω ∩M× (s, t).
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Poisson construction of Markov processes

Example 1 Consider the Markov process with state space {0, 1}
that jumps with the rates

G (0, 1) := 2 and G (1, 0) := 1.

Consider M := {up, down}, where

up(x) := 1 and down(x) := 0 ∀x = 0, 1.

Setting rup := 2 and rdown := 1, we have

Gf (x) = rup
{

f
(
up(x)

)
− f
(
x
)}

+ rdown
{

f
(
down(x)

)
− f
(
x
)}
.
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Poisson construction of Markov processes

R

M

ω

down up

t

Xt

0 1

Since it may happen that m(Xt) = Xt , not every time of the
Poisson process corresponds to a jump of the Markov process.
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Poisson construction of Markov processes

Random mapping representations are not unique!

Example 2 The same Markov process, that jumps

0 7→ 1 with rate 2 and 1 7→ 0 with rate 1

can also be represented as

Gf (x) = rup
{

f
(
up(x)

)
− f
(
x
)}

+ rswap
{

f
(
swap(x)

)
− f
(
x
)}
,

with rup := 1, rswap := 1, and

up(x) := 1 and swap(x) := 1− x (x = 0, 1).

Note that the total rate of jumps 0 7→ 1 is rup + rswap = 2.
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Poisson construction of Markov processes

R

M

ω

swap up

t

Xt

0 1

The representation of a generator
in terms of maps is not unique.

Jan M. Swart Particle Systems



An Ising model for collective decision making

Let Λ be a finite set, representing people. Each person i ∈ Λ can
be in two states x(i) ∈ {−1, 1}. The state of the whole system is
an element x = (x(i))i∈Λ of the space S := {−1,+1}Λ of all
functions x : Λ→ {−1,+1}.
A person chooses his/her state according to an utility function.
Given that the system is at time t in the state x , the utility for the
person i of being in the state +1 resp. −1 is described by the
utility function

U±t (i , x) = ±1
2 J
∑
j∈Ni

x(j)± 1
2 Wt(i).

Here Ni ⊂ Λ is a neighborhood of i , and Wt(i) is a random,
logistically distributed term.
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An Ising model for collective decision making

U±t (i , x) = ±1
2 J
∑
j∈Ni

x(j)± 1
2 Wt(i).

I For J > 0 it is advantageous to make the same choice as your
neighbors.

I Wt(i) logistically distributed: P[Wt(i) ≤ w ] = (1 + e−βw )−1.

I The noise terms Wt(i) are independent for each person and
are redrawn at times of a Poisson process with intensity one.

I After the noise is redrawn, each person immediately chooses
his or her new state according to the highest utility.
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An Ising model for collective decision making

Density f (w) = β(eβw/2 + e−βw/2)−1 of the logistic distribution.

x

f (x)

-5 -4 -3 -2 -1 0 1 2 3 4 5

0.1

0.2

Probability that U+
t (i ,Xt) > U−t (i ,Xt) given that Ni contains

Mi (±) persons in the state ±1 equals

eβJMi (+)

eβJMi (+) + eβJMi (−)
.

Person i changes his/her state to +1 with this rate and to −1 with
one minus this rate. Only the product βJ matters.
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An Ising model for collective decision making

Possible choices for the “neighborhood”Ni of person i :

1. the whole set Λ,

2. points j ∈ Zd with |i − j | = 1,

3. neighbors in any locally finite graph.

Choice 1. made by Brock & Durlauf (2001), who studied the
invariant laws of this Markov chain (but not its time evolution).

Logistic distribution motivated by extreme-value theory, but mainly
by the wish to obtain the Ising model (on Zd) or Curie Weiss
model (on the complete graph), which are used in physics to
describe systems of atoms at inverse temperature 1/β whose spin
can be in two states ±1 and that interact through magnetic forces.

More precisely, our model is the Ising model with
(continuous-time) Glauber dynamics.
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The Ising model

Jβ = 0.3, time t = 0.
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The Ising model

Jβ = 0.3, time t = 1.
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The Ising model

Jβ = 0.3, time t = 2.
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The Ising model

Jβ = 0.3, time t = 4.
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The Ising model

Jβ = 0.3, time t = 8.
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The Ising model

Jβ = 0.3, time t = 16.
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The Ising model

Jβ = 0.3, time t = 32.
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The Ising model

Jβ = 0.3, time t = 64.
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The Ising model

Jβ = 0.7, time t = 0.
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The Ising model

Jβ = 0.7, time t = 1.
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The Ising model

Jβ = 0.7, time t = 2.
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The Ising model

Jβ = 0.7, time t = 4.
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The Ising model

Jβ = 0.7, time t = 8.
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The Ising model

Jβ = 0.7, time t = 16.
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The Ising model

Jβ = 0.7, time t = 32.
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The Ising model

Jβ = 0.7, time t = 64.
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The Ising model

Jβ = 0.7, time t = 125.
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The Ising model

Jβ = 0.7, time t = 250.
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The Ising model

Jβ = 1, time t = 0.
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The Ising model

Jβ = 1, time t = 1.
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The Ising model

Jβ = 1, time t = 2.
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The Ising model

Jβ = 1, time t = 4.
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The Ising model

Jβ = 1, time t = 8.

Jan M. Swart Particle Systems



The Ising model

Jβ = 1, time t = 16.
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The Ising model

Jβ = 1, time t = 32.
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The Ising model

Jβ = 1, time t = 64.
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The Ising model

Jβ = 1, time t = 125.
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The Ising model

Jβ = 1, time t = 250.
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The Ising model

Jβ = 1, time t = 500.
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A Potts model for collective decision making

Instead of allowing only two states −1,+1, we can more generally
allow q ≥ 2 states 1, . . . , q.
Each person i chooses a new state at times of a Poisson process
with rate 1.
The probability that the newly chosen state is k ∈ {1, . . . , q}
equals

eβJMi (k)∑q
m=1 eβJMi (m)

,

where Mi (k) denotes the number of neighbors of i that are in the
state k .
Special case q = 2 amounts to the Ising model.
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The Potts model

Jβ = 1.2, time t = 0.
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The Potts model

Jβ = 1.2, time t = 1.
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The Potts model

Jβ = 1.2, time t = 2.
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The Potts model

Jβ = 1.2, time t = 4.
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The Potts model

Jβ = 1.2, time t = 8.
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The Potts model

Jβ = 1.2, time t = 16.
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The Potts model

Jβ = 1.2, time t = 32.
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The Potts model

Jβ = 1.2, time t = 64.
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The Potts model

Jβ = 1.2, time t = 125.
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The Potts model

Jβ = 1.2, time t = 250.
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The Potts model

Jβ = 1.2, time t = 500.
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The voter model

In the voter model, persons can have q ≥ 2 states.

Each person i chooses a new state at times of a Poisson process
with rate 1.

The probability that the newly chosen state is k ∈ {1, . . . , q}
equals

1

|Ni |
Mi (k)

where Mi (k) denotes the number of neighbors of i that are in the
state k .

Contrary to the Potts model, types, once extinct, cannot reappear.

Used to model credit contagion in Gieseck & Weber (2002).

Also used to model voting behavior, or the spread of neutral
genetic types in population biology.
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The voter model

Using the voter map

votij(x) :=

{
x(j) if k = i ,
x(k) otherwise,

we can give the following random mapping representation of the
generator:

Gf (x) =
∑
i∈Λ

1

|Ni |
∑
j∈Ni

{
f
(
voti ,jx

)
− f
(
x
)}
.

Interpretation: each person copies with rate 1 the type of a
uniformly chosen random person of Ni .
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The voter model

Time t = 0.
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The voter model

Time t = 0.25.
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The voter model

Time t = 0.5.
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The voter model

Time t = 1.
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The voter model

Time t = 2.
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The voter model

Time t = 4.
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The voter model

Time t = 8.
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The voter model

Time t = 16.
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The voter model

Time t = 31.25.
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The voter model

Time t = 62.5.
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The voter model

Time t = 125.
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The voter model

Time t = 250.

Jan M. Swart Particle Systems



The voter model

Time t = 500.
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The voter model

The behavior of the voter model strongly depends on the
dimension.

Clustering in dimensions d = 1, 2.

Stable behavior in dimensions d ≥ 3.
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The voter model

Cut of 3-dimensional model, time t = 0.
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The voter model

Cut of 3-dimensional model, time t = 1.
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The voter model

Cut of 3-dimensional model, time t = 2.
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The voter model

Cut of 3-dimensional model, time t = 4.

Jan M. Swart Particle Systems



The voter model

Cut of 3-dimensional model, time t = 8.
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The voter model

Cut of 3-dimensional model, time t = 16.

Jan M. Swart Particle Systems



The voter model

Cut of 3-dimensional model, time t = 32.
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The voter model

Cut of 3-dimensional model, time t = 64.
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The voter model

Cut of 3-dimensional model, time t = 125.
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The voter model

Cut of 3-dimensional model, time t = 250.
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The voter model

space

time
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A one-dimensional voter model.
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A one-dimensional Potts model

space

time
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In one-dimensional Potts models, the cluster size remains
bounded in time even at very high β (= low temperature).
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The biased voter model

In the biased voter model with two states {0, 1}, each person i
changes its type Xt(i) with the rates

0 7→ 1 with rate (1 + s) · fraction of type 1 neighbors,

1 7→ 0 with rate 1 · fraction of type 0 neighbors,

where s > 0 gives type 1 a (small) advantage.

Contrary to the voter model, even if we start with just a single
person of type 1, there is a positive probability that type 1 never
dies out.

Models spread of new idea or technology, or advantageous
mutation in biology.
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The biased voter model

Biased voter model with s = 0.2. Time t = 0 .
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The biased voter model

Biased voter model with s = 0.2. Time t = 10.
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The biased voter model

Biased voter model with s = 0.2. Time t = 20.
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The biased voter model

Biased voter model with s = 0.2. Time t = 30.
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The biased voter model

Biased voter model with s = 0.2. Time t = 40.
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The biased voter model

Biased voter model with s = 0.2. Time t = 50.
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The biased voter model

Biased voter model with s = 0.2. Time t = 60.
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The biased voter model

Biased voter model with s = 0.2. Time t = 70.
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The biased voter model

Biased voter model with s = 0.2. Time t = 80.
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The biased voter model

Biased voter model with s = 0.2. Time t = 90.
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The biased voter model

Biased voter model with s = 0.2. Time t = 100.
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The biased voter model

Biased voter model with s = 0.2. Time t = 110.
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The biased voter model

Biased voter model with s = 0.2. Time t = 120.
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The biased voter model

Biased voter model with s = 0.2. Time t = 130.
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The biased voter model

Biased voter model with s = 0.2. Time t = 140.
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The biased voter model

Biased voter model with s = 0.2. Time t = 150.
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The biased voter model

Biased voter model with s = 0.2. Time t = 160.
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The biased voter model

space

time

0 100 200 300 400 500

0

100

200

300

400

A one-dimensional biased voter model with bias s = 0.2.
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The biased voter model

We can extend the biased voter model by also allowing
spontaneous jumps from 1 to 0.

0 7→ 1 with rate (1 + s) · fraction of type 1 neighbors,

1 7→ 0 with rate 1 · fraction of type 0 neighbors

+ d ,

where s > 0 gives type 1 an advantage and d ≥ 0 is a death rate.

This models the fact that complicated new ideas may be forgotten
or organisms may die.

Whether 1’s have a positive probability to survive now depends in
a nontrivial way on s and d .
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The biased voter model
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Process with bias s = 0.5, death rate d = 0.02.
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The contact process

Simplifying, we can also look at a process that jumps as

0 7→ 1 with rate λ · number of type 1 neighbors,

1 7→ 0 with rate d .

This is the contact process with infection rate λ > 0 and death
rate d > 0.

Again, this can be used to model the spread of ideas or biological
populations.

By changing the time scale, we can set the intensity of one Poisson
process to one, i.e., without loss of generality d = 1 (the usual
convention) or also λ = 1 (if we wish).
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The contact process

Contact process with infection rate λ = 2 and death rate d = 1.
Time t = 0.
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The contact process

Contact process with infection rate λ = 2 and death rate d = 1.
Time t = 1.

Jan M. Swart Particle Systems



The contact process

Contact process with infection rate λ = 2 and death rate d = 1.
Time t = 2.
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The contact process

Contact process with infection rate λ = 2 and death rate d = 1.
Time t = 3.
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The contact process

Contact process with infection rate λ = 2 and death rate d = 1.
Time t = 4.
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The contact process

Contact process with infection rate λ = 2 and death rate d = 1.
Time t = 5.
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The contact process

Contact process with infection rate λ = 2 and death rate d = 1.
Time t = 6.
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The contact process

Contact process with infection rate λ = 2 and death rate d = 1.
Time t = 7.
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The contact process

Contact process with infection rate λ = 2 and death rate d = 1.
Time t = 8.
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The contact process

Contact process with infection rate λ = 2 and death rate d = 1.
Time t = 9.
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The contact process

Contact process with infection rate λ = 2 and death rate d = 1.
Time t = 10.
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The contact process

Contact process with infection rate λ = 2 and death rate d = 1.
Time t = 11.
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The contact process

Contact process with infection rate λ = 2 and death rate d = 1.
Time t = 12.
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The contact process

Contact process with infection rate λ = 2 and death rate d = 1.
Time t = 13.
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The contact process

Contact process with infection rate λ = 2 and death rate d = 1.
Time t = 14.
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The contact process

Contact process with infection rate λ = 2 and death rate d = 1.
Time t = 15.
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The contact process

Contact process with infection rate λ = 2 and death rate d = 1.
Time t = 16.
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The contact process

Contact process with infection rate λ = 2 and death rate d = 1.
Time t = 17.
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The contact process

Contact process with infection rate λ = 2 and death rate d = 1.
Time t = 18.
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The contact process

Contact process with infection rate λ = 2 and death rate d = 1.
Time t = 19.
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The contact process

Contact process with infection rate λ = 2 and death rate d = 1.
Time t = 20.
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A rebellious voter model

Consider a model with two types {0, 1} and let

fτ :=
1

|Ni |
∑
j∈Ni

1{x(j) = τ}

be the frequency of type τ in the neighborhood Ni .

A person of type τ chooses a new type with rate

fτ + αf1−τ .

For α < 1, persons change their mind less often if they disagree
with a lot of neighbors.

As in a normal voter model, the probability that the newly chosen
type is τ ′ is fτ ′ .

Used by Neuhauser & Pacala (1999) to model balancing selection.
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A rebellious voter model
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Process with α = 0.8 behaves more or less as a voter model.
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A rebellious voter model
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In the process with α = 0.3, cluster size remains bounded in time.
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Reaction diffusion models

Another rich class of models are reaction diffusion models.

These are systems of particles that perform independent random
walks and interact when they are near to each other.

Let Xt(i) = 1 (resp. 0) signify the presence (resp. absence) of a
particle and consider the maps rwij : {0, 1}Z → {0, 1}Z

rwi ,jx(k) :=


0 if k = i ,

x(i) ∨ x(j) if k = j ,
x(k) otherwise.

The process with generator

G = 1
2

∑
i∈Z

{
f
(
rwi ,i+1x

)
− f
(
x
)}

+ 1
2

∑
i∈Z

{
f
(
rwi ,i−1x

)
− f
(
x
)}

describes coalescing random walks.
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Coalescing random walks
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Reaction diffusion models

We can also add other maps to the dynamics, like the
branching map

brai ,jx(k) :=

{
x(i) ∨ x(j) if k = j ,

x(k) otherwise,

or even cooperative branching

coopi ,i ′,jx(k) :=

{ (
x(i) ∧ x(i ′)

)
∨ x(j) if k = j ,

x(k) otherwise.
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Cooperative branching and coalescence
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Cooperative branching rate 2.2.
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Cooperative branching
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Cooperative branching rate 3.
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A cancellative system

Two more maps of interest are the annihilating random walk map

arwi ,jx(k) :=


0 if k = i ,

x(i) + x(j) mod(2) if k = j ,
x(k) otherwise,

and the annihilating branching map

abrai ,jx(k) :=

{
x(i) + x(j) mod(2) if k = j ,

x(k) otherwise,
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Annihilating random walks.
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A cancellative system
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A system of branching annihilating random walks.
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Killing

Define a killing map as

killi ,jx(k) :=

{ (
1− x(i)

)
∧ x(j) if k = j ,

x(k) otherwise,

which says that the particle at i , if present, kills any particle at j .
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Branching and killing
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A system with branching and killing.
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