Interacting Particle Systems with Applications in Finance

Jan M. Swart

Lecture 5: Duality

The Contact Process

Recall that the contact process jumps as

$$
\begin{aligned}
& 0 \mapsto 1 \quad \text { with rate } \lambda \cdot \text { number of type } 1 \text { neighbors, } \\
& 1 \mapsto 0 \quad \text { with rate } 1,
\end{aligned}
$$

where $\lambda \geq 0$ is the infection rate and we have set the death rate equal to one. The generator of the contact process has the random mapping representation

$$
G f(x)=\lambda \sum_{i \in \Lambda} \sum_{j \in \mathcal{N}_{i}}\left\{f\left(\operatorname{bra}_{i, j} x\right)-f(x)\right\}+\sum_{i \in \Lambda}\left\{f\left(\operatorname{death}_{i} x\right)-f(x)\right\}
$$

The Graphical Representation

The contact process can be constructed by applying branching and death maps at Poissonian times.

The Graphical Representation

We will denote $\mathrm{bra}_{i, j}$ by an arrow from i to j and death ${ }_{i}$ by a rectangle at i.

The Graphical Representation

One has $X_{t}(i)=1$ if and only if (i, t) can be reached through an open path from some point $(j, 0)$ with $X_{0}(j)=1$.

The Graphical Representation

Open paths may use arrows but must stop at death symbols.

The Dual Contact Process

If we want to know the state of a space-time point (i, t), we reverse the arrows and look at paths backwards in time.

The Dual Contact Process

The backward paths define a dual contact process that runs backwards in time.

Let ω be the Poisson point process of arrows and death symbols, from which we define the random maps $\left(\mathbf{X}_{s, t}\right)_{s \leq t}$ used to construct the contact process. Then

$$
\begin{array}{ll}
\mathbf{X}_{s, t} x(j)=1 & \text { iff there is some } i \text { such that } x(i)=1 \\
& \text { and an } \omega \text {-open path from }(i, s) \text { to }(j, t) .
\end{array}
$$

We define dual maps $\left(\mathbf{X}_{t, s}\right)_{t \geq s}$
$\hat{\mathbf{X}}_{t, s} x(i)=1 \quad$ iff there is some j such that $x(j)=1$ and a backward ω-open path from (j, t) to (i, s),
where we use the same Poisson point process ω.

The Dual Contact Process

We observe

$$
\begin{aligned}
& 1_{\left\{\mathbf{X}_{s, t}(x) \wedge y \neq 0\right\}} \\
& \quad=1 \quad\{\exists i, j \text { with } x(i)=1 \text { and } y(j)=1 \\
& \quad \text { and an } \omega \text {-open path from }(i, s) \text { to }(j, t)\} \\
& =1_{\left\{x \wedge \hat{\mathbf{X}}_{t, s}(y) \neq 0\right\}} .
\end{aligned}
$$

Taking expectations, we derive the (self-) duality relation

$$
\mathbb{P}^{x}\left[X_{t} \wedge y \neq 0\right]=\mathbb{P}^{y}\left[x \wedge \hat{X}_{t} \neq 0\right]
$$

where X and \hat{X} are contact processes started in x and y, respectively.

The Dual Contact Process

Lemma 1 The upper invariant law $\bar{\nu}$ is nontrivial, i.e., $\bar{\nu} \neq \delta_{0}$, if and only if the contact process survives, i.e.,

$$
\mathbb{P}^{e_{i}}\left[X_{t} \neq 0 \forall t \geq 0\right]>0
$$

Proof Let e_{i} denote the configuration with a single particle at i, i.e,, $e_{i}(j):=1_{\{i=j\}}$. By duality, the intensity of the upper invariant law satisfies

$$
\begin{aligned}
& \theta(\lambda):=\int \bar{\nu}(\mathrm{d} x) x(i)=\lim _{t \rightarrow \infty} \mathbb{E}^{1}\left[X_{t}(i)\right] \\
& \quad=\lim _{t \rightarrow \infty} \mathbb{P}^{\wedge}\left[X_{t} \wedge e_{i} \neq 0\right]=\lim _{t \rightarrow \infty} \mathbb{P}^{e_{i}}\left[1 \wedge \hat{X}_{t} \neq 0\right] \\
& \quad=\lim _{t \rightarrow \infty} \mathbb{P}^{e_{i}}\left[\hat{X}_{t} \neq 0\right]=\mathbb{P}^{e_{i}}\left[\hat{X}_{t} \neq 0 \forall t \geq 0\right]
\end{aligned}
$$

Additive Maps

By definition, a map $m:\{0,1\}^{\wedge} \rightarrow\{0,1\}^{\wedge}$ is additive if

- $m(0)=0$
- $m(x \vee y)=m(x) \vee m(y)$.

Lemma 2 A map is additive if and only if it can be represented in arrows and blocking symbols. Each additive map m has a dual map \hat{m}, which is also additive.

Additive maps are always monotone. Examples are:

- The branching map bra ${ }_{i, j}$

The map coop ${ }_{i, i^{\prime}, j}$ is monotone but not additive.

Additive Maps

By definition, a map $m:\{0,1\}^{\wedge} \rightarrow\{0,1\}^{\wedge}$ is additive if

- $m(0)=0$
- $m(x \vee y)=m(x) \vee m(y)$.

Lemma 2 A map is additive if and only if it can be represented in arrows and blocking symbols. Each additive map m has a dual map \hat{m}, which is also additive.

Additive maps are always monotone. Examples are:

- The branching map bra ${ }_{i, j}$
- The death map death ${ }_{i}$

The map coop ${ }_{i, i^{\prime}, j}$ is monotone but not additive.

Additive Maps

By definition, a map $m:\{0,1\}^{\wedge} \rightarrow\{0,1\}^{\wedge}$ is additive if

- $m(0)=0$
- $m(x \vee y)=m(x) \vee m(y)$.

Lemma 2 A map is additive if and only if it can be represented in arrows and blocking symbols. Each additive map m has a dual map \hat{m}, which is also additive.

Additive maps are always monotone. Examples are:

- The branching map bra ${ }_{i, j}$
- The death map death ${ }_{i}$
- The voter map vot ${ }_{i, j}$.

The map coop ${ }_{i, i^{\prime}, j}$ is monotone but not additive.

Additive Maps

By definition, a map $m:\{0,1\}^{\wedge} \rightarrow\{0,1\}^{\wedge}$ is additive if

- $m(0)=0$
- $m(x \vee y)=m(x) \vee m(y)$.

Lemma 2 A map is additive if and only if it can be represented in arrows and blocking symbols. Each additive map m has a dual map \hat{m}, which is also additive.

Additive maps are always monotone. Examples are:

- The branching map bra ${ }_{i, j}$
- The death map death ${ }_{i}$
- The voter map vot ${ }_{i, j}$.
- The coalescing random walk map $\mathrm{rw}_{i, j}$

The map coop ${ }_{i, i^{\prime}, j}$ is monotone but not additive.

The Voter Model

Recall that the voter map

$$
\operatorname{vot}_{i j}(x)(k):=\left\{\begin{array}{cl}
x(j) & \text { if } k=i \\
x(k) & \text { otherwise }
\end{array}\right.
$$

says that the site i copies the type of j, while the coalescing random walk map

$$
\mathrm{rw}_{i, j} x(k):=\left\{\begin{array}{cl}
0 & \text { if } k=i \\
x(i) \vee x(j) & \text { if } k=j, \\
x(k) & \text { otherwise } .
\end{array}\right.
$$

says that a particle at i jumps to j, coalescing with any particle that may already be there.

The Voter Model

The map vot $_{i j}$ is dual to $\mathrm{rw}_{i j}$.
Two sites in X_{t} have the same type if the dual random walks starting there coalesce before time 0 .

The Voter Model

We start the voter model on \mathbb{Z}^{d} by assigning i.i.d., uniformly distributed types to the sites.

Proposition 3 For each $i \neq j$, the limit

$$
\lim _{t \rightarrow \infty} \mathbb{P}\left[X_{t}(i) \neq X_{t}(j)\right]
$$

exists, and satisfies $=0$ or >0 depending on whether the dimension d is ≤ 2 or ≥ 3.

Proof This limit is just the probability that two random walks started in i and j eventually coalesce. Since the distance between two random walkers is itself a random walk and random walks are recurrent in dimensions $d \leq 2$ and transient in $d \geq 3$, the result follows.

Duality

Let $\left(X_{t}\right)_{t \geq 0}$ be a Markov process with state space S, generator G, semigroup $\left(P_{t}\right)_{t \geq 0}$.
Let $\left(Y_{t}\right)_{t \geq 0}$ be a Markov process with state space R, generator H, semigroup $\left(Q_{t}\right)_{t \geq 0}$.
Let $\psi: S \times R \rightarrow \mathbb{R}$ be bounded measurable.
Def X and Y are dual with duality function ψ iff

$$
\mathbb{E}^{x}\left[\psi\left(X_{t}, y\right)\right]=\mathbb{E}^{y}\left[\psi\left(x, Y_{t}\right)\right] \quad(t \geq 0, x \in S, y \in R)
$$

Equivalently

$$
\int P_{t}\left(x, \mathrm{~d} x^{\prime}\right) \psi\left(x^{\prime}, y\right)=\int Q_{t}\left(y, \mathrm{~d} y^{\prime}\right) \psi\left(x, y^{\prime}\right)
$$

In "good" situations, it can be proved that this is equivalent to

$$
G \psi(\cdot, y)(x)=H \psi(x, \cdot)(y) \quad(x \in S, y \in R)
$$

Duality

Example 1 The duality function

$$
\psi(x, y)=1_{\{x \wedge y \neq 0\}}
$$

leads to additive systems duality. Example 2 The duality function

$$
\psi(x, y)=1_{\left\{\sum_{i} x(i) y(i) \text { is odd }\right\}}
$$

leads to cancellative systems duality. Here a map m is cancellative if and only if

- $m(0)=0$
- $m(x+y \bmod (2))=m(x) \vee m(y) \bmod (2)$.

Examples of cancellative maps are vot ${ }_{i j}$ and the annihilating maps $\operatorname{arw}_{i, j}$ and abra $_{i, j}$.

Duality

Lloyd and Sudbury $(1995,1997,2000)$ have shown that many particle systems have a dual w.r.t. to the duality function

$$
\psi(x, y):=q^{\sum_{i} x(i) y(i)}
$$

Example $1 q=0$ gives

$$
0^{|x \cap y|}=1_{\{x \wedge y=\emptyset\}} \quad \text { additive duality. }
$$

Example $2 q=-1$ gives
$(-1)^{|x \cap y|}=1-21_{\left\{\sum_{i} x(i) y(i) \text { is odd }\right\} \quad \text { cancellative duality. }}$
For $q \neq 0,1$, there is in general no pathwise construction of these dualities.

Exercises

Exercise 1 Let

$$
\begin{aligned}
& \psi_{\text {add }}(x, y)=1_{\{x \wedge y \neq 0\}} \\
& \psi_{\text {add }}(x, y)=1_{\left\{\sum_{i} x(i) y(i) \text { is odd }\right\}}
\end{aligned}
$$

denote the duality functions for additive and cancellative systems, respectively. The voter map $\operatorname{vot}_{i j}$ is both additive and cancellative.
Show that

$$
\psi_{\mathrm{add}}\left(\operatorname{vot}_{i j} x, y\right)=\psi_{\mathrm{add}}\left(x, \mathrm{rw}_{\mathrm{ij}} y\right)
$$

Find a map m that is the cancellative dual of vot $_{i j}$, in the sense that

$$
\psi_{\text {can }}\left(\operatorname{vot}_{i j} x, y\right)=\psi_{\text {can }}(x, m(y))
$$

