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Construction of Particle Systems

Let A be a countable set (the /attice, e.g., N = Zd),
let Q be a finite set (the local state space, e.g.,

Q= {15 SRR q} or {07 1} or {_17 +1})'
and let S := Q" be the space of all function x : A — Q.

Let M be a countable collection of maps m: S — S and let
(fm)mem be nonnegative rates. We wish to construct the Markov
process X = (X;)¢>0 with formal generator

GF(x) = > rm{f(m(x)) = F(x)}.

meM

By Tychonoff, S = Q", equipped with the product topology, is a
compact space. If A is infinite and |Q| > 1, then S is uncountable.
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Feller Processes

Let S be a compact, metrizable space.

We let C(S) denote the Banach space of continuous real functions
on S, equipped with the supremumnorm ||f|| := sup,cs|f(x)|.

We let M7 (E) denote the space of probability measures on E,
equipped with the topology of weak convergence. We note that
M (E) is compact and metrizable.

By definition, a continuous transition probability on S is a
collection (P¢(x,dy))t>0 of probability kernels on S such that

(i) (x,t) — Pe(x, ) is continuous from S x [0, 00) to M;(S),

(ii) /SPS(X,dy)Pt(y, dz) = Psit(x,dz) and  Py(x,-) = Ox.
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Feller Processes

Each continuous transition probability defines linear operators
P: : C(S) — C(S) by

Pef(x) = /5 Pe(x. dy)F(y).

These satisfy

(i) limeollPef — Il =0 (FeC(S)),
(11) PSPtf = P5+tf and Pof = f,
(iii) f > 0 implies Pf >0,
(iv) Pil=1.
Conversely, each (P;)¢>0 with these properties corresponds to a

continuous transition probability.
We call (Pt)¢>0 a Feller semigroup.
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Feller Processes

By definition, the generator of a Feller semigroup is the operator
— i 41 _
Gf = tlgmot (P:f — f),
with domain
D(G) := {f € C(S) : the limit lim t~(P¢f — f) exists}.
t—0

Here the limit should exist w.r.t. the topology on C(S), i.e., w.r.t.
the supremumnorm || - ||.

The domain of a linear operator is an essential part of its definition!
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Feller Processes

An operator A on a Banach space C is closed if its graph
{(f,Af): f € D(A)} is a closed subset of C x C.

We say that A is closeable if there exists an operator A (the B
closure of A) with domain D(A), such that {(f,Af):f € D(A)} is
the closure in C x C of {(f,Af): f € D(A)}.

We say that an operator A on C(S) with domain D(A) satisfies the
maximum principle if, whenever a function f € D(A) assumes its
maximum over S in a point x € S, we have Af(x) < 0.
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Feller Processes

Feller semigroups A linear operator G on C(S) is the generator of
a Feller semigroup (P¢)¢>o if and only if

(i) 1€ D(G) and G1 =0.

(ii) G satisfies the maximum principle.

(iii) D(G) is dense in C(S).
)

(iv) For every f € D(G) there exists a continuously differentiable
function t — u; from [0, 00) into C(S) such that
up = f, and u; € D(G), %ut = Gu; for each t > 0.

(v) G is closed.

Here, in point (iv), continuity and differentiability are defined w.r.t.
the supremumnorm.

A Feller semigroup is uniquely determined by its generator.
For f € D(G), the function u in (iv) is given by u; = P:f.
More generally, P; is the closure of {(f, P:f): f € D(G)}.
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Feller Processes

If the domain D(A) of a linear operator A is the whole Banach
space C, then A is closed if and only if A is bounded i.e., there
exists a constant C < oo such that ||Af|| < CJ|f].

As a consequence, the generator G of a Feller semigroup is
bounded if and only if it is everywhere defined, i.e., D(G) = C(S).

In this case, the Feller semigroup is given by
Gt 1 nen
Py =e"" = —G"t (t>0),

where the infinite sum converges absolutely in the operator norm,
defined as ||A|| := sup{||Af] : ||f|| < 1}.

In the general, unbounded case, it is usually not feasable to specify
D(G) precisely.
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Feller Processes

Hille-Yosida The closure of a linear operator A on C(S) is the
generator of a Feller semigroup (P:):>o if and only if
(i) 1 € D(A) and AL = 0.

(ii) A satisfies the maximum principle.

(iii) D(A) is dense in C(S).

(iv) There exists an r € (0,00) and a dense subspace D C C(S)
with the property that for every f € D there exists a
pr € D(G) such that (r — G)p, = f.

If (iv) holds for some r € (0, c0), then it holds for every r € (0, c0).

The function p, in (iv) is given by

p,:/ e P fdt.
0

If for some f € D(A) one can solve the Cauchy problem
up = f, and us € D(A), at“f Gu; for each t > 0,

then p, := [y~ e "u, dt solves (r — G)p, = f.



Feller Processes

Let (P¢)t>0 be a Feller semigroup on C(S).

Then, for each probability measure 1 on S, there exists a process
X = (Xt)e>0 with cadlag sample paths, unique in law, such that
P[Xo € -] = p and

E[f(Xu) | (Xs)ocs<t] = Pu—tf(Xe) as.  (0<s<t).

The process X is (strongly) Markov with transition probabilities
(Pt)e>0-
See Ethier & Kurtz (1986).
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Poisson Construction of Particle Systems

We wish to adapt the Poisson construction of finite systems.
Let w be a Poisson point set on M x R with intensity

u({m} % A) = m €(A).
where ¢ denotes Lebesgue measure, and let
wsr i=wNM x (s,t].
If wo,t is a.s. finite, then we can order its elements as
Ws,t = {(ml, t1)y ..., (mp, t,,)}
with t; < --- < t,, and define as before

Xi—s = Xs¢(Xo) := mpo--- 0o my(Xp).
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Poisson Construction of Particle Systems

However, this is usually too restrictive. Recall the voter map

voti(x) == { x(k) otherwise,

and consider the one-dimensional, nearest-neighbor voter model on
Z, with formal generator

Gf(x) = % Z {f(VOt,‘J-&-lX) - f(X)}

i€Z
—i—% Z {f(vot,-7;_1x) — f(x)},
i€Z

which corresponds to r,,, = % for all me M, and

M = {vot;7;+1,vot;7;_1 RS Z}.
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Poisson Construction of Particle Systems

time
—
God T2 | G
—
) o (ot
N——1 <Vot3’2> L —
\//\ <V0t6,5>
Gowo) | Co=0 T dood)
ot — (ror73)
0 1 2 3 4 5 6 7 8 9

space Z

The Poisson set wq ; of local maps acting during the time interval
(0, t] is a.s. infinite for each t > 0!

Jan M. Swart Particle Systems



Poisson Construction of Particle Systems

time X (4)?
—
b €29 | G
N —
<V0t0 1> S <v~ Ot5’4,> <®>
N~ <V0‘t3’2> </\>
— vot

Gowo) | omd —

0,1 N—— <V0t778>
0 1 2 3 4 5 6 7 8 9

space Z

However, we need to know only finitely many elements of wq ; to
determine the local state of X at a space-time point (/, t).
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Poisson Construction of Particle Systems
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Poisson Construction of Particle Systems
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Poisson Construction of Particle Systems
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Poisson Construction of Particle Systems
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Poisson Construction of Particle Systems

time X; ( 4 ) ?
|l —
— —
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However, we need to know only finitely many elements of wq ; to
determine the local state of X at a space-time point (/, t).
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Poisson Construction of Particle Systems

For any map m: S — S, let
D(m):={ieN:3x € Ss.t. m(x)(i) # x(i)}

denote the set of lattice points whose values can possibly be
changed by m. Let us say that a point j € A is m-relevant for
some i € A if

dx,y € S s.t. m(x)(i) # m(y)(i) and x(k) = y(k) Yk # j,
and write
Ri(m) :={j € N:j is m-relevant for i}.

Note that R;(m) = 0 for i ¢ D(m). It may also happen that
Ri(m) = 0 for some (or alll) i € D(m).

If D(m) and R;(m) with i € D(m) are finite, then we say that m
is a local map.
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Poisson Construction of Particle Systems

Example 1 The voter map

votj(x) =

x(j) if k=1,
x(k) otherwise,
says that site / copies the type of site j. Therefore:

D(votj;) = {i}. Only site i can change.

Ri(votj) = {j}. We only need to know x(j) to decide what type
site | has after we apply vot;;.
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Poisson Construction of Particle Systems

Example 2 The coalescing random walk map

0 if k=1,
rwijx(k) = ¢ x(i)Vx(j) if k=],
x(k) otherwise.

says that if there is a particle at /, then this jumps to j, coalescing
with any particle that may already be present there. Therefore:

D(rw;j) = {i,j}. Sites i and j can change.

Ri(rwj) = 0. After we apply rwjj, the site i is always empty. We
do not need to known anything about x to know that.

Rj(rwj) = {i,j}. In order to decide if after we apply rwj;, there is
a particle at j, we need to know both x(i) and x(j).
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Poisson Construction of Particle Systems

Assume that M contains only local maps.

By definition a path of influence from (i,s) to (j, u) is a cadlag
function v : [s, u] — A such that vs_— =/, 7, = j, and

(i) if y¢— # ¢ for some t € [s, u], then there exists some m € M
such that (m, t) € w, v+ € D(m) and 7~ € R.,(m),

(ii) for each (m, t) € w with t € [s, u] and ~; € D(m),
one has 7;— € R,.(m).

For any finite set A C A and s < u, we set
M= {ieN:(i,s) ~ Ax{u}},

where (i,s) ~ A x {u} denotes the presence of a path of influence
from (i, s) to some (j,u) € A x {u}.
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Poisson Construction of Particle Systems

Proposition 1 Assume that

Then, for each finite A C N\, one has

E[|cAY] < |A[eKW=9) (s < u).
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Poisson Construction of Particle Systems

Proof Without loss of generality set v = 0. Fix A and write
(s = (;4’0. Let A,, C A be finite sets such that A, 1T A. For n large
enough such that A C A, write

¢C={ieN:(i;s) ~n Ax{0}},

where (i,s) ~», A x {0} denotes the presence of a path of
influence from (i,s) to A x {0} that stays in A,. We observe that

G116 (s<0).
It therefore suffices to prove
EA(IGZ]] < A" (s <0)

uniformly in n.
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Poisson Construction of Particle Systems

Let M, :={me M :D(m)NA, # 0}.

The process ((",)+>0 is a Markov process taking values in the
(finite) space of all subsets of A, with generator

Gof(B) = Y rm(F(B™) - £(B)),

meM,

where

BI™ .= (B\D(m)) U ] (Ri(m)nA,).
ieBND(m)

By our assumption Ky < 0o, we have ZmeM" rm < 00, hence this
Markov process is well-defined.
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Poisson Construction of Particle Systems

Let (P/)>0 be the associated semigroup and let f denote the
function f(A) :=|A|. Then

Gaf(A)= D rm(f(A™) = f(A))

meM,
< 3 (DM Y [Ri(m)| - 1)
meM, ieAND(m)
=S w( X (RimI-1)
meM, leAﬂD(m)
_Z Z fm ]T\’, |—1)<K|A|
i€A meM,
D(m)>i
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Poisson Construction of Particle Systems

We have just shown that the function f(A) := |A| satisfies
Gnf(A) < Kf(A). It follows that

2 (e tPIf) = —Ke MIPIf + e KIP]G,f
—e KtPI(G,f — KF) <0

and therefore e KtPIf < e‘KOP(S’f = f, which means that

EA[IC"|] = PPF(A) < |Ale"t (£>0).
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Poisson Construction of Particle Systems

Let
W (i,u) "= {(m, t) € wsy : D(m) x {t} ~ (i, u)}

be the set of all Poisson events during (s, u] that are relevant for
the state of our process at (i, u).

Proposition 2 Assume that

K1 :=sup Z rm|Ri(m)| < oo.
ieA
e meM
D(m)>i

Then ws (j ) is a.s. finite for each s < u and i € \.
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Poisson Construction of Particle Systems

Proof This is the same proof as before, except that instead of

B .= (B\D(m)) U | (Ri(m)NA,),
ieBND(m)

we define
B =B U (J (Ri(m)nA),
ieBND(m)

so that sites, once included in ¢”,, cannot be removed.

Our previous proof now shows that EA[|¢_|] < |Alekt.

In particular, for fixed s < u =0, the set (s is a.s. finite and all
sets (_+ with s < —t < 0 are contained in it. By the condition

Ko < oo, the finite set (s is intersected by only finitely many
events (m, t) € ws . |
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Poisson Construction of Particle Systems

Theorem 3 (Graphical Representation) Assume that

sup Z rm(|Ri(m)| +1) < oco.

ieN
meM
D(m)>i

Then, a.s., wg (¢ Is finite for all s < 't and i € \. For
any finite &g (¢ jy with ws 1y C Qs (¢,1y C Ws,t, Setting

&')s,(t,i) = {(mla t]_), cees (mna tn)}

with t; < --- < t,, we can unambiguously define random
maps Xs+: S — S (s <t) by

Xs,t(x)(i) == mpo---omy(x)(i).
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Poisson Construction of Particle Systems

Let (Xs,¢)s<¢ be the random maps defined in terms of the
graphical representation (Poisson point set) w. Then

Pe(x, -) :=P[Xo(x) € -]

defines a collection of probability kernels (P:)¢>o.

Theorem 4 The probability kernels (Pt)¢>o form a
continuous transition probability. Moreover, if Xq is
independent of w, then

Xt = x07t(X0) (t Z 0)
defines a process with cadlag sample paths such that

E[f(X,) | (Xs)ocsct] = Pu_ef(Xe) as.  (0<s<t).
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Generator Construction of Particle Systems

For f € C(S) and i € A, define

of (i) :=sup {|f(x) = f(¥) : x,y € S, x() = y(j) Vi # i}.
We call 6f the variation of f and define
Coum(S) := {f € C(S) : >;6f(i) < o0}.

Recall that
Ko :=su rm < 00.
= 4>
mGM'
For each f € Csum(S), D(m)>i
D | f(m(x)) = F(X)] < Ko > SF(i).
meM ieN

In particular, for such f, Gf is well-defined by

Gf(x) = > rm{f(m(x)) — f(x)}.

meM
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Generator Construction of Particle Systems

Theorem 5 Let (P:)s>0 be the Feller semigroup arising
from our Poisson construction. Then the generator of
(Pt)e>0 is the closure of G with domain

D(G) := Caum(S).

Proof (sketch) One can check that
D OP (i) <Y SF(i)  (t=0, f € Coum(S))
ien ieA

In particular, for each t > 0, P; maps Csum(S) into itself.
Moreover, t — P:f is continuously differentiable, Pof = f, and
%Ptf = GP;f for each t > 0. The claim now follows from
Hille-Yosida. |
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Generator Construction of Particle Systems

Since a Feller process is uniquely characterized by its generator, we
see that if

Gf(x)= Y rm{f(m(x)) - f(x)}

=S () = £

meM

are two different random mapping representations of the same
generator, then the corresponding processes

Xt = XO,t(XO) and )~<t = XO,t()<0)

are equal in law. In practise, one needs both the graphical
representation (Poisson construction) and the Feller formalism.
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Generator Construction of Particle Systems

The first infinite interacting particle systems were constructed by
Dobrushin (1971).

Liggett (1972) introduced the space Csum(S) and proved sufficient
conditions directly in terms of the generator G so that its closure
generates a Feller semigroup (and hence corresponds to a
well-defined Markov process). These conditions are more general
and do not depend on finding a good random mapping
representation.

Graphical representations of interacting particle systems have been
used since Harris (1972), but | do not know a good general
reference.

The fact that the Poisson and generator constructions yield the
same process is usually considered self-evident.
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Uniqueness of the Invariant Law

Let X be a Feller process in S with semigroup (P¢)¢>0.
For any probability measure p on S, we define

1Py(dy) = /5 u(dx)Pe(x, dy).

Then Py is the law at time t of the process with initial law p.
If S is finite, this just says that

HPt(y) = ZIU’(X)Pt(X,y)?
xeS
where we simplify notation by writing u(x) := pu({x}) etc.

By definition, an invariant law of X is a probability measure y such
that
pPe=p  (t=0).

Equivalently, this says that the process X with initial law p is
stationary.
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Uniqueness of the Invariant Law

Let G have the random mapping representation
Gf(x) = Z rm{f(m(x)) — f(x)}.
meM

Assume that

sup > rm(|Ri(m)| +1) < oo,
ren meM
D(m)>i

so that the corresponding particle systems is well-defined, and

recall that
K;:;UR > rm([Ri(m) = 1).
© meM
D(m)>i

Note that it is possible that K < 0.



Uniqueness of the Invariant Law

Our proof that the random maps (Xs +)s<¢ are well-defined by the
graphical representation yields the following:

Corollary 6 For AC A and s < t, let
= {ieN:(i,s) ~ Ax {t}}

be the set of lattice points at time s whose value is
relevant for the states in A at time t. Then

E[|cA] < Ale<(-9).
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Uniqueness of the Invariant Law

Theorem 7 Assume that K < 0. Then the interacting
particle system X with generator G has a unique
invariant law v. Moreover, the process started in any
initial law satisfies

P[X; € -] = v

Before we give the proof, it is good to see an example.
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Ergodicity of the Ising Model

Parameters J, 3 > 0. Assume |N;| = N for all i. Utility function:

UE(i,x) = 230> x(j) + 3 W4(i).
JEN;

> W, (i) logistically distributed: P[W;(i) < w] = (1 + e~ #w)~1.
» The noise terms W;(i) are independent for each person and
are redrawn at times of a Poisson process with intensity one.

» After the noise is redrawn, each person immediately chooses
his or her new state according to the highest utility.

If (W¢(i)| > JN, then the choice of a person does not depend on
his/her neighborhood!
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Ergodicity of the Ising Model

To apply Theorem 7, we need to device a random mapping
representation. For h€ {—N -1, —N+1,..., N+ 1} =: H, define

+1 if k=1iand > ... x(j) > h,
mi p(x)(k)(:= ¢ —1 if k=1iand > ;. x(j) <h,
x(k)  if kA1,

and define rates ry by

r—n-—1 ZZP[—W < J/V],
rp:=PJ(h—1) < =W < J(h+1)] (-N—-1<h<N+1),
41 =P[IN < —=W],

where W is logistically distributed with parameter j.
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Ergodicity of the Ising Model

4 20 0 2J 4 x

If 0 < W < 2J, then U™ > U~ provided that >~ x(i) > —1,
i.e., this quantity needs to be 0,2, or 4 in order for U™ to be larger
that U~.

If 4J < W, then the person switches to +1 whatever the state of
its neighbors, i.e., if >,y x(i) > —5.
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Ergodicity of the Ising Model

Then we have the random mapping representation

GF(x) => > m{f(minx) = F(x)}.

ieN heH

We observe that
R,-(mj,h) =0 ifi#jorh=+(N+1),

while
R;(m,—7h):/\/,- for —N—-1<h< N+ 1.

It follows that

K=sup Y ra(l_n_1<heniyyN — 1)
" heH
=P[-JN < W < IN]N — 1= (N —1) — NP[|W| > JN]|.
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Ergodicity of the Ising Model

time ?
35 IfP{|M/|>»JAq is
m21 | large enough, then
K < 0, and we
my s need to look back
[ ©) only finitely long in
m37(1_ time to decide the
s sta.te of any lattice
’ point.
®
Mg —3

space
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Uniqueness of the Invariant Law

Theorem 7 Assume that K < 0. Then the interacting
particle system X with generator G has a unique
invariant law v. Moreover, the process started in any
initial law satisfies

P[X; € -] = v

t—00
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Uniqueness of the Invariant Law

Proof For AC A and s < t, let
At = {ieN:(i,s) ~ Ax{t}}

be the set of lattice points at time s whose value is relevant for the
states in A at time t. In Corollary 6, we have seen that

E[|c2] < Ale¥(9.

In particular, if K < 0, then a.s. there is some (random) sy < t
such that C;L"t = () for all s < s5. This means that we need to look
only finitely far back in time to decide what the state of (i, t) is.
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Uniqueness of the Invariant Law

Recall that wg (; ;) denotes the set of all Poisson events during
(s, t] that are relevant for the state of our process at (i, t).
If K <0, then w_ (; 4 is finite a.s. Ordering its elements as

w—oo,(t,i) = {(m17 t1)7 ey (mna tn)}

with t; < --- < t,, we can unambiguously define a stationary
process X = (X¢)ter by

Xe(i) = X_oo,t(x)(i) := mp o -+ 0 my(x)(i),

where the definition does not depend on the choice of x € S.

Since X is stationary, v := P[X; € -] is an invariant law.
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Uniqueness of the Invariant Law

Let Y be a random variable with values in S, independent of w,

and let (X:)ter be the stationary process constructed above.
Then, for each finite A C A,

P[Xo(i) # X—¢,0(Y)(i) for some i € A]
< P[¢2 # 0] <E[IKE)]) < [Ale™™ — 0.
It follows that
tILrQO X_to(Y)(i) = Xo(i) as. (i €AN).
Let X be the process started in the initial law 4 =P[Y € -]. Then

P[X; € -] =P[X_¢o(Y) € -] = 1.

t—o0

In particular, this implies also the uniqueness of v. [ |
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Ergodicity of the Ising Model

For our stochastic Ising model, Theorem 7 yields ergodicity
provided that

K =(N-1)— NP[|W|> JN] <O,
which yields

2 >N—l
1+ elBN N

& JB < —N"llog ((2N)/(N —1) —1).

where N = |N;|. Concretely, for the Ising model on Z2 this proves
ergodicity provided
JB < 0.12771

which is quite far from the known critical point 0.88137.
Our bound gets worse when N becomes large.
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Ergodicity of the Ising Model

A sharper bound can be found in Theorem IV.3.1 of Liggett's
(1985) book.

This theorem is based on a similar approach: it is shown that

D 0P() < Y () (620, F € Cam(S)),
ien ieA
where the constant K’ is negative for a suitable choice of the
parameters.
If this happens, then 3 ;A 0P:f(i) — 0 as t — oo which implies

that P.f converges to a constant ¢s. Since this happens for every
f, one can deduce that there is a unique invariant law v and

Ptf tjo / fdv = Cf (f S Csum(S))

The usefulness of Theorem 7 depends on finding a good random
mapping representation.
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Exercises

Exercise 1 The generator of the contact process has the random
mapping representation

Gf(x):)\z Z {f(brajjx) — f(x)}
ieN jeEN;
+ Z {f(death;x) — f(x) }

ieN

Letting 0 € S denote the state that is identically zero, we observe
that the contact process started in Xy = 0 satisfies X; = 0 for all

t > 0. It follows that dg is an invariant law for the contact process.
Assuming that |[N;| = N does not depend on i € A, apply
Theorem 7 to give suffient conditions in terms of A and N for g to
be the only invariant law and for the contact process to be ergodic.
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Exercises

Exercise 2 The threshold voter model is a particle system with
state space S = {0, 1}", where in the state x, the site i flips with
the following rates:

0— 1 with rate 1{x(j) =1 forsomeje N}

1— 0 with rate 1{X(j) —0 for somej GM}

Assume that i ¢ N; and set N; := N; U {i}. For each A C A,
define a local map m; A by

> jeax() mod(2) if k=1,

x(k) otherwise.

mj a(x)(k) := {

Show that the threshold voter model has the random mapping
representation

Gf (x) = 21~ Wil o> {f(miax) - f(x)}
ieN l |A_CN,‘
A| 1S even
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Exercises

Exercise 3 A commonly studied stochastic Ising model, somewhat
different from the one we considered before, is the process with
state space {—1,+1}" in which the site i flips with the following
rates:

—1+— 41 with rate e_BJM"(_),

+1—~ —1 with rate e_fBJMi("‘),
where M,-(j_:) i= > jen; Lix(j)=+}- For each i € A and finite
A C A, define a local map m; o by

1—x(i) if k=i and x(i)#x(j) Vj€ A,

m; a(x)(k) = .
x(k) otherwise.

Assume that i ¢ N; and set p := 1 — e~ /. Show that our model
has the random mapping representation

GFx)=> Y plAI(L — p)NAAILE (my ax) — F(x)}.
ieEN ACN;



Exercises

Exercise 4 Let m,i be the local maps defined as

+1 if k=i,

m () (k) := {

x(k) otherwise.

Then an alternative random mapping representation for the
stochastic Ising model from Exercise 3 is

=>_ > (=) Hf(mix) —f(x)}
ieN oe{—,+}
£ Y R ) ) £ ()
IEA AC./\/,
AF#D

Assuming that |[N;| = N does not depend on i € A, apply
Theorem 7 to give suffient conditions in terms of 5 and N for this
stochastic Ising model to be ergodic.
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