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The Ising model

Let Λ be a finite set and let S = {−1,+1}Λ be the set of all
functions x : Λ→ {−1,+1}.

Recall that the Ising model with (continuous-time) Glauber
dynamics is the Markov process X = (Xt)t≥0 with state space S ,
where each coordinate Xt(i) chooses a new state at times of a
Poisson process with rate 1.

If Ni contains Mi (±) sites of type ±1, then site i chooses the new
state

+1 with probability
eβJMi (+)

eβJMi (+) + eβJMi (−)
,

and −1 with the remaining probability.
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The Ising model

Possible choices for the neighborhood Ni ⊂ Λ of person i ∈ Λ:

1. the whole set Λ,
2. points j ∈ Zd with |i − j | = 1,
3. neighbors in any locally finite graph.

Choice 1., made by Brock & Durlauf (2001), corresponds to a
mean-field model. We can imagine Λ as a complete graph where
every person is connected to everyone else.

We are interested in the limit |Λ| → ∞. It is convenient to choose
the coupling constant J := 1/|Ni | = 1/|Λ|. Then site i chooses the
new state

+1 with probability
eβX t/2

eβX t/2 + e−βX t/2
,

where

X t :=
1

|Λ|
∑
i∈Λ

Xt(i) is the mean choice of everybody.
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The Ising model

We are interested in the evolution of the mean choice

X t =
1

|Λ|
∑
i∈Λ

Xt(i).

Set ε := |Λ|−1. Since there are 1
2ε
−1(1− X t) sites of type −1, the

process X jumps

x 7→ x + 2ε with rate r+(x) = 1
2ε
−1(1− x)

eβx/2

eβx/2 + e−βx/2
,

and similarly

x 7→ x − 2ε with rate r−(x) = 1
2ε
−1(1 + x)

e−βx/2

eβx/2 + e−βx/2
.

Since r±(x) are functions of x only, the process (X t)t≥0 is itself a
Markov process.
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The Ising model
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The Markov process X with |Λ| = 10, X 0 = 0.2, and β = 3.
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The Ising model
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The Markov process X with |Λ| = 100, X 0 = 0.1, and β = 3.

Jan M. Swart Particle Systems



The Ising model
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The Markov process X with |Λ| = 1000, X 0 = 0.1, and β = 3.
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The Ising model
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The Markov process X with |Λ| = 10, 000, X 0 = 0.1, and β = 3.

Jan M. Swart Particle Systems



The Ising model

For small ε, by some law of large numbers, we expect that only the
average displacement per unit time matters, i.e., the local drift

r+(x) · 2ε+ r−(x) · (−2ε)

=
(1− x)eβx/2 − (1 + x)e−βx/2

eβx/2 + e−βx/2
=: gβ(x).

In the limit ε→ 0, we expect X t to follow the deterministic
differential equation

∂
∂t X t = gβ(X t) (t ≥ 0).
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The Ising model

gβ(x)
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For β ≤ 2, the equation ∂
∂t X t = gβ(X t) has

a single, stable fixed point x = 0.
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The Ising model

gβ(x)
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For β ≤ 2, the equation ∂
∂t X t = gβ(X t) has

a single, stable fixed point x = 0.
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The Ising model

gβ(x)
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For β ≤ 2, the equation ∂
∂t X t = gβ(X t) has

a single, stable fixed point x = 0.
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The Ising model

gβ(x)
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For β > 2, the fixed point x = 0 becomes unstable
and two new stable fixed points appear.
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The Ising model

gβ(x)
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For β > 2, the fixed point x = 0 becomes unstable
and two new stable fixed points appear.
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The Ising model

gβ(x)
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For β > 2, the fixed point x = 0 becomes unstable
and two new stable fixed points appear.
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The Ising model

Starting with everybody in the state +1, the mean X t converges
as t →∞ to the upper fixed point xupp(β).
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We observe a second-order phase transition.
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The Ising model

Small β means large noise or equivalently a small tendency to
choose the same state as your neighbors.

Large β means small noise or equivalently a strong tendency to
choose the same state as your neighbors.

We observe a phase transition in β:

I For small β, the individuals behave essentially as if they were
independent.

I For large β, two stable fixed points appear where a majority of
people make the same choice.

Jan M. Swart Particle Systems



The magnetization of the Ising model

As long as the lattice Λ is finite, the (stochastic) Ising model is an
irreducible continuous-time Markov chain with finite state space,
and hence ergodic.

For the mean-field model, the limits |Λ| → ∞ and t →∞ cannot
be interchanged. Starting with X 0 > 0, first letting |Λ| → ∞ and
then t →∞, our mean-field analysis showed that the
magnetization has a positive limit xupp(β) for β > 2.

But ergodicity tells us that for any fixed |Λ|, letting t →∞, the
process X t eventually spends equally much time near xupp(β) and
−xupp(β).

If Λ is large, then most of the time X t ≈ ±xupp(β), with rare
transitions between the two values.
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Metastability for the Ising model
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The mean-field Ising model X with |Λ| = 50, X 0 = 0.1, and β = 3.
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Cooperative branching

Recall the cooperative branching map

coopi ,i ′,jx(k) :=

{ (
x(i) ∧ x(i ′)

)
∨ x(j) if k = j ,

x(k) otherwise,

and define a death map

deathix(k) :=

{
0 if k = i ,

x(k) otherwise.

Consider the process X = (Xt)t≥0 with generator

Gf (x) = b|Λ|−2
∑
i ,i ′,j

{
f
(
coopi ,i ′,jx

)
− f
(
x
)}

+
∑
i

{
f
(
deathix

)
− f
(
x
)}
.

Factor |Λ|−2 to make each site take part in a cooperative
branching event with rate of order one.
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Cooperative branching

As before, set ε := |Λ|−1 and X t := ε
∑

i∈Λ Xt(i). Then

x 7→ x + ε with rate r+(x) = ε−1bx2(1− x),

x 7→ x − ε with rate r−(x) = ε−1x ,

from which we obtain in the limit ε→ 0 the mean-field equation

∂
∂t X t = bX

2
t (1− X t)− X t =: gb(X t) (t ≥ 0).

Interpretation: a sexually reproducing population.
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Cooperative branching

gb(x)
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For b < 4, the equation ∂
∂t X t = gb(X t) has a single, stable fixed

point x = 0.
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Cooperative branching

gb(x)
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For b = 4, a second fixed point appears at x = 0.5.
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Cooperative branching

gb(x)
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For b > 4, there are two stable fixed points and one unstable fixed
point, which separates the domains of attraction of the other two.
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Cooperative branching

Starting with all sites occupied by a 1, the mean X t converges as
t →∞ to the upper fixed point xupp(b).
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We observe a first-order phase transition.
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Cooperative branching

Again, the limits |Λ| → ∞ and t →∞ cannot be interchanged. If
|Λ| is fixed but large, then X t spends a long time near xupp(b),
until eventually, the process dies out by chance.

This is metastable behavior.
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The voter model

Recall the voter map

votij(x) :=

{
x(j) if k = i ,
x(k) otherwise,

We consider the mean-field model with generator

Gf (x) = |Λ|−1
∑
i ,j∈Λ

{
f
(
voti ,jx

)
− f
(
x
)}
.

The factor |Λ|−1 is chosen so that the rate at which a given site
changes its type is of order one. This is the right time scale for the
mean-field limit.

We can interpret G as saying each site chooses a new type at the
times of a Poisson process with rate one, and the new type is
chosen with equal probabilities from the population.
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The voter model

We consider the 2-type model with Xt(i) ∈ {0, 1} and as before,
we set ε := |Λ|−1 and X t := ε

∑
i∈Λ Xt(i). Then X is a Markov

process that jumps

x 7→ x + ε with rate r+(x) = ε−1x(1− x),

x 7→ x − ε with rate r−(x) = ε−1x(1− x),

which in the mean-field limit yields the differential equation

∂
∂t X t = 0.
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The voter model
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The Markov process X with |Λ| = 100 and X 0 = 0.6.
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The voter model
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The Markov process X with |Λ| = 1000 and X 0 = 0.6.
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The voter model
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The Markov process X with |Λ| = 10, 000 and X 0 = 0.6.
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The voter model

As before, we see random behavior on a larger time scale.

Let X̂t := X t/ε. Then

Px
[
X̂t − x = +ε

]
= ε−2x(1− x) · t + O(t2),

Px
[
X̂t − x = −ε

]
= ε−2x(1− x) · t + O(t2),

So
Ex
[
(X̂t − x)

]
= O(t2),

Ex
[
(X̂t − x)2

]
= x(1− x) · t + O(t2).

One can use this to prove that the generator Ĝε of X̂ satisfies

Ĝεf (x) −→
ε→0

1
2 x(1− x) ∂2

∂x2 f (x)

for suffiently smooth f .
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The voter model
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The Markov process X with |Λ| = 100 and X 0 = 0.6.
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The voter model
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The Markov process X with |Λ| = 1000 and X 0 = 0.6.
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The voter model

In the limit ε ↓ 0, the process X̂t converges in law to a solution of
the stochastic differential

dX̂t =

√
X̂t(1− X̂t)dBt (t ≥ 0).

This is the Wright-Fisher diffusion with generator

Gf (x) = 1
2 x(1− x) ∂2

∂x2 f (x).

These calculations can be made rigorous using methods from the
theory of convergence of Markov processes; see, e.g., the book by
Ethier & Kurtz (1986).

The same methods may be applied to give rigorous proofs of the
mean-field limits, where now one finds a first-order differential
operator in the limit and an ODE instead of an SDE.
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Exercises

Exercise 1 Do a mean-field analysis of the contact process with
generator

Gf (x) =λ|Λ|−1
∑
i ,j

{
f
(
brai ,jx

)
− f
(
x
)}

+
∑
i

{
f
(
deathix

)
− f
(
x
)}
.

Do you observe a phase transition? Is it first- or second order?

Exercise 2 Same as above for the model with generator

Gf (x) = b|Λ|−2
∑
i ,i ′,j

{
f
(
coopi ,i ′,jx

)
− f
(
x
)}

+
∑
i ,j

|Λ|−1
{

f
(
rwi ,jx

)
− f
(
x
)}
.
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Exercises

Exercise 3 Derive an SDE in the limit |Λ| → ∞ for the density of
the mean-field voter model with small bias and death rates, with
generator

Gf (x) = |Λ|−2
∑
i ,j∈Λ

{
f
(
voti ,jx

)
− f
(
x
)}

+s|Λ|−1
∑
i ,j∈Λ

{
f
(
brai ,jx

)
− f
(
x
)}

+d
∑
i∈Λ

{
f
(
deathix

)
− f
(
x
)}
.

Hint: You should find expressions of the form

Ex
[
(X t − x)

]
= b(x) · t + O(t2),

Ex
[
(X t − x)2

]
= a(x) · t + O(t2),

which leads to a limiting generator of the form

Gf (x) = 1
2 a(x) ∂2

∂x2 f (x) + b(x) ∂
∂x f (x).
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Exercises

Exercise 4 Do a mean-field analysis of the following extension of
the voter model, considered by Neuhauser & Pacala (1999). In
their model, the site i flips

0 7→ 1 with rate
(
f0 + α01f1

)
f1,

1 7→ 0 with rate
(
f1 + α10f1

)
f0,

where α01, α10 > 0 and fτ = |Ni |−1
∑

j∈Ni
1{x(j)=τ} is the relative

frequency of type τ in the neigborhood of i .

Find all stable and unstable fixed points of the mean-field model in
the regimes: I. α01, α10 < 1, II. α01 < 1 < α10, III. α10 < 1 < α01,
IV. 1 < α01, α10.
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