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The Contact Process

Recall that the contact process jumps as

0 7→ 1 with rate λ · number of type 1 neighbors,

1 7→ 0 with rate 1,

where λ ≥ 0 is the infection rate and we have set the death rate
equal to one. The generator of the contact process has the random
mapping representation

Gf (x) = λ
∑
i∈Λ

∑
j∈Ni

{
f
(
brai ,jx

)
−f
(
x
)}

+
∑
i∈Λ

{
f
(
deathix

)
−f
(
x
)}
.
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The Graphical Representation

time

space Z
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bra5,4

bra3,4
bra1,2

bra6,5

bra7,6

bra9,8

death2

death5

death7

The contact process can be constructed by applying branching and
death maps at Poissonian times.
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The Graphical Representation

time

space Z

0 1 2 3 4 5 6 7 8 9

We will denote brai ,j by an arrow from i to j
and deathi by a rectangle at i .
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The Graphical Representation

time

space Z

0 1 2 3 4 5 6 7 8 9

One has Xt(i) = 1 if and only if (i , t) can be reached through an
open path from some point (j , 0) with X0(j) = 1.
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The Graphical Representation

time

space Z

0 1 2 3 4 5 6 7 8 9

Open paths may use arrows but must stop at death symbols.
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The Dual Contact Process

time

space Z

0 1 2 3 4 5 6 7 8 9

If we want to know the state of a space-time point (i , t), we
reverse the arrows and look at paths backwards in time.
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The Dual Contact Process

The backward paths define a dual contact process that runs
backwards in time.

Let ω be the Poisson point process of arrows and death symbols,
from which we define the random maps (Xs,t)s≤t used to
construct the contact process. Then

Xs,tx(j) = 1 iff there is some i such that x(i) = 1
and an ω-open path from (i , s) to (j , t).

We define dual maps (Xt,s)t≥s

X̂t,sx(i) = 1 iff there is some j such that x(j) = 1
and a backward ω-open path from (j , t) to (i , s),

where we use the same Poisson point process ω.
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The Dual Contact Process

We observe

1{Xs,t(x) ∧ y 6= 0}
= 1 {∃i , j with x(i) = 1 and y(j) = 1

and an ω-open path from (i , s) to (j , t)}
= 1{x ∧ X̂t,s(y) 6= 0}.

Taking expectations, we derive the (self-) duality relation

Px
[
Xt ∧ y 6= 0

]
= Py

[
x ∧ X̂t 6= 0

]
,

where X and X̂ are contact processes started in x and y ,
respectively.
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The Dual Contact Process

Lemma 1 The upper invariant law ν is nontrivial, i.e.,
ν 6= δ0, if and only if the contact process survives, i.e.,

Pei
[
Xt 6= 0 ∀t ≥ 0

]
> 0.

Proof Let ei denote the configuration with a single particle at i ,
i.e,, ei (j) := 1{i=j}. By duality, the intensity of the upper invariant
law satisfies

θ(λ) :=

∫
ν(dx)x(i) = lim

t→∞
E1[Xt(i)]

= lim
t→∞

PΛ[Xt ∧ ei 6= 0] = lim
t→∞

Pei [1 ∧ X̂t 6= 0]

= lim
t→∞

Pei [X̂t 6= 0] = Pei
[
X̂t 6= 0 ∀t ≥ 0

]
.
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Additive Maps

By definition, a map m : {0, 1}Λ → {0, 1}Λ is additive if

I m(0) = 0

I m(x ∨ y) = m(x) ∨m(y).

Lemma 2 A map is additive if and only if it can be
represented in arrows and blocking symbols. Each
additive map m has a dual map m̂, which is also additive.

Additive maps are always monotone. Examples are:

I The branching map brai ,j

I The death map deathi

I The voter map voti ,j .

I The coalescing random walk map rwi ,j

The map coopi ,i ′,j is monotone but not additive.
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The Voter Model

Recall that the voter map

votij(x)(k) :=

{
x(j) if k = i ,
x(k) otherwise,

says that the site i copies the type of j , while the coalescing
random walk map

rwi ,jx(k) :=


0 if k = i ,

x(i) ∨ x(j) if k = j ,
x(k) otherwise.

says that a particle at i jumps to j , coalescing with any particle
that may already be there.
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The Voter Model

X0

Xt

X̂t

X̂0

The map votij is dual to rwij .
Two sites in Xt have the same type if the dual random walks

starting there coalesce before time 0.
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The Voter Model

We start the voter model on Zd by assigning i.i.d., uniformly
distributed types to the sites.

Proposition 3 For each i 6= j , the limit

lim
t→∞

P
[
Xt(i) 6= Xt(j)

]
exists, and satisfies = 0 or > 0 depending on whether the
dimension d is ≤ 2 or ≥ 3.

Proof This limit is just the probability that two random walks
started in i and j eventually coalesce. Since the distance between
two random walkers is itself a random walk and random walks are
recurrent in dimensions d ≤ 2 and transient in d ≥ 3, the result
follows.
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Duality

Let (Xt)t≥0 be a Markov process with state space S , generator G ,
semigroup (Pt)t≥0.
Let (Yt)t≥0 be a Markov process with state space R, generator H,
semigroup (Qt)t≥0.
Let ψ : S × R → R be bounded measurable.

Def X and Y are dual with duality function ψ iff

Ex
[
ψ(Xt , y)

]
= Ey

[
ψ(x ,Yt)

]
(t ≥ 0, x ∈ S , y ∈ R).

Equivalently∫
Pt(x , dx ′)ψ(x ′, y) =

∫
Qt(y ,dy ′)ψ(x , y ′).

In “good” situations, it can be proved that this is equivalent to

Gψ( · , y)(x) = Hψ(x , · )(y) (x ∈ S , y ∈ R).
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Duality

Example 1 The duality function

ψ(x , y) = 1{x ∧ y 6= 0}

leads to additive systems duality.
Example 2 The duality function

ψ(x , y) = 1{
∑

i x(i)y(i) is odd}

leads to cancellative systems duality. Here a map m is cancellative
if and only if

I m(0) = 0

I m
(
x + y mod(2)

)
= m(x) ∨m(y) mod(2).

Examples of cancellative maps are votij and the annihilating maps
arwi ,j and abrai ,j .
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Duality

Lloyd and Sudbury (1995, 1997, 2000) have shown that many
particle systems have a dual w.r.t. to the duality function

ψ(x , y) := q
∑

i x(i)y(i).

Example 1 q = 0 gives

0 |x ∩ y | = 1{x∧y=∅} additive duality.

Example 2 q = −1 gives

(−1) |x ∩ y | = 1− 21{
∑

i x(i)y(i) is odd} cancellative duality.

For q 6= 0, 1, there is in general no pathwise construction of these
dualities.
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Exercises

Exercise 1 Let

ψadd(x , y) = 1{x ∧ y 6= 0},
ψadd(x , y) = 1{

∑
i x(i)y(i) is odd}

denote the duality functions for additive and cancellative systems,
respectively. The voter map votij is both additive and cancellative.
Show that

ψadd

(
votijx , y

)
= ψadd

(
x , rwijy

)
.

Find a map m that is the cancellative dual of votij , in the sense
that

ψcan

(
votijx , y

)
= ψcan

(
x ,m(y)

)
.
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