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Introduction

Recall that the generator of the contact process has the random
mapping representation

Gf (x) = λ
∑
i∈Λ

∑
j∈Ni

{
f
(
brai ,jx

)
−f
(
x
)}

+
∑
i∈Λ

{
f
(
deathix

)
−f
(
x
)}
.

By duality, the intensity of the upper invariant measure

θ(λ) :=

∫
ν(dx)x(i),

is equal to the survival probability

Pei
[
Xt 6= 0 ∀t ≥ 0

]
> 0.

We know that the process is ergodic (with unique invariant law δ0)
if and only if θ(λ) = 0.

We have proved that θ is nondecreasing in λ and know how to
prove that θ(λ) = 0 for λ small enough.
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Introduction
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Our aim is to prove that θ(λ) > 0 for λ sufficiently large, thereby
establishing the existence of a phase transition.

Our method will be applicable to many other particle systems,
including non-monotone ones.
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Oriented Percolation

We wish to show that the contact process survives with positive
probability if the branching rate λ is large enough.

We will first prove this for a similar discrete-time process, and then
use a comparison argument to transfer the result to the contact
process.

The discrete-time process that we will work with is oriented
percolation.

The second step of the argument, comparison with oriented
percolation, is a very common tool in the study of all kinds of
interacting particle systems.
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Oriented Percolation

Equip Z2 with the structure of an oriented graph by drawing at
each (i1, i2) two arrows, pointing to (i1 + 1, i2) and (i1, i2 + 1).
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Oriented Percolation

Thin the collection of arrows by independently keeping each arrow
with probability p.
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Oriented Percolation

We want to prove that for p large enough percolation occurs, i.e.,
there are infinite oriented paths.
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Oriented Percolation

If the set C of points that can be reached by an open path starting
at the origin is finite. . .
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Oriented Percolation

. . . then there is an oriented path separating this set from the
infinite component of N2\C .
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Oriented Percolation

The up and left steps of this path cannot cross black arrows.
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Oriented Percolation

There are more up steps than down steps,
and more left steps than right steps.

Jan M. Swart Particle Systems



Oriented Percolation

The probability that for a given path of L steps, no up or left steps
cross a black arrow is ≤ (1− p)L/2.
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Oriented Percolation

A path of length L must start somewhere between (0, 0) and (L, 0).
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Oriented Percolation

? ?

?

In each point, there are at most three directions in which the path
can continue.
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Oriented Percolation

It follows that the total number of red paths of length L is ≤ L3L.
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Oriented Percolation

And the expected number of paths with the property that no up or
left step crosses a black arrow is ≤

∑∞
L=2 L3L(1− p)L/2.
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Oriented Percolation

If p > 8/9, then

P
[
there is no infinite green path starting at (0, 0)

]
= P

[
there is a red path blocking (0, 0)

]
≤ E

[
# red paths blocking (0, 0)

]
≤
∞∑
L=2

L3L(1− p)L/2 <∞.

By choosing p very close to 1, we can make this sum as small as
we wish. In particular, choosing p such that the sum is less than 1,
we have proved that:

P
[
there is an infinite green path starting at (0, 0)

]
> 0.

This is a Peierls argument.
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Oriented Percolation

We can actually do a little better, using a trick from the book of
Durrett (1988). For any L0 ≥ 0,

P
[
there is no infinite green path starting at (0, 0), . . . , (L0, 0)

]
≤

∞∑
L=L0

L3L(1− p)L/2.

As long as p > 8/9, we can make this sum as small as we wish by
choosing L0 large enough.
This proves that for any p > 8/9, there is an L0 ≥ 0 such that

P
[
there is an infinite green path starting at (0, 0), . . . , (L0, 0)

]
> 0.

But then, of course, we must also have

P
[
there is an infinite green path starting at (0, 0)

]
> 0.
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Comparison with Oriented Percolation

We want to apply our knowledge about oriented percolation to
prove that also in the contact process, with positive probability,
there is an infinite open path starting at the origin provided that
the infection rate is high enough.

By Exercise 7 of Lecture 4, it suffices to prove the statement for
the one-dimensional contact process.

Jan M. Swart Particle Systems



Comparison with Oriented Percolation

We take our percolation picture. . .

Jan M. Swart Particle Systems



Comparison with Oriented Percolation

. . . and rotate it over 45◦.
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Comparison with Oriented Percolation

. . . and rotate it over 45◦.
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Comparison with Oriented Percolation

. . . and rotate it over 45◦.
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Comparison with Oriented Percolation

. . . and rotate it over 45◦.
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Comparison with Oriented Percolation

We overlay this with the graphical representation for the contact
process.
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Comparison with Oriented Percolation

We overlay this with the graphical representation for the contact
process.
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Comparison with Oriented Percolation

We overlay this with the graphical representation for the contact
process.
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Comparison with Oriented Percolation

i , t

We draw a black arrow from (i , t) to (i ± 1, t + 1) if within the
green square, there is an open path connecting these points.
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Comparison with Oriented Percolation

i , t

By choosing the infection rate λ large enough and the death rate d
small enough, we can make the probability p of a black arrow as
close to one as we wish.

Jan M. Swart Particle Systems



Comparison with Oriented Percolation

i , t

The only problem is that, since the green squares overlap, these
probabilities are not independent.
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Comparison with Oriented Percolation

They are, however, almost independent. In fact, the bright green
square is independent of all other squares, except the red ones.
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K -dependence

The following result is due to Liggett, Schonmann, and Stacey
(1997).

Theorem 1 Let Λ be a countable set and let p,K be
constants. Let (χi )i∈Λ be Bernoulli random variables
such that for each i ∈ Λ: 1◦ P[χi = 1] ≥ p, and 2◦ there
exists i ∈ ∆i ⊂ Λ with |∆i | ≤ K, such that

χi is independent of (χj)j∈Λ\∆i
.

Assume also that

p̃ :=
(
1− (1− p)1/K

)2 ≥ 1/4.

Then it is possible to couple (χi )i∈Λ to a collection of
independent Bernoulli random variables (χ̃i )i∈Λ with
P[χ̃i = 1] = p̃ in such a way that χ̃i ≤ χi for all i ∈ Λ.
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K -dependence

Warning: The property that there exists i ∈ ∆i ⊂ Λ with
|∆i | ≤ K , such that

χi is independent of (χj)j∈Λ\∆i
,

is not exactly what is traditionally called “k-dependence”. Rather,
in the literature, “k-dependence” is defined for random variables
indexed by Zd only and means that

χi is independent of {χj : j ∈ Zd , |j − i | > k}.

This definition is a bit unfortunate since the structure of Zd is in
fact irrelevant for Theorem 1 and one often needs to apply the
theorem to random variables that are not indexed by Zd .
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K -dependence

Why is Theorem 1 good for us?

Since p̃(p) ↑ 1 as p ↑ 1, by choosing p close enough to 1, we can
make p̃ as close to 1 as we wish.

Concretely, applying the theorem with K = 3 and choosing the
infection and death rates such that

p > 1−
(
1−

√
8
9

)3 ≈ 0.99981

we obtain p̃ > 8/9 and can estimate from below by independent
oriented percolation, for which we have proved that there are
infinite open paths.

To prove the existence of a phase transition, all that remains to be
done is to prove Theorem 1.
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K -dependence

Lemma 2 Let (χn)n≥0 be Bernoulli random variables
such that

P
[
χn = 1

∣∣χ0, . . . , χn−1

]
≥ q (n ≥ 0). (1)

Then we can couple to independent (χ̃n)n≥0 with
P[χ̃n = 1] = q such that χ̃n ≤ χn ∀n ≥ 0.
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K -dependence

Proof Define

qn(ε0, . . . , εn−1) := P
[
χn = 1

∣∣χ0 = ε0, . . . , χn−1 = εn−1

]
.

Let (Un)n≥0 be independent, uniformly distributed [0, 1]-valued
random variables and define inductively

χ′n := 1{Un < qn(χ′0, . . . , χ
′
n−1)} (n ≥ 0). (2)

Then the (χ′n)n≥0 are equally distributed with (χn)n≥0. Moreover,

χ̃n := 1{Un < q} (n ≥ 0)

are i.i.d. with intensity q and satisfy χ̃n ≤ χ′n.
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K -dependence

Proof of Theorem 1 Since Λ is countable, without loss of
generality we may assume Λ = N.

Unfortunately, in general, the random variables (χi )i≥0 from
Theorem 1 do not satisfy condition (1) of Lemma 2 for any q > 0.

To remedy this, we construct i.i.d. Bernoulli random variables
(ψi )i≥0 with P[ψi = 1] = r to be chosen later, independent of
(χi )i≥0, and set

χ′i := ψiχi .

We will show that the “thinned” random variables (χ′i )i≥0 satisfy
condition (1) with q = p̃.
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K -dependence

We will prove by induction that for an appropriate choice of r ,

P[χn = 0 |χ′0 = ε0, . . . , χ
′
n−1 = εn−1] ≤ 1− r . (3)

Note that this is true for n = 0 provided that r ≤ p. Let us put

E0 := {i ∈ ∆n : 0 ≤ i ≤ n − 1, εi = 0},
E1 := {i ∈ ∆n : 0 ≤ i ≤ n − 1, εi = 1},
F := {i 6∈ ∆n : 0 ≤ i ≤ n − 1}.

Then. . .

Jan M. Swart Particle Systems



K -dependence

P[χn = 0 |χ′0 = ε0, . . . , χ
′
n−1 = εn−1]

= P
[
χn = 0

∣∣χ′i = 0 ∀i ∈ E0, χi = 1 = ψi ∀i ∈ E1, χ
′
i = εi ∀i ∈ F

]
= P

[
χn = 0

∣∣χ′i = 0 ∀i ∈ E0, χi = 1 ∀i ∈ E1, χ
′
i = εi ∀i ∈ F

]
=

P
[
χn = 0, χ′i = 0 ∀i ∈ E0, χi = 1 ∀i ∈ E1, χ

′
i = εi ∀i ∈ F

]
P
[
χ′i = 0 ∀i ∈ E0, χi = 1 ∀i ∈ E1, χ′i = εi ∀i ∈ F

]
≤

P
[
χn = 0, χ′i = εi ∀i ∈ F

]
P
[
ψi = 0 ∀i ∈ E0, χi = 1 ∀i ∈ E1, χ′i = εi ∀i ∈ F

]
=

P
[
χn = 0

∣∣χ′i = εi ∀i ∈ F
]

P
[
ψi = 0 ∀i ∈ E0, χi = 1 ∀i ∈ E1

∣∣χ′i = εi ∀i ∈ F
]

≤ 1− p

(1− r)|E0|P
[
χi = 1 ∀i ∈ E1

∣∣χ′i = εi ∀i ∈ F
] ≤ 1− p

(1− r)|E0| r |E1|
,

Jan M. Swart Particle Systems



K -dependence

Here, in the last step, we have used K -dependence and the
(nontrivial) fact that

P
[
χi = 1 ∀i ∈ E1

∣∣χ′i = εi ∀i ∈ F
]
≥ r |E1|. (4)

We claim that (4) is a consequence of the induction hypothesis
(3). Indeed, we may assume that the induction hypothesis (3)
holds regardless of the ordering of the first n elements, so without
loss of generality we may assume that E1 = {n − 1, . . . ,m} and
F = {m − 1, . . . , 0}, for some m. Then the left-hand side of (4)
may be written as

n−1∏
k=m

P
[
χk = 1

∣∣χi = 1 ∀m ≤ i < k, χ′i = εi ∀0 ≤ i < m
]

=
n−1∏
k=m

P
[
χk = 1

∣∣χ′i = 1 ∀m ≤ i < k , χ′i = εi ∀0 ≤ i < m
]
≥ rn−m.
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K -dependence

If we assume moreover that r ≥ 1
2 , then r |E1| ≥ (1− r)|E1| and the

r.h.s. of our previous estimate

P[χn = 0 |χ′0 = ε0, . . . , χ
′
n−1 = εn−1] ≤ 1− p

(1− r)|E0| r |E1|

can be further estimated as

1− p

(1− r)|E0| r |E1|
≤ 1− p

(1− r)|∆n∩{0,...,n−1}| ≤
1− p

(1− r)K−1
.

We see that in order for our proof to work, we need 1
2 ≤ r ≤ p and

1− p

(1− r)K−1
≤ 1− r .

In particular, choosing r = 1− (1− p)1/K yields equality here.
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K -dependence

Having proved (3), using moreover that

P[χ′n = 1 |χ′0 = ε0, . . . , χ
′
n−1 = εn−1]

= rP[χn = 1 |χ′0 = ε0, . . . , χ
′
n−1 = εn−1],

we see that Theorem 1 holds provided that we put p̃ := r2.
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Excercises

Exercise 1 The one-dimensional contact process with double
deaths has been introduced before Exercise 4 of Lecture 4. Use
comparison with oriented percolation to prove that the
one-dimensional contact process with double deaths survives with
positive probability if its branching rate λ is large enough. When
you apply Theorem 1, what value of K do you (at least) need to
use?

Exercise 2 Use the previous exercise, Exercise 4 of Lecture 4, and
Exercise 2 of Lecture 5 to conclude that for the cooperative
branching process considered there, if λ is large enough, then: 1◦

the process survives with positive probability if initially there are at
least two particles, and: 2◦ its upper invariant law is nontrivial.
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Excercises

Exercise 3 Fill in the necessary details in our proof that the
one-dimensional contact process survives for λ large enough to
derive an explicit upper bound on λc.

Exercise 4 For any x ∈ {0, 1}Z, let us write |x | :=
∑

i x(i) and let
ei ∈ {0, 1}Z be defined as ei (j) := 1{i=j}. Assume that there exists
some t > 0 such that the one-dimensional contact process satisfies

r := Ee0
[
|Xt |

]
< 1.

Show that this then implies that

Ee0
[
|Xnt |

]
≤ rn (n ≥ 0)

and the process started in any finite initial state dies out a.s. Use
this to derive the bound 1

2 ≤ λc. Can you do even better?
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