Interacting Particle Systems with Applications in Finance

Jan M. Swart

Lecture 3: Construction of Infinite Systems and Uniqueness of the Invariant Law

Construction of Particle Systems

Let Λ be a countable set (the lattice, e.g., $\Lambda=\mathbb{Z}^{d}$), let Q be a finite set (the local state space, e.g., $Q=\{1, \ldots, q\}$ or $\{0,1\}$ or $\{-1,+1\}$), and let $S:=Q^{\wedge}$ be the space of all function $x: \Lambda \rightarrow Q$.

Let \mathcal{M} be a countable collection of maps $m: S \rightarrow S$ and let $\left(r_{m}\right)_{m \in \mathcal{M}}$ be nonnegative rates. We wish to construct the Markov process $X=\left(X_{t}\right)_{t \geq 0}$ with formal generator

$$
G f(x)=\sum_{m \in \mathcal{M}} r_{m}\{f(m(x))-f(x)\}
$$

By Tychonoff, $S=Q^{\wedge}$, equipped with the product topology, is a compact space. If Λ is infinite and $|Q|>1$, then S is uncountable.

Feller Processes

Let S be a compact, metrizable space.
We let $\mathcal{C}(S)$ denote the Banach space of continuous real functions on S, equipped with the supremumnorm $\|f\|:=\sup _{x \in S}|f(x)|$. We let $\mathcal{M}_{1}(E)$ denote the space of probability measures on E, equipped with the topology of weak convergence. We note that $\mathcal{M}_{1}(E)$ is compact and metrizable.
By definition, a continuous transition probability on S is a collection $\left(P_{t}(x, \mathrm{~d} y)\right)_{t \geq 0}$ of probability kernels on S such that
(i) $(x, t) \mapsto P_{t}(x, \cdot)$ is continuous from $S \times[0, \infty)$ to $\mathcal{M}_{1}(S)$,
(ii) $\int_{S} P_{s}(x, \mathrm{~d} y) P_{t}(y, \mathrm{~d} z)=P_{s+t}(x, \mathrm{~d} z) \quad$ and $\quad P_{0}(x, \cdot)=\delta_{x}$.

Feller Processes

Each continuous transition probability defines linear operators $P_{t}: \mathcal{C}(S) \rightarrow \mathcal{C}(S)$ by

$$
P_{t} f(x):=\int_{S} P_{t}(x, \mathrm{~d} y) f(y)
$$

These satisfy

$$
\begin{aligned}
& \text { (i) } \lim _{t \rightarrow 0}\left\|P_{t} f-f\right\|=0 \quad(f \in \mathcal{C}(S)), \\
& \text { (ii) } P_{s} P_{t} f=P_{s+t} f \quad \text { and } \quad P_{0} f=f \\
& \text { (iii) } f \geq 0 \text { implies } P_{t} f \geq 0 \\
& \text { (iv) } P_{t} 1=1
\end{aligned}
$$

Conversely, each $\left(P_{t}\right)_{t \geq 0}$ with these properties corresponds to a continuous transition probability.
We call $\left(P_{t}\right)_{t \geq 0}$ a Feller semigroup.

Feller Processes

By definition, the generator of a Feller semigroup is the operator

$$
G f:=\lim _{t \rightarrow 0} t^{-1}\left(P_{t} f-f\right)
$$

with domain

$$
\mathcal{D}(G):=\left\{f \in \mathcal{C}(S): \text { the limit } \lim _{t \rightarrow 0} t^{-1}\left(P_{t} f-f\right) \text { exists }\right\}
$$

Here the limit should exist w.r.t. the topology on $\mathcal{C}(S)$, i.e., w.r.t. the supremumnorm $\|\cdot\|$.

The domain of a linear operator is an essential part of its definition!

Feller Processes

An operator A on a Banach space \mathcal{C} is closed if its graph $\{(f, A f): f \in \mathcal{D}(A)\}$ is a closed subset of $\mathcal{C} \times \mathcal{C}$.
We say that A is closeable if there exists an operator \bar{A} (the closure of A) with domain $\mathcal{D}(\bar{A})$, such that $\{(f, \bar{A} f): f \in \mathcal{D}(\bar{A})\}$ is the closure in $\mathcal{C} \times \mathcal{C}$ of $\{(f, A f): f \in \mathcal{D}(A)\}$.
We say that an operator A on $\mathcal{C}(S)$ with domain $\mathcal{D}(A)$ satisfies the maximum principle if, whenever a function $f \in \mathcal{D}(A)$ assumes its maximum over S in a point $x \in S$, we have $A f(x) \leq 0$.

Feller Processes

Feller semigroups A linear operator G on $\mathcal{C}(S)$ is the generator of a Feller semigroup $\left(P_{t}\right)_{t \geq 0}$ if and only if
(i) $1 \in \mathcal{D}(G)$ and $G 1=0$.
(ii) G satisfies the maximum principle.
(iii) $\mathcal{D}(G)$ is dense in $\mathcal{C}(S)$.
(iv) For every $f \in \mathcal{D}(G)$ there exists a continuously differentiable function $t \mapsto u_{t}$ from $[0, \infty)$ into $\mathcal{C}(S)$ such that $u_{0}=f$, and $u_{t} \in \mathcal{D}(G), \frac{\partial}{\partial t} u_{t}=G u_{t}$ for each $t \geq 0$.
(v) G is closed.

Here, in point (iv), continuity and differentiability are defined w.r.t. the supremumnorm.

A Feller semigroup is uniquely determined by its generator. For $f \in \mathcal{D}(G)$, the function u in (iv) is given by $u_{t}=P_{t} f$. More generally, P_{t} is the closure of $\left\{\left(f, P_{t} f\right): f \in \mathcal{D}(G)\right\}$.

Feller Processes

If the domain $\mathcal{D}(A)$ of a linear operator A is the whole Banach space \mathcal{C}, then A is closed if and only if A is bounded i.e., there exists a constant $C<\infty$ such that $\|A f\| \leq C\|f\|$.

As a consequence, the generator G of a Feller semigroup is bounded if and only if it is everywhere defined, i.e., $\mathcal{D}(G)=\mathcal{C}(S)$.

In this case, the Feller semigroup is given by

$$
P_{t}=e^{G t}:=\sum_{n=0}^{\infty} \frac{1}{n!} G^{n} t^{n} \quad(t \geq 0)
$$

where the infinite sum converges absolutely in the operator norm, defined as $\|A\|:=\sup \{\|A f\|:\|f\| \leq 1\}$.
In the general, unbounded case, it is usually not feasable to specify $\mathcal{D}(G)$ precisely.

Feller Processes

Hille-Yosida The closure of a linear operator A on $\mathcal{C}(S)$ is the generator of a Feller semigroup $\left(P_{t}\right)_{t \geq 0}$ if and only if
(i) $1 \in \mathcal{D}(\bar{A})$ and $\bar{A} 1=0$.
(ii) A satisfies the maximum principle.
(iii) $\mathcal{D}(A)$ is dense in $\mathcal{C}(S)$.
(iv) There exists an $r \in(0, \infty)$ and a dense subspace $\mathcal{D} \subset \mathcal{C}(S)$
with the property that for every $f \in \mathcal{D}$ there exists a $p_{r} \in \mathcal{D}(G)$ such that $(r-G) p_{r}=f$.
If (iv) holds for some $r \in(0, \infty)$, then it holds for every $r \in(0, \infty)$.
The function p_{r} in (iv) is given by

$$
p_{r}=\int_{0}^{\infty} e^{-r t} P_{t} f \mathrm{~d} t
$$

If for some $f \in \mathcal{D}(A)$ one can solve the Cauchy problem

$$
u_{0}=f, \text { and } u_{t} \in \mathcal{D}(A), \frac{\partial}{\partial t} u_{t}=G u_{t} \text { for each } t \geq 0
$$

then $p_{r}:=\int_{0}^{\infty} e^{-r t} u_{t} \mathrm{~d} t$ solves $(r-G) p_{r}=f$,

Feller Processes

Let $\left(P_{t}\right)_{t \geq 0}$ be a Feller semigroup on $\mathcal{C}(S)$.
Then, for each probability measure μ on S, there exists a process $X=\left(X_{t}\right)_{t \geq 0}$ with cadlag sample paths, unique in law, such that $\mathbb{P}\left[X_{0} \in \cdot\right]=\mu$ and

$$
\mathbb{E}\left[f\left(X_{u}\right) \mid\left(X_{s}\right)_{0 \leq s \leq t}\right]=P_{u-t} f\left(X_{t}\right) \quad \text { a.s. } \quad(0 \leq s \leq t)
$$

The process X is (strongly) Markov with transition probabilities $\left(P_{t}\right)_{t \geq 0}$.
See Ethier \& Kurtz (1986).

Poisson Construction of Particle Systems

We wish to adapt the Poisson construction of finite systems.
Let ω be a Poisson point set on $\mathcal{M} \times \mathbb{R}$ with intensity

$$
\mu(\{m\} \times A)=r_{m} \ell(A)
$$

where ℓ denotes Lebesgue measure, and let

$$
\omega_{s, t}:=\omega \cap \mathcal{M} \times(s, t] .
$$

If $\omega_{0, t}$ is a.s. finite, then we can order its elements as

$$
\omega_{s, t}=\left\{\left(m_{1}, t_{1}\right), \ldots,\left(m_{n}, t_{n}\right)\right\}
$$

with $t_{1}<\cdots<t_{n}$, and define as before

$$
X_{t-s}=\mathbf{X}_{s, t}\left(X_{0}\right):=m_{n} \circ \cdots \circ m_{1}\left(X_{0}\right)
$$

Poisson Construction of Particle Systems

However, this is usually too restrictive. Recall the voter map

$$
\operatorname{vot}_{i j}(x):= \begin{cases}x(j) & \text { if } k=i \\ x(k) & \text { otherwise }\end{cases}
$$

and consider the one-dimensional, nearest-neighbor voter model on \mathbb{Z}, with formal generator

$$
\begin{aligned}
G f(x)= & \frac{1}{2} \sum_{i \in \mathbb{Z}}\left\{f\left(\operatorname{vot}_{i, i+1} x\right)-f(x)\right\} \\
& +\frac{1}{2} \sum_{i \in \mathbb{Z}}\left\{f\left(\operatorname{vot}_{i, i-1} x\right)-f(x)\right\},
\end{aligned}
$$

which corresponds to $r_{m}=\frac{1}{2}$ for all $m \in \mathcal{M}$, and

$$
\mathcal{M}=\left\{\operatorname{vot}_{i, i+1}, \operatorname{vot}_{i, i-1}: i \in \mathbb{Z}\right\} .
$$

Poisson Construction of Particle Systems

The Poisson set $\omega_{0, t}$ of local maps acting during the time interval $(0, t]$ is a.s. infinite for each $t>0$!

Poisson Construction of Particle Systems

However, we need to know only finitely many elements of $\omega_{0, t}$ to determine the local state of X at a space-time point (i, t).

Poisson Construction of Particle Systems

However, we need to know only finitely many elements of $\omega_{0, t}$ to determine the local state of X at a space-time point (i, t).

Poisson Construction of Particle Systems

However, we need to know only finitely many elements of $\omega_{0, t}$ to determine the local state of X at a space-time point (i, t).

Poisson Construction of Particle Systems

However, we need to know only finitely many elements of $\omega_{0, t}$ to determine the local state of X at a space-time point (i, t).

Poisson Construction of Particle Systems

However, we need to know only finitely many elements of $\omega_{0, t}$ to determine the local state of X at a space-time point (i, t).

Poisson Construction of Particle Systems

However, we need to know only finitely many elements of $\omega_{0, t}$ to determine the local state of X at a space-time point (i, t).

Poisson Construction of Particle Systems

For any map $m: S \rightarrow S$, let

$$
\mathcal{D}(m):=\{i \in \Lambda: \exists x \in S \text { s.t. } m(x)(i) \neq x(i)\}
$$

denote the set of lattice points whose values can possibly be changed by m. Let us say that a point $j \in \Lambda$ is m-relevant for some $i \in \Lambda$ if

$$
\exists x, y \in S \text { s.t. } m(x)(i) \neq m(y)(i) \text { and } x(k)=y(k) \forall k \neq j,
$$

and write

$$
\mathcal{R}_{i}(m):=\{j \in \Lambda: j \text { is } m \text {-relevant for } i\} .
$$

Note that $\mathcal{R}_{i}(m)=\emptyset$ for $i \notin \mathcal{D}(m)$. It may also happen that $\mathcal{R}_{i}(m)=\emptyset$ for some (or all!) $i \in \mathcal{D}(m)$.
If $\mathcal{D}(m)$ and $\mathcal{R}_{i}(m)$ with $i \in \mathcal{D}(m)$ are finite, then we say that m is a local map.

Poisson Construction of Particle Systems

Example 1 The voter map

$$
\operatorname{vot}_{i j}(x):= \begin{cases}x(j) & \text { if } k=i \\ x(k) & \text { otherwise }\end{cases}
$$

says that site i copies the type of site j. Therefore:
$\mathcal{D}\left(\operatorname{vot}_{i j}\right)=\{i\}$. Only site i can change.
$\mathcal{R}_{i}\left(\operatorname{vot}_{i j}\right)=\{j\}$. We only need to know $x(j)$ to decide what type site i has after we apply vot $_{i j}$.

Poisson Construction of Particle Systems

Example 2 The coalescing random walk map

$$
\mathrm{rw}_{i, j} x(k):=\left\{\begin{array}{cl}
0 & \text { if } k=i \\
x(i) \vee x(j) & \text { if } k=j, \\
x(k) & \text { otherwise } .
\end{array}\right.
$$

says that if there is a particle at i, then this jumps to j, coalescing with any particle that may already be present there. Therefore:
$\mathcal{D}\left(\mathrm{rw}_{i j}\right)=\{i, j\}$. Sites i and j can change.
$\mathcal{R}_{i}\left(\mathrm{rw}_{i j}\right)=\emptyset$. After we apply $\mathrm{rw}_{i j}$, the site i is always empty. We do not need to known anything about x to know that.
$\mathcal{R}_{j}\left(\mathrm{rw}_{i j}\right)=\{i, j\}$. In order to decide if after we apply $\mathrm{rw}_{i j}$, there is a particle at j, we need to know both $x(i)$ and $x(j)$.

Poisson Construction of Particle Systems

Assume that \mathcal{M} contains only local maps.
By definition a path of influence from (i, s) to (j, u) is a cadlag function $\gamma:[s, u] \rightarrow \Lambda$ such that $\gamma_{s-}=i, \gamma_{u}=j$, and
(i) if $\gamma_{t-} \neq \gamma_{t}$ for some $t \in[s, u]$, then there exists some $m \in \mathcal{M}$ such that $(m, t) \in \omega, \gamma_{t} \in \mathcal{D}(m)$ and $\gamma_{t-} \in \mathcal{R}_{\gamma_{t}}(m)$,
(ii) for each $(m, t) \in \omega$ with $t \in[s, u]$ and $\gamma_{t} \in \mathcal{D}(m)$, one has $\gamma_{t-} \in \mathcal{R}_{\gamma_{t}}(m)$.

For any finite set $A \subset \Lambda$ and $s \leq u$, we set

$$
\zeta_{s}^{A, u}:=\{i \in \Lambda:(i, s) \rightsquigarrow A \times\{u\}\},
$$

where $(i, s) \rightsquigarrow A \times\{u\}$ denotes the presence of a path of influence from (i, s) to some $(j, u) \in A \times\{u\}$.

Poisson Construction of Particle Systems

Proposition 1 Assume that

$$
\begin{aligned}
K_{0} & :=\sup _{i \in \Lambda} \sum_{\substack{m \in \mathcal{M} \\
\mathcal{D}(m) \ni i}} r_{m}<\infty \\
K & :=\sup _{i \in \Lambda} \sum_{\substack{m \in \mathcal{M} \\
\mathcal{D}(m) \ni i}} r_{m}\left(\left|\mathcal{R}_{i}(m)\right|-1\right)<\infty .
\end{aligned}
$$

Then, for each finite $A \subset \Lambda$, one has

$$
\mathbb{E}\left[\left|\zeta_{s}^{A, u}\right|\right] \leq|A| e^{K(u-s)} \quad(s \leq u)
$$

Poisson Construction of Particle Systems

Proof Without loss of generality set $u=0$. Fix A and write $\zeta_{s}:=\zeta_{s}^{A, 0}$. Let $\Lambda_{n} \subset \Lambda$ be finite sets such that $\Lambda_{n} \uparrow \Lambda$. For n large enough such that $A \subset \Lambda_{n}$, write

$$
\zeta_{s}^{n}:=\left\{i \in \Lambda_{n}:(i, s) \rightsquigarrow_{n} A \times\{0\}\right\},
$$

where $(i, s) \rightsquigarrow_{n} A \times\{0\}$ denotes the presence of a path of influence from (i, s) to $A \times\{0\}$ that stays in Λ_{n}. We observe that

$$
\zeta_{s}^{n} \uparrow \zeta_{s} \quad(s \leq 0)
$$

It therefore suffices to prove

$$
\mathbb{E}^{A}\left[\left|\zeta_{s}^{n}\right|\right] \leq|A| e^{K(-s)} \quad(s \leq 0)
$$

uniformly in n.

Poisson Construction of Particle Systems

$$
\text { Let } \mathcal{M}_{n}:=\left\{m \in \mathcal{M}: \mathcal{D}(m) \cap \wedge_{n} \neq \emptyset\right\} \text {. }
$$

The process $\left(\zeta_{-t}^{n}\right)_{t \geq 0}$ is a Markov process taking values in the (finite) space of all subsets of Λ_{n}, with generator

$$
G_{n} f(B):=\sum_{m \in \mathcal{M}_{n}} r_{m}\left(f\left(B^{(m)}\right)-f(B)\right),
$$

where

$$
B^{(m)}:=(B \backslash \mathcal{D}(m)) \cup \bigcup_{i \in B \cap \mathcal{D}(m)}\left(\mathcal{R}_{i}(m) \cap \Lambda_{n}\right)
$$

By our assumption $K_{0}<\infty$, we have $\sum_{m \in \mathcal{M}_{n}} r_{m}<\infty$, hence this Markov process is well-defined.

Poisson Construction of Particle Systems

Let $\left(P_{t}^{n}\right)_{t \geq 0}$ be the associated semigroup and let f denote the function $f(A):=|A|$. Then

$$
\begin{aligned}
G_{n} f(A) & =\sum_{m \in \mathcal{M}_{n}} r_{m}\left(f\left(A^{m}\right)-f(A)\right) \\
& \leq \sum_{m \in \mathcal{M}_{n}}^{m} r_{m}\left(|A \backslash \mathcal{D}(m)|+\sum_{i \in A \cap \mathcal{D}(m)}\left|\mathcal{R}_{i}(m)\right|-|A|\right) \\
& =\sum_{m \in \mathcal{M}_{n}} r_{m}\left(\sum_{i \in A \cap \mathcal{D}(m)}\left(\left|\mathcal{R}_{i}(m)\right|-1\right)\right) \\
& =\sum_{i \in A}^{m} \sum_{\substack{m \in \mathcal{M}_{n} \\
\mathcal{D}(m) \ni i}} r_{m}\left(\left|\mathcal{R}_{i}(m)\right|-1\right) \leq K|A| .
\end{aligned}
$$

Poisson Construction of Particle Systems

We have just shown that the function $f(A):=|A|$ satisfies $G_{n} f(A) \leq K f(A)$. It follows that

$$
\begin{aligned}
\frac{\partial}{\partial t}\left(e^{-K t} P_{t}^{n} f\right) & =-K e^{-K t} P_{t}^{n} f+e^{-K t} P_{t}^{n} G_{n} f \\
& =e^{-K t} P_{t}^{n}\left(G_{n} f-K f\right) \leq 0
\end{aligned}
$$

and therefore $e^{-K t} P_{t}^{n} f \leq e^{-K 0} P_{0}^{n} f=f$, which means that

$$
\mathbb{E}^{A}\left[\left|\zeta_{-t}^{n}\right|\right]=P_{t}^{n} f(A) \leq|A| e^{K t} \quad(t \geq 0)
$$

Poisson Construction of Particle Systems

Let

$$
\omega_{s,(i, u)}:=\left\{(m, t) \in \omega_{s, u}: \mathcal{D}(m) \times\{t\} \rightsquigarrow(i, u)\right\}
$$

be the set of all Poisson events during $(s, u]$ that are relevant for the state of our process at (i, u).

Proposition 2 Assume that

$$
K_{1}:=\sup _{i \in \Lambda} \sum_{\substack{m \in \mathcal{M} \\ \mathcal{D}(m) \ni i}} r_{m}\left|\mathcal{R}_{i}(m)\right|<\infty .
$$

Then $\omega_{s,(i, u)}$ is a.s. finite for each $s \leq u$ and $i \in \Lambda$.

Poisson Construction of Particle Systems

Proof This is the same proof as before, except that instead of

$$
B^{(m)}:=(B \backslash \mathcal{D}(m)) \cup \bigcup_{i \in B \cap \mathcal{D}(m)}\left(\mathcal{R}_{i}(m) \cap \Lambda_{n}\right),
$$

we define

$$
B^{(m)}:=B \cup \bigcup_{i \in B \cap \mathcal{D}(m)}\left(\mathcal{R}_{i}(m) \cap \wedge_{n}\right)
$$

so that sites, once included in ζ_{-t}^{n}, cannot be removed.
Our previous proof now shows that $\mathbb{E}^{A}\left[\left|\zeta_{-t}\right|\right] \leq|A| e^{K_{1} t}$.
In particular, for fixed $s<u=0$, the set ζ_{s} is a.s. finite and all sets ζ_{-t} with $s \leq-t \leq 0$ are contained in it. By the condition $K_{0}<\infty$, the finite set ζ_{s} is intersected by only finitely many events $(m, t) \in \omega_{s, u}$.

Poisson Construction of Particle Systems

Theorem 3 (Graphical Representation) Assume that

$$
\sup _{i \in \Lambda} \sum_{\substack{m \in \mathcal{M} \\ \mathcal{D}(m) \ni i}} r_{m}\left(\left|\mathcal{R}_{i}(m)\right|+1\right)<\infty
$$

Then, a.s., $\omega_{s,(t, i)}$ is finite for all $s \leq t$ and $i \in \Lambda$. For any finite $\tilde{\omega}_{s,(t, i)}$ with $\omega_{s,(t, i)} \subset \tilde{\omega}_{s,(t, i)} \subset \omega_{s, t}$, setting

$$
\tilde{\omega}_{s,(t, i)}:=\left\{\left(m_{1}, t_{1}\right), \ldots,\left(m_{n}, t_{n}\right)\right\}
$$

with $t_{1}<\cdots<t_{n}$, we can unambiguously define random $\operatorname{maps} \mathbf{X}_{s, t}: S \rightarrow S(s \leq t)$ by

$$
\mathbf{X}_{s, t}(x)(i):=m_{n} \circ \cdots \circ m_{1}(x)(i)
$$

Poisson Construction of Particle Systems

Let $\left(\mathbf{X}_{s, t}\right)_{s \leq t}$ be the random maps defined in terms of the graphical representation (Poisson point set) ω. Then

$$
P_{t}(x, \cdot):=\mathbb{P}\left[\mathbf{X}_{0, t}(x) \in \cdot\right]
$$

defines a collection of probability kernels $\left(P_{t}\right)_{t \geq 0}$.
Theorem 4 The probability kernels $\left(P_{t}\right)_{t \geq 0}$ form a continuous transition probability. Moreover, if X_{0} is independent of ω, then

$$
X_{t}:=\mathbf{X}_{0, t}\left(X_{0}\right) \quad(t \geq 0)
$$

defines a process with cadlag sample paths such that

$$
\mathbb{E}\left[f\left(X_{u}\right) \mid\left(X_{s}\right)_{0 \leq s \leq t}\right]=P_{u-t} f\left(X_{t}\right) \quad \text { a.s. } \quad(0 \leq s \leq t)
$$

Generator Construction of Particle Systems

For $f \in \mathcal{C}(S)$ and $i \in \Lambda$, define

$$
\delta f(i):=\sup \{|f(x)-f(y)|: x, y \in S, x(j)=y(j) \forall j \neq i\}
$$

We call δf the variation of f and define

$$
\mathcal{C}_{\text {sum }}(S):=\left\{f \in \mathcal{C}(S): \sum_{i} \delta f(i)<\infty\right\} .
$$

Recall that

$$
K_{0}:=\sup _{i \in \Lambda} \sum_{\substack{m \in \mathcal{M} \\ 0 \in \mathcal{M}}} r_{m}<\infty
$$

For each $f \in \mathcal{C}_{\text {sum }}(S)$, $\mathcal{D}(m) \ni i$

$$
\sum_{m \in \mathcal{M}} r_{m}|f(m(x))-f(x)| \leq K_{0} \sum_{i \in \Lambda} \delta f(i) .
$$

In particular, for such $f, G f$ is well-defined by

$$
G f(x)=\sum_{m \in \mathcal{M}} r_{m}\{f(m(x))-f(x)\}
$$

Generator Construction of Particle Systems

Theorem 5 Let $\left(P_{t}\right)_{t \geq 0}$ be the Feller semigroup arising from our Poisson construction. Then the generator of $\left(P_{t}\right)_{t \geq 0}$ is the closure of G with domain $\mathcal{D}(G):=\mathcal{C}_{\text {sum }}(S)$.

Proof (sketch) One can check that

$$
\sum_{i \in \Lambda} \delta P_{t} f(i) \leq e^{K t} \sum_{i \in \Lambda} \delta f(i) \quad\left(t \geq 0, f \in \mathcal{C}_{\text {sum }}(S)\right)
$$

In particular, for each $t \geq 0, P_{t}$ maps $\mathcal{C}_{\text {sum }}(S)$ into itself. Moreover, $t \mapsto P_{t} f$ is continuously differentiable, $P_{0} f=f$, and $\frac{\partial}{\partial t} P_{t} f=G P_{t} f$ for each $t \geq 0$. The claim now follows from Hille-Yosida.

Generator Construction of Particle Systems

Since a Feller process is uniquely characterized by its generator, we see that if

$$
\begin{aligned}
G f(x) & =\sum_{m \in \mathcal{M}} r_{m}\{f(m(x))-f(x)\} \\
& =\sum_{m \in \tilde{\mathcal{M}}} \tilde{r}_{m}\{f(m(x))-f(x)\}
\end{aligned}
$$

are two different random mapping representations of the same generator, then the corresponding processes

$$
X_{t}:=\mathbf{X}_{0, t}\left(X_{0}\right) \quad \text { and } \quad \tilde{X}_{t}:=\tilde{\mathbf{X}}_{0, t}\left(X_{0}\right)
$$

are equal in law. In practise, one needs both the graphical representation (Poisson construction) and the Feller formalism.

Generator Construction of Particle Systems

The first infinite interacting particle systems were constructed by Dobrushin (1971).
Liggett (1972) introduced the space $\mathcal{C}_{\text {sum }}(S)$ and proved sufficient conditions directly in terms of the generator G so that its closure generates a Feller semigroup (and hence corresponds to a well-defined Markov process). These conditions are more general and do not depend on finding a good random mapping representation.

Graphical representations of interacting particle systems have been used since Harris (1972), but I do not know a good general reference.

The fact that the Poisson and generator constructions yield the same process is usually considered self-evident.

Uniqueness of the Invariant Law

Let X be a Feller process in S with semigroup $\left(P_{t}\right)_{t \geq 0}$. For any probability measure μ on S, we define

$$
\mu P_{t}(\mathrm{~d} y):=\int_{S} \mu(\mathrm{~d} x) P_{t}(x, \mathrm{~d} y)
$$

Then μP_{t} is the law at time t of the process with initial law μ. If S is finite, this just says that

$$
\mu P_{t}(y)=\sum_{x \in S} \mu(x) P_{t}(x, y)
$$

where we simplify notation by writing $\mu(x):=\mu(\{x\})$ etc.
By definition, an invariant law of X is a probability measure μ such that

$$
\mu P_{t}=\mu \quad(t \geq 0)
$$

Equivalently, this says that the process X with initial law μ is stationary.

Uniqueness of the Invariant Law

Let G have the random mapping representation

$$
G f(x)=\sum_{m \in \mathcal{M}} r_{m}\{f(m(x))-f(x)\}
$$

Assume that

$$
\sup _{i \in \Lambda} \sum_{\substack{m \in \mathcal{M} \\ \mathcal{D}(m) \ni i}} r_{m}\left(\left|\mathcal{R}_{i}(m)\right|+1\right)<\infty
$$

so that the corresponding particle systems is well-defined, and recall that

$$
K:=\sup _{i \in \Lambda} \sum_{\substack{m \in \mathcal{M} \\ \mathcal{D}(m) \ni i}} r_{m}\left(\left|\mathcal{R}_{i}(m)\right|-1\right) .
$$

Note that it is possible that $K<0$.

Uniqueness of the Invariant Law

Our proof that the random maps $\left(\mathbf{X}_{s, t}\right)_{s \leq t}$ are well-defined by the graphical representation yields the following:

Corollary 6 For $A \subset \Lambda$ and $s \leq t$, let

$$
\zeta_{s}^{A, t}:=\{i \in \Lambda:(i, s) \rightsquigarrow A \times\{t\}\}
$$

be the set of lattice points at time s whose value is relevant for the states in A at time t. Then

$$
\mathbb{E}\left[\left|\zeta_{s}^{A, t}\right|\right] \leq|A| e^{K(t-s)}
$$

Uniqueness of the Invariant Law

Theorem 7 Assume that $K<0$. Then the interacting particle system X with generator G has a unique invariant law ν. Moreover, the process started in any initial law satisfies

$$
\mathbb{P}\left[X_{t} \in \cdot\right] \underset{t \rightarrow \infty}{\Longrightarrow} \nu
$$

Before we give the proof, it is good to see an example.

Ergodicity of the Ising Model

Parameters $J, \beta>0$. Assume $\left|\mathcal{N}_{i}\right|=N$ for all i. Utility function:

$$
U_{t}^{ \pm}(i, x)= \pm \frac{1}{2} J \sum_{j \in \mathcal{N}_{i}} x(j) \pm \frac{1}{2} W_{t}(i)
$$

- $W_{t}(i)$ logistically distributed: $\mathbb{P}\left[W_{t}(i) \leq w\right]=\left(1+e^{-\beta w}\right)^{-1}$.
- The noise terms $W_{t}(i)$ are independent for each person and are redrawn at times of a Poisson process with intensity one.
- After the noise is redrawn, each person immediately chooses his or her new state according to the highest utility.
If $\left|W_{t}(i)\right|>J N$, then the choice of a person does not depend on his/her neighborhood!

Ergodicity of the Ising Model

To apply Theorem 7, we need to device a random mapping representation. For $h \in\{-N-1,-N+1, \ldots, N+1\}=: H$, define

$$
m_{i, h}(x)(k)\left(:= \begin{cases}+1 & \text { if } k=i \text { and } \sum_{i \in \mathcal{N}_{i}} x(j)>h \\ -1 & \text { if } k=i \text { and } \sum_{i \in \mathcal{N}_{i}} x(j)<h \\ x(k) & \text { if } k \neq i\end{cases}\right.
$$

and define rates r_{h} by

$$
\begin{aligned}
r_{-N-1} & :=\mathbb{P}[-W<J N] \\
r_{h} & :=\mathbb{P}[J(h-1)<-W<J(h+1)] \quad(-N-1<h<N+1), \\
r_{N+1} & :=\mathbb{P}[J N<-W]
\end{aligned}
$$

where W is logistically distributed with parameter β.

Ergodicity of the Ising Model

If $0<W<2 J$, then $U^{+}>U^{-}$provided that $\sum_{j \in \mathcal{N}_{i}} x(i)>-1$, i.e., this quantity needs to be 0,2 , or 4 in order for U^{+}to be larger that U^{-}.
If $4 \mathrm{~J}<W$, then the person switches to +1 whatever the state of its neighbors, i.e., if $\sum_{j \in \mathcal{N}_{i}} x(i)>-5$.

Ergodicity of the Ising Model

Then we have the random mapping representation

$$
G f(x)=\sum_{i \in \Lambda} \sum_{h \in H} r_{h}\left\{f\left(m_{i, h} x\right)-f(x)\right\} .
$$

We observe that

$$
\mathcal{R}_{i}\left(m_{j, h}\right)=\emptyset \quad \text { if } i \neq j \text { or } h= \pm(N+1)
$$

while

$$
\mathcal{R}_{i}\left(m_{i, h}\right)=\mathcal{N}_{i} \quad \text { for }-N-1<h<N+1 .
$$

It follows that

$$
\begin{aligned}
K & =\sup _{i} \sum_{h \in H} r_{h}\left(1_{\{-N-1<h<N+1\}} N-1\right) \\
& =\mathbb{P}[-J N<W<J N] N-1=(N-1)-N \mathbb{P}[|W|>J N]
\end{aligned}
$$

Ergodicity of the Ising Model

If $\mathbb{P}[|W|>J N]$ is large enough, then $K<0$, and we need to look back only finitely long in time to decide the state of any lattice point.

Uniqueness of the Invariant Law

Theorem 7 Assume that $K<0$. Then the interacting particle system X with generator G has a unique invariant law ν. Moreover, the process started in any initial law satisfies

$$
\mathbb{P}\left[X_{t} \in \cdot\right] \underset{t \rightarrow \infty}{\Longrightarrow} \nu
$$

Uniqueness of the Invariant Law

Proof For $A \subset \Lambda$ and $s \leq t$, let

$$
\zeta_{s}^{A, t}:=\{i \in \Lambda:(i, s) \rightsquigarrow A \times\{t\}\}
$$

be the set of lattice points at time s whose value is relevant for the states in A at time t. In Corollary 6, we have seen that

$$
\mathbb{E}\left[\left|\zeta_{s}^{A, t}\right|\right] \leq|A| e^{K(t-s)}
$$

In particular, if $K<0$, then a.s. there is some (random) $s_{0}<t$ such that $\zeta_{s}^{A, t}=\emptyset$ for all $s \leq s_{0}$. This means that we need to look only finitely far back in time to decide what the state of (i, t) is.

Uniqueness of the Invariant Law

Recall that $\omega_{s,(i, t)}$ denotes the set of all Poisson events during $(s, t]$ that are relevant for the state of our process at (i, t). If $K<0$, then $\omega_{-\infty,(i, u)}$ is finite a.s. Ordering its elements as

$$
\omega_{-\infty,(t, i)}:=\left\{\left(m_{1}, t_{1}\right), \ldots,\left(m_{n}, t_{n}\right)\right\}
$$

with $t_{1}<\cdots<t_{n}$, we can unambiguously define a stationary process $\bar{X}=\left(\bar{X}_{t}\right)_{t \in \mathbb{R}}$ by

$$
\bar{X}_{t}(i):=\mathbf{X}_{-\infty, t}(x)(i):=m_{n} \circ \cdots \circ m_{1}(x)(i)
$$

where the definition does not depend on the choice of $x \in S$.
Since \bar{X} is stationary, $\nu:=\mathbb{P}\left[\bar{X}_{t} \in \cdot\right]$ is an invariant law.

Uniqueness of the Invariant Law

Let Y be a random variable with values in S, independent of ω, and let $\left(\bar{X}_{t}\right)_{t \in \mathbb{R}}$ be the stationary process constructed above. Then, for each finite $A \subset \Lambda$,

$$
\begin{aligned}
& \mathbb{P}\left[\bar{X}_{0}(i) \neq \mathbf{X}_{-t, 0}(Y)(i) \text { for some } i \in A\right] \\
& \quad \leq \mathbb{P}\left[\zeta_{-t}^{A, 0} \neq \emptyset\right] \leq \mathbb{E}\left[\left|\zeta_{-t}^{A, 0}\right|\right] \leq|A| e^{-K t} \underset{t \rightarrow \infty}{\longrightarrow} 0
\end{aligned}
$$

It follows that

$$
\lim _{t \rightarrow \infty} \mathbf{X}_{-t, 0}(Y)(i)=\bar{X}_{0}(i) \quad \text { a.s. } \quad(i \in \Lambda)
$$

Let X be the process started in the initial law $\mu=\mathbb{P}[Y \in \cdot]$. Then

$$
\mathbb{P}\left[X_{t} \in \cdot\right]=\mathbb{P}\left[\mathbf{X}_{-t, 0}(Y) \in \cdot\right] \underset{t \rightarrow \infty}{\Longrightarrow} \nu
$$

In particular, this implies also the uniqueness of ν.

Ergodicity of the Ising Model

For our stochastic Ising model, Theorem 7 yields ergodicity provided that

$$
K=(N-1)-N \mathbb{P}[|W|>J N]<0
$$

which yields

$$
\frac{2}{1+e^{J \beta N}}>\frac{N-1}{N} \Leftrightarrow J \beta<-N^{-1} \log ((2 N) /(N-1)-1)
$$

where $N=\left|\mathcal{N}_{i}\right|$. Concretely, for the Ising model on \mathbb{Z}^{2} this proves ergodicity provided

$$
J \beta<0.12771
$$

which is quite far from the known critical point 0.88137 . Our bound gets worse when N becomes large.

Ergodicity of the Ising Model

A sharper bound can be found in Theorem IV.3.1 of Liggett's (1985) book.

This theorem is based on a similar approach: it is shown that

$$
\sum_{i \in \Lambda} \delta P_{t} f(i) \leq e^{K^{\prime} t} \sum_{i \in \Lambda} \delta f(i) \quad\left(t \geq 0, f \in \mathcal{C}_{\text {sum }}(S)\right)
$$

where the constant K^{\prime} is negative for a suitable choice of the parameters.
If this happens, then $\sum_{i \in \Lambda} \delta P_{t} f(i) \rightarrow 0$ as $t \rightarrow \infty$ which implies that $P_{t} f$ converges to a constant c_{f}. Since this happens for every f, one can deduce that there is a unique invariant law ν and

$$
P_{t} f \underset{t \rightarrow \infty}{\longrightarrow} \int f \mathrm{~d} \nu=c_{f} \quad\left(f \in \mathcal{C}_{\text {sum }}(S)\right) .
$$

The usefulness of Theorem 7 depends on finding a good random mapping representation.

Exercises

Exercise 1 The generator of the contact process has the random mapping representation

$$
\begin{aligned}
G f(x)= & \lambda \sum_{i \in \Lambda} \sum_{j \in \mathcal{N}_{i}}\left\{f\left(\operatorname{bra}_{i, j} x\right)-f(x)\right\} \\
& +\sum_{i \in \Lambda}\left\{f\left(\operatorname{death}_{i} x\right)-f(x)\right\}
\end{aligned}
$$

Letting $0 \in S$ denote the state that is identically zero, we observe that the contact process started in $X_{0}=0$ satisfies $X_{t}=0$ for all $t \geq 0$. It follows that δ_{0} is an invariant law for the contact process. Assuming that $\left|\mathcal{N}_{i}\right|=N$ does not depend on $i \in \Lambda$, apply Theorem 7 to give suffient conditions in terms of λ and N for δ_{0} to be the only invariant law and for the contact process to be ergodic.

Exercises

Exercise 2 The threshold voter model is a particle system with state space $S=\{0,1\}^{\wedge}$, where in the state x, the site i flips with the following rates:
$0 \mapsto 1 \quad$ with rate $\quad 1_{\{x(j)=1} \quad$ for some $\left.j \in \mathcal{N}_{i}\right\}$,
$1 \mapsto 0 \quad$ with rate $1_{\{x(j)=0}$ for some $\left.j \in \mathcal{N}_{i}\right\}$.
Assume that $i \notin \mathcal{N}_{i}$ and set $\overline{\mathcal{N}}_{i}:=\mathcal{N}_{i} \cup\{i\}$. For each $\Delta \subset \Lambda$, define a local map $m_{i, \Delta}$ by

$$
m_{i, \Delta}(x)(k):= \begin{cases}\sum_{j \in \Delta} x(j) \bmod (2) & \text { if } k=i \\ x(k) & \text { otherwise }\end{cases}
$$

Show that the threshold voter model has the random mapping representation

$$
G f(x)=2^{1-\left|\mathcal{N}_{i}\right|} \sum_{i \in \Lambda} \sum_{\substack{\Delta \subset \overline{\mathcal{N}}_{i} \\|\Delta| \text { is even }}}\left\{f\left(m_{i, \Delta x}\right)-f(x)\right\}
$$

Exercises

Exercise 3 A commonly studied stochastic Ising model, somewhat different from the one we considered before, is the process with state space $\{-1,+1\}^{\wedge}$ in which the site i flips with the following rates:

$$
\begin{array}{lll}
-1 \mapsto+1 & \text { with rate } & e^{-\beta J M_{i}(-)} \\
+1 \mapsto-1 & \text { with rate } & e^{-\beta J M_{i}(+)}
\end{array}
$$

where $M_{i}(\pm):=\sum_{j \in \mathcal{N}_{i}} 1_{\{x(j)= \pm\}}$. For each $i \in \Lambda$ and finite $\Delta \subset \Lambda$, define a local map $m_{i, \Delta}$ by
$m_{i, \Delta}(x)(k):= \begin{cases}1-x(i) & \text { if } k=i \text { and } \quad x(i) \neq x(j) \forall j \in \Delta, \\ x(k) & \text { otherwise. }\end{cases}$
Assume that $i \notin \mathcal{N}_{i}$ and set $p:=1-e^{-\beta J}$. Show that our model has the random mapping representation

$$
G f(x)=\sum_{i \in \Lambda} \sum_{\Delta \subset \mathcal{N}_{i}} p^{|\Delta|}(1-p)^{\left|\mathcal{N}_{i} \backslash \Delta\right|}\left\{f\left(m_{i, \Delta x} x\right)-f(x)\right\} .
$$

Exercises

Exercise 4 Let $m_{i}^{ \pm}$be the local maps defined as

$$
m_{i}^{ \pm}(x)(k):= \begin{cases} \pm 1 & \text { if } k=i \\ x(k) & \text { otherwise }\end{cases}
$$

Then an alternative random mapping representation for the stochastic Ising model from Exercise 3 is

$$
\begin{aligned}
G f(x)= & \sum_{i \in \Lambda} \sum_{\sigma \in\{-,+\}}(1-p)^{\left|\mathcal{N}_{i}\right|}\left\{f\left(m_{i}^{\sigma} x\right)-f(x)\right\} \\
& +\sum_{i \in \Lambda} \sum_{\substack{\Delta \subset \mathcal{N}_{i} \\
\Delta \neq \emptyset}} p^{|\Delta|}(1-p)^{\left|\mathcal{N}_{i} \backslash \Delta\right|}\left\{f\left(m_{i, \Delta x} x\right)-f(x)\right\} .
\end{aligned}
$$

Assuming that $\left|\mathcal{N}_{i}\right|=N$ does not depend on $i \in \Lambda$, apply Theorem 7 to give suffient conditions in terms of β and N for this stochastic Ising model to be ergodic.

