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Monotone Maps

Let Λ be countable and S = {0, 1}Λ. We equip S with the partial
order x ≤ y iff x(i) ≤ y(i) for all i ∈ Λ. By definition, a map
m : S → S is monotone if x ≤ y implies m(x) ≤ m(y).

Examples of monotone maps:

I The maps mi ,h in our random mapping representation of the
Ising model.

I The voter map voti ,j .

I The branching map brai ,j and the death map deathi , which
can be used to construct a contact process.

I The coalescing random walk map rwi ,j and the cooperative
branching map coopi ,i ′,j .
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Monotone Particle Systems

Examples of monotone particle systems:

I The (ferromagnetic) Ising model (J ≥ 0).

I The voter model.

I The biased voter model.

I The contact process.

I Branching and annihilating random walks.

I Cooperative branching.
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Monotone Particle Systems

Examples of maps that are not monotone:

I The annihilating random walk map arwi ,j .

I The annihilating branching map abrai ,j .

I The killing map killi ,j .

Examples of particle systems that are not monotone:

I The antiferromagnetic Ising model (J < 0).

I (Potts models with q > 2.)

I Rebellious voter models.

I Branching annihilating random walks.

I Systems with branching and killing.
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Stochastic Order

By definition, f : S → R is monotone if x ≤ y implies f (x) ≤ f (y).
We adopt the notation µf :=

∫
f dµ.

Stochastic Order Let µ, ν be probability measures on S.
Then the following statements are equivalent:

(i) µf ≤ νf for every continuous monotone f : S → R.
(ii) µf ≤ νf for every bounded measurable monotone

f : S → R.
(iii) Random variables X ,Y with laws µ, ν can be

coupled such that X ≤ Y a.s.

If µ, ν satisfy the equivalent conditions (i) and (ii), then we say
that they are stochastically ordered and write µ ≤ ν.

Jan M. Swart Particle Systems



Stochastic Order

Proof (iii)⇒(ii) is trivial, since

νf − µf = E[f (Y )− f (X )] ≥ 0,

and (ii)⇒(i) is even more trivial. For the much deeper and
somewhat surprising converse, see Liggett (1985). See also
Preston (1974) for a nice proof for finite spaces.
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Stochastic Order

Let X = (Xt)t≥0 be an interacting particle system with transition
probabilities (Pt)t≥0 and generator of the form

Gf (x) =
∑
m∈M

rm
{
f
(
m(x)

)
− f
(
x
)}
,

where all maps in M are monotone. Construct X using a Poisson
point process ω and random maps (Xs,t)s≤t . Then Xs,t , being a
composition of monotone maps, is a.s. monotone for each s ≤ t.
It follows that for every monotone measurable f : S → R and
x ≤ y ,

Pt f (x) = E
[
f
(
X0,t(x)

)]
≤ E

[
f
(
X0,t(y)

)]
= Pt f (y),

so Pt maps monotone functions into monotone functions.
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Stochastic Order

As a consequence, we see that

νf ≤ µf ∀f : S → R monotone

implies that

νPt f ≤ µPt f ∀f : S → R monotone (t ≥ 0),

i.e., the time evolution preserves the stochastic order.

A more direct way to see this is as follows: couple random
variables X0,X

′
0 with laws µ, ν in such a way that X0 ≤ X ′0, and let

ω be independent of (X0,X
′
0). Then

Xt := X0,t(X0) ≤ X0,t(X
′
0) =: X ′t (t ≥ 0).

Warning The fact that Pt maps monotone functions into
monotone functions does not imply that G can be represented in
monotone maps, see Fill & Machida (2001).
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The lower and upper invariant laws

Below, we let 0, 1 ∈ S denote the configurations that are
constantly zero or one, respectively.

Theorem 1 Assume that G has a representation in
monotone maps. Then there exist invariant laws ν and ν
such that

δ0Pt =⇒
t→∞

ν and δ1Pt =⇒
t→∞

ν.

If ν is any other invariant law, then ν ≤ ν ≤ ν.

We call ν and ν the lower and upper invariant law, respectively.
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The lower and upper invariant laws

Proof By symmetry, it suffices to prove the statement for ν. We
observe that

δ0Pt = P[X0,t(0) ∈ · ] = P[X−t,0(0) ∈ · ] (t ≥ 0).

Now
X−u,0(0) = X−t,0 ◦ X−u,−t(0) ≥ X−t,0(0) a.s.,

where we have used the monotonicity of X−t,0 and the fact that
since 0 is the lowest element of S , we have X−u,−t(0) ≥ 0.
It follows that t 7→ X−t,0(0)(i) is a.s. increasing, so the limit

X−∞,0(0) := lim
t→∞

X−t,0(0)

exists a.s.
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The lower and upper invariant laws

Set
X t := X−∞,t(0) = lim

T→−∞
XT ,t(0) (t ∈ R),

and note that X t is independent of Xt,u for each t ≤ u, since these
random variables are defined using disjoint parts of the Poisson
point set ω.
Using this, we see that (X t)t∈R is a stationary Markov process
with transition probabilities (Pt)t≥0, so

ν := P[X t ∈ · ],

which does not depend on t ∈ R, is an invariant law.
Since

P0[Xt ∈ · ] = P[X−t,0(0) ∈ · ] =⇒
t→∞

ν,

this is the limit law of the process started in 0.
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The lower and upper invariant laws

If ν is any other invariant law, then

δ0f ≤ νf ∀ continuous monotone f : S → R.

Since Pt is Feller and monotone, it maps continuous monotone
functions into continuous monotone functions, so

δ0Pt f ≤ νPt f = νf (t ≥ 0).

Taking the limit t →∞ and using the definition of weak
convergence, we see that νf ≤ νf for all continuous monotone
f : S → R.
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The lower and upper invariant laws

Lemma 2 Let X ,Y be S-valued random variables whose
laws are stochastically ordered as P[X ∈ · ] ≤ P[Y ∈ · ].
Then E[X (i)] ≤ E[Y (i)] for all i ∈ Λ. If moreover
E[X (i)] = E[Y (i)] for all i ∈ Λ, then X and Y are equal
in law.

Proof By assumption, we can couple such that X ≤ Y . For this
coupling Y (i)− X (i) is a nonnegative random variable, so

E[Y (i)]− E[X (i)] = E[Y (i)− X (i)] ≥ 0.

If this is zero for all i , then our coupling satisfies X = Y a.s.,
proving that X and Y must be equal in law.
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The lower and upper invariant laws

Lemma 3 Let X be a monotone interacting particle
system with lower and upper invariant laws ν and ν. If
ν = ν, then X has a unique invariant law ν := ν = ν and
is ergodic in the sense that starting from any initial law,

P
[
Xt ∈ · ] =⇒

t→∞
ν.
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The lower and upper invariant laws

Proof Let µ be any probability measure on S . Then

δ0f ≤ µf ∀ continuous monotone f : S → R.

Since Pt is Feller and monotone, it maps continuous monotone
functions into continuous monotone functions, so

δ0Pt f ≤ µPt f ∀ continuous monotone f : S → R, t ≥ 0.

By the compactness of M1(S), every sequence tn →∞ contains a
subsequence tn(m) such that µPtn(m)

converges weakly to some
limit µ∗. It follows that

ν ≤ µ∗,

and by the same argument also µ∗ ≤ ν, which by the fact that
ν = ν = ν implies that µ∗ = ν. Since this holds for every
subsequence, we conclude that µPt converges weakly to ν.
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The lower and upper invariant laws

Alternative proof We have seen before that the limits

X−∞,0(0) := lim
t→∞

X−t,0(0) and X−∞,0(1) := lim
t→∞

X−t,0(1)

exist a.s. and have laws ν and ν, respectively. By assumption,
ν = ν, so E[X−∞,0(0)(i)] = E[X−∞,0(1)(i)] for all i . Since
moreover X−∞,0(0) ≤ X−∞,0(1), it follows that

X−∞,0(0) = X−∞,0(1) a.s.

If X0 has law µ, then X−t,0(X0) has law µPt . Since

X−t,0(0) ≤ X−∞,0(X0) ≤ X−t,0(1)

and the left- and right-hand side converge to a.s. the same limit,
the expression in the middle must converge to this too.

Jan M. Swart Particle Systems



The lower and upper invariant laws

Lemma 4 Let X be a monotone interacting particle
system with lower and upper invariant laws ν and ν.
Then X is ergodic if∫

ν(dx)x(i) =

∫
ν(dx)x(i) (i ∈ Λ),

and has at least two invariant laws if∫
ν(dx)x(i) <

∫
ν(dx)x(i) for some i ∈ Λ.

Proof Immediate from the previous two lemmas.
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The voter model

For the voter model, we see that X0(i) = 0 for all i ∈ Λ implies
Xt(i) = 0 for all i ∈ Λ, so

δ0Pt = δ0 and likewise δ1Pt = δ1 (t ≥ 0).

It follows that ν = δ0 and ν = δ1, so the voter model is never
ergodic.
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The magnetization of the Ising model

Consider the Ising model on Zd with Ni = {j ∈ Zd : |i − j | = 1}
and J = 1. Let νβ and νβ denote the lower and upper invariant
laws, which depend on β. By symmetry, there exists a function
m∗ : R→ [0,∞) such that∫

νβ(dx)x(i) = −m∗(β) and

∫
νβ(dx)x(i) = m∗(β).

Using terminology from physics, m∗ is called the spontaneous
magnetization.

We have already shown that for every dimension d there exists
some β′ > 0 such that the Ising model with β < β′ has a unique
invariant law. It follows that m∗(β) = 0 for β < β′.

For the one-dimensional model, it is known that in fact m∗(β) = 0
for all β ≥ 0.
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The magnetization of the Ising model

β

m∗(β)

0 0.5 1 1.5
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0.5

0.75

1

βc

By contrast, Onsager (1944) proved that for the model on Z2,

m∗(β) =

{ (
1− sinh(β)−4

)1/8
for β ≥ βc := log(1 +

√
2),

0 for β ≤ βc.
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The magnetization of the Ising model

At βc, the 2-dimensional Ising model has a
second order phase transition.
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The magnetization of the Ising model

β

m∗(β)

1

βc

For the model on Z3, it is known that m∗ is continuous,
nondecreasing in β, and there exists a 0 < βc <∞ such that
m∗(β) = 0 for β ≤ βc while m∗(β) > 0 for β > βc. Continuity at
βc proved by Aizenman, Duminil-Copin & Sidoravicius (2014).
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The magnetization of the Ising model

β

m∗(β)

1

βc

Nonrigorous renormalization group theory explains that

m∗(β) ∝ (β − βc)c as β ↓ βc,

where the critical exponent c is given by

c = 1/8 in dim 2, c ≈ 0.326 in dim 3, and c = 1/2 in dim ≥ 4.

Note that c = 1/2 is what we also found for the mean-field model.
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The magnetization of the Ising model

Critical exponents are believed to be universal.

For example, in d = 3, whether we take Ni = {j : |i − j | = 1} or
Ni = {j : 0 < |i − j | ≤ 2} is believed to matter for the value of the
critical point βc, but not for the critical exponent c .

The exponent c ≈ 0.33 of the 3D Ising model can even be
experimentally observed for certain physical systems.

For other (classes of) interacting particle systems, the situation is
similar.
Little is known rigorously about critical exponents, except for
certain 2-dimensional models, and for models in sufficiently high
dimension where the lace expansion has been used to prove that
critical exponents take on their mean-field values.

Jan M. Swart Particle Systems



The Contact Process

Recall that the contact process jumps as

0 7→ 1 with rate λ · number of type 1 neighbors,

1 7→ 0 with rate d ,

where λ ≥ 0 is the infection rate and d ≥ 0 the death rate. In
what follows, for simplicity, we set d = 1.
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The Contact Process

Using the branching map

brai ,jx(k) :=

{
x(i) ∨ x(j) if k = j ,

x(k) otherwise,

and death map

deathix(k) :=

{
0 if k = i ,

x(k) otherwise.

we have the random mapping representation

Gf (x) = λ
∑
i∈Λ

∑
j∈Ni

{
f
(
brai ,jx

)
−f
(
x
)}

+
∑
i∈Λ

{
f
(
deathix

)
−f
(
x
)}
.
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The Contact Process

The process started in X0 = 0 satisfies Xt = 0 for all t ≥ 0, so
clearly ν = δ0.

It follows that the process is ergodic if and only if ν = δ0. Let

θ(λ) :=

∫
ν(dx)x(i),

which does not depend on i for the nearest-neighbor process on Zd .

Then the process is ergodic (with unique invariant law δ0) if and
only if θ(λ) = 0.
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The Contact Process

λ

θ(λ)
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For the one-dimensional nearest-neighbor model, one observes a
second-order phase transition at λc(1) ≈ 1.649 and

θ(λ) ∝ (λ− λc)β as λ ↓ λc,

with a critical exponent β ≈ 0.27648.
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The Contact Process

Theorem 7 of Lecture 3, applied to the one-dimensional contact
process, shows ergodicity and hence θ(λ) = 0 for λ < 0.5.

The next proposition shows that there is a unique point
0 < λc ≤ ∞ such that θ(λ) = 0 for λ < λc and θ(λ) > 0 for
λ > λc. We will later prove that λc <∞.

Proposition 5 The function λ 7→ θ(λ) is nondecreasing.

Proof Let 0 ≤ λ ≤ λ′ and let X ,X ′ be contact processes with
initial states x ≤ x ′ and branching rates λ, λ′. We will prove that
X and X ′ can be coupled such that Xt ≤ X ′t for all t ≥ 0. In
particular, applying this to x = x ′ = 1 and letting t →∞, this
then implies Proposition 5.
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The Contact Process

We use the graphical representation. The set of local maps is

M =M1 ∪M2 :=
{
brai ,j : i ∈ Λ, j ∈ Ni

}
∪
{
deathi : i ∈ Λ

}
.

Let ω be a Poisson point subset of M× R with local intensity
µ(m,dt) given by

λ1{m∈M1}`(dt) + 1{m∈M2}`(dt),

and let ω′′ be a Poisson point set with intensity

(λ′ − λ)1{m∈M1}`(dt).

Then ω′ := ω + ω′′ is a Poisson point set with intensity

λ′1{m∈M1}`(dt) + 1{m∈M2}`(dt).
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The Contact Process

This means that we can couple the graphical representations of X
and X ′ in such a way that they are equal, except that X ′ has more
branching events.

More precisely, using the Poisson sets ω and ω′ to construct
random maps (Xs,t)s≤t and (X′s,t)s≤t , we observe that

Xs,t(x) ≤ X′s,t(x
′) ∀x ≤ x ′, s ≤ t.

Here we use that

brai ,j(x) ≥ x (x ∈ S , i , j ∈ Λ),

and that the maps brai,j, deathi are all monotone.
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A System that is Not Monotone
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Annihilating random walks.
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A System that is Not Monotone
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Annihilating random walks with a bit of branching.
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A System that is Not Monotone

In spite of this. . .

Numerical simulations of non-monotone particle systems often
show phase transitions very similar to those of monotone systems.

Some even appear to have the same critical exponent as, e.g., the
contact process.

In most cases, all one can prove is that the system is ergodic in
some part of the parameter space and has at least two invariant
measures in another part, without much information about how
the transition occurs.
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Excercises

Exercise 1 Give an example of two probability measures µ, ν on a
set of the form {0, 1}Λ that satisfy∫

µ(dx)x(i) ≤
∫
ν(dx)x(i) (i ∈ Λ),

but that are not stochastically ordered as µ ≤ ν.

Exercise 2 In Exercise 1 of Lecture 2, we calculated the fixed
points of the mean-field contact process. Show that the largest
fixed point xupp(λ) satisfies

xupp(λ) ∝ (λ− λc)c

for some c ∈ R, and determine this mean-field critical exponent.

Exercise 3 Prove that the function λ 7→ θ(λ) from Proposition 5
is right-continuous. Hint: Use that the decreasing limit of
continuous functions is upper semi-continuous.
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Excercises

For the next exercise, let us define a double death map

deathi ,jx(k) :=

{
0 if k ∈ {i , j},

x(k) otherwise.

Consider the cooperative branching process X with values in
{0, 1}Z with generator

GX f (x) =λ
∑
i∈Z

∑
σ∈{−1,+1}

{
f
(
coopi ,i+σ,i+2σx

)
− f
(
x
)}

+
∑
i∈Z

{
f
(
deathix

)
− f
(
x
)}
,

and the contact process with double deaths Y with generator

GY f (y) =λ
∑
i∈Z

∑
σ∈{−1,+1}

{
f
(
brai ,i+σy

)
− f
(
y
)}

+
∑
i∈Z

{
f
(
deathi ,i+1y

)
− f
(
y
)}
,
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Excercises

Exercise 4 Let X be the process with cooperative branching
defined above and set

X
(2)
t (i) := 1{Xt(i)=1=Xt(i+1)} (i ∈ Z, t ≥ 0).

Show that X can be coupled to a contact process with double
deaths Y (with the same parameter λ) in such a way that

Y0 ≤ X
(2)
0 implies Yt ≤ X

(2)
t (t ≥ 0).

Exercise 5 Show that a system (Xt)t≥0 of annihilating random
walks can be coupled to a system (Yt)t≥0 of coalescing random
walks such that

X0 ≤ Y0 implies Xt ≤ Yt (t ≥ 0).

Note that the annihilating random walks are not a monotone
particle system.
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Excercises

Exercise 6 Let X be a system of branching and coalescing random
walks with generator

GX f (x) = 1
2b
∑
i∈Z

∑
σ∈{−1,+1}

{
f
(
brai ,i+σx

)
− f
(
x
)}

+ 1
2

∑
i∈Z

{
f
(
rwi ,i+σx

)
− f
(
x
)}
,

and let Y be a system of coalescing random walks with positive
drift, with generator

GY f (y) = 1
2 (1 + b)

∑
i∈Z

{
f
(
rwi ,i+1y

)
− f
(
y
)}

+ 1
2

∑
i∈Z

{
f
(
rwi ,i−1y

)
− f
(
y
)}
.

Show that X and Y can be coupled such that

Y0 ≤ X0 implies Yt ≤ Xt (t ≥ 0).

Jan M. Swart Particle Systems



Excercises

Exercise 7 Let d < d ′ and identify Zd with the subset of Zd ′

consisting of all (i1, . . . , id ′) with (id+1, . . . , id ′) = (0, . . . , 0). Let
X and X ′ denote the contact processes on Zd and Zd ′

,
respectively, with the same infection rate λ. Show that X and X ′

can be coupled such that

X0(i) ≤ X ′0(i) (i ∈ Zd)

implies
Xt(i) ≤ X ′t(i) (t ≥ 0, i ∈ Zd).
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