On rebellious voter models

Jan M. Swart

Vienna, June 18, 2013
joint with Anja Sturm and Karel Vrbenský

The Neuhauser-Pacala model

1	0	1	1	1	0
1	0	0	0	1	1
1	0	0	0	1	1
0	1	0	1	1	0
1	0	1	0	1	0

0 's and 1's represent two closely related species.

The Neuhauser-Pacala model

1	0	1	1	1	0
1	1	0	0	1	1
1	0	0	0	1	1
0	1	0	1	1	0
1	0	1	0	1	0

The 0's and 1's evolve in a Markovian way.

The Neuhauser-Pacala model

1	0	1	1	1	0
1	1	0	0	1	1
1	0	0	0	1	1
0	0	0	1	1	0
1	0	1	0	1	0

The 0's and 1's evolve in a Markovian way.

The Neuhauser-Pacala model

1	0	1	1	0	0
1	1	0	0	1	1
1	0	0	0	1	1
0	0	0	1	1	0
1	0	1	0	1	0

The 0's and 1's evolve in a Markovian way.

The Neuhauser-Pacala model

1	0	1	1	0	0
1	1	0	0	1	1
1	0	0	0	1	1
0	0	1	1	1	0
1	0	1	0	1	0

The 0's and 1's evolve in a Markovian way.

The Neuhauser-Pacala model

1	0	1	1	0	0
1	1	0	0	1	1
1	0	0	0	1	1
0	0	1	1	1	0
1	0	1	1	1	0

The 0's and 1's evolve in a Markovian way.

The Neuhauser-Pacala model

1	0	1	1	0	0
1	1	0	1	1	1
1	0	0	0	1	1
0	0	1	1	1	0
1	0	1	1	1	0

The 0's and 1's evolve in a Markovian way.

The Neuhauser-Pacala model

$$
\begin{gathered}
\mathcal{N}_{i}:=\left\{j \in \mathbb{Z}^{d}: 0<\|i-j\|_{\infty} \leq R\right\} \text { neighborhood of a site. } \\
\text { (Here } R=1, d=2) .
\end{gathered}
$$

The Neuhauser-Pacala model

$$
\begin{array}{cccccc}
1 & 0 & 1 & 1 & 0 & 0 \\
1 & 1 & 0 & 1 & 1 & 1 \\
1 & 1 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 1 & 0 \\
1 & 0 & 1 & 1 & 1 & 0 \\
f_{0}=3 / 8, f_{1}=5 / 8 \text { local frequencies of types } 0,1
\end{array}
$$

The Neuhauser-Pacala model

1	0	1	1	0	0
1	1	0	1	1	1
1	1	\dagger	0	1	1
0	0	1	1	1	0
1	0	1	1	1	0

With rate with rate $f_{0}+\alpha_{01} f_{1}$ an organism of type 0 dies...

The Neuhauser-Pacala model

1	0	1	1	0	0
1	1	0	1	1	1
1	1	1	0	1	1
0	0	1	1	1	0
1	0	1	1	1	0

.... and is replaced by a random type from the neighborhood.

The Neuhauser-Pacala model

Neuhauser \& Pacala (1999): Markov process in the space
$\{0,1\}^{\mathbb{Z}^{d}}$ of spin configurations $x=(x(i))_{i \in \mathbb{Z}^{d}}$, where spin $x(i)$ flips:

$$
\begin{aligned}
& 0 \mapsto 1 \text { with rate } f_{1}\left(f_{0}+\alpha_{01} f_{1}\right), \\
& 1 \mapsto 0 \text { with rate } f_{0}\left(f_{1}+\alpha_{10} f_{0}\right),
\end{aligned}
$$

with

$$
f_{\tau}(i):=\frac{\#\left\{j \in \mathcal{N}_{i}: x(j)=\tau\right\}}{\# \mathcal{N}_{i}} \quad \mathcal{N}_{i}:=\left\{j: 0<\|i-j\|_{\infty} \leq R\right\} .
$$

the local frequency of type $\tau=0,1$.
Interpretation: Interspecific competition rates α_{01}, α_{10}. Organism of type 0 dies with rate $f_{0}+\alpha_{01} f_{1}$ and is replaced by type sampled at random from distance $\leq R$.

The Neuhauser-Pacala model

By definition, type 0 survives if starting from a single organism of type 0 and all other organisms of type 1 , there is a positive probability that the organisms of type 0 never die out.

By definition, one has coexistence if there exists an invariant law concentrated on states where both types are present.

Mean field model

Dimension $d \geq 3$

Dimension $d=2$

Dimension $d=1$, range $R \geq 2$

Dimension $d=1$, range $R=1$

Consequences for biodiversity

Conjecture There exists a critical dimension $d_{c} \cong 4 / 3$ such that in dimensions $d<d_{\mathrm{c}}$, two species must be sufficiently different to be able to coexist, but in dimensions $d>d_{\mathrm{c}}$, any difference, no matter how small, suffices.

Rigorous results for $d \geq 3$

$[$ NP99 $]=$ Neuhauser \& Pacala '99, [CP07] $=$ Cox \& Perkins '07.

Open problem for $d=1$

Open problem: noncoexistence.

Special models

Pure voter model

Pure voter model

If started with finitely many organisms of type 1 , then number of 1 's is a martingale. Consequence: 1's (and likewise 0's) die out.

Dual to coalescing random walks. Consequence: coexistence in transient dimensions $d \geq 3$, clustering in $d=1,2$.

The symmetric case

The symmetric case $\alpha_{01}=\alpha_{10}=\alpha \leq 1$ is a cancellative system. There is a dual process Y such that

$$
\mathbb{P}\left[\left|X_{t} Y_{0}\right| \text { is odd }\right]=\mathbb{P}\left[\left|X_{0} Y_{t}\right| \text { is odd }\right] \quad(t \geq 0)
$$

whenever X and Y are independent. Here

$$
|x|:=\sum_{i} x(i) \quad \text { and } \quad x y(i):=x(i) y(i)
$$

Cancellative systems

Equip $\{0,1\}$ with the usual product and with addition modulo 2, denoted as \oplus. Then $\{0,1\}$ is a finite field. We may view $\{0,1\}^{\mathbb{Z}^{d}}$ (equipped with \oplus) as a linear space over $\{0,1\}$.
A cancellative system $X=\left(X_{t}\right)_{t \geq 0}$ is a linear system w.r.t. to the finite field $\{0,1\}$, that evolves as

$$
x \mapsto x \oplus A x \quad \text { with rate } r(A) \geq 0
$$

where

$$
A x(i):=\bigoplus_{j \in \mathbb{Z}^{d}} A(i, j) x(j)
$$

with $A(i, j)=1$ for finitely many i, j and $A(i, j)=0$ otherwise.

The rebellious voter model

Example For $k \in \mathbb{Z}$, define:

$$
\begin{aligned}
& A_{k}(k-1, k):=1, \quad A_{k}(k, k):=1, \quad A_{k}(i, j):=0 \text { otherwise } \\
& A_{k}^{\prime}(k-2, k):=1, \quad A_{k}^{\prime}(k-1, k):=1, \quad A_{k}^{\prime}(i, j):=0 \text { otherwise. }
\end{aligned}
$$

Set $r\left(A_{k}\right):=\alpha, r\left(A_{k}^{\prime}\right):=1=\alpha$, and $r(A):=0$ for all other A.
This yields one-sided rebellious voter model where $x(k)$ flips

$$
0 \leftrightarrow 1 \text { with rate } \alpha 1_{\{x(k-1) \neq x(k)\}}+(1-\alpha) 1_{\{x(k-2) \neq x(k-1)\}} .
$$

Graphical representation

Draw space horizontally, time vertically.
If the local map A applies at time t, draw an arrow from (i, t) to (j, t)
whenever $A(i, j)=1$.

Graphical representation

$X_{t}(i)=1$ iff there is a odd number of paths from X_{0} to (i, t).

Graphical representation

$X_{t}(i)=1$ iff there is a odd number of paths from X_{0} to (i, t).

Graphical representation of dual model

Time runs backwards and all arrows are reversed.

Duality

$\left|X_{0} Y_{t}\right|$ is odd $\Leftrightarrow \#$ paths from X_{0} to Y_{0} is odd $\Leftrightarrow\left|X_{t} Y_{0}\right|$ is odd.

Cancellative system duality

Rates of the dual model:

$$
r_{Y}\left(A^{\dagger}\right)=r_{X}(A),
$$

where $A^{\dagger}(i, j)=A(j, i)$ denotes the adjoint of A.

Duality:

$$
\mathbb{P}\left[\left|X_{t} Y_{0}\right| \text { is odd }\right]=\mathbb{P}\left[\left|X_{0} Y_{t}\right| \text { is odd }\right] \quad(t \geq 0)
$$

whenever X and Y are independent, where

$$
|x|:=\sum_{i} x(i) \quad \text { and } \quad x y(i):=x(i) y(i)
$$

Examples of duality

If X has voter model dynamics:

$$
(x(k-1), x(k)) \mapsto(x(k-1), x(k-1)) \quad \text { with rate } \alpha,
$$

then Y has annihilating random walk dynamics:

$$
(y(k-1), y(k)) \mapsto(y(k-1) \oplus y(k), 0) \quad \text { with rate } \alpha 1_{\{y(k)=1\}}
$$

i.e., a particle at k jumps to $k-1$;
if there is already a particle at $k-1$, the two particles annihilate.

Examples of duality

If X has rebellious dynamics:

$$
x(k) \mapsto 1-x(k) \quad \text { with rate }(1-\alpha) 1_{\{x(k-2) \neq x(k-1)\}},
$$

then Y has annihilating branching dynamics:

$$
y \mapsto y \oplus \delta_{k-2} \oplus \delta_{k-1}, \quad \text { with rate }(1-\alpha) 1_{\{y(k)=1\}}
$$

i.e., a particle at k produces two new particles at positions $k-2$ and $k-1$
and these particles annihilate with any particles that may already be present.

Examples of duality

Similarly, the Neuhauser-Pacala model is dual to a system of branching-annihilating particles, where: particles jump with rate α to a new place at distance $\leq R$, and each particle produces two new particles at distances $\leq R$ with rates proportional to $1-\alpha$.

Since the number of particles of Y is always increased or decreased by 2 , the process is parity preserving, i.e., $\left|Y_{t}\right|$ is odd $\Leftrightarrow\left|Y_{0}\right|$ is odd.

Behavior of the dual model

By definition, Y survives if starting from an even number of particles, there is a positive probability that the particles never die out.

By definition, Y is stable if starting from one particle, the process 'modulo translations' is positively recurrent, i.e., the system returns to a state with only one particle infinitely often and spends a positive fraction of its time in such states.

By definition, Y is persistent if there exists an invariant law concentrated on nonempty configurations.

Simple consequences of duality

Lemma X has coexistence $\Leftrightarrow Y$ survives.
Proof Start X in product measure with intensity $1 / 2$ and let $Y_{0}:=\delta_{i}+\delta_{j}$. Then

$$
\begin{aligned}
& \mathbb{P}\left[X_{t}(i) \neq X_{t}(j)\right]=\mathbb{P}\left[\left|X_{t} Y_{0}\right| \text { is odd }\right]=\mathbb{P}\left[\left|X_{0} Y_{t}\right| \text { is odd }\right] \\
& \quad=\frac{1}{2} \mathbb{P}\left[Y_{t} \neq 0\right] \underset{t \rightarrow \infty}{\longrightarrow} \frac{1}{2} \mathbb{P}\left[Y_{s} \neq 0 \forall s \geq 0\right] .
\end{aligned}
$$

Lemma $\ln X$ both types survive $\Leftrightarrow Y$ is persistent.

Proofs of coexistence

For small α, coexistence and survival of both types for the Neuhauser-Pacala model proved by showing that dual model survives and is persistent.

Main tool: comparison with oriented percolation.
In dimensions $d \geq 2$, Cox, Merle and Perkins prove that as $\alpha_{01}, \alpha_{10} \rightarrow 1$ and $\alpha_{01} \approx \alpha_{10}$, rescaled sparse models converge to supercritical super Brownian motion.

Using this, for α_{01}, α_{10} fixed but very close to one, they are able to compare with oriented percolation and prove coexistence.

Intermediate α still open since monotonicity not proved.

Coexistence results for $d \geq 3$

$[$ NP99 $]=$ Neuhauser \& Pacala '99, [CP07] $=$ Cox \& Perkins '07.

Interfaces

By definition, a cancellative spin-system X is type-symmetric if it treats the types symmetrically, i.e., $1-X_{t}$ has the same dynamics as X_{t}.
Lemma X type-symmetric \Leftrightarrow dual Y parity preserving.
For one-dimensional, type-symmetric X, setting

$$
Y_{t}^{\prime}(i):=1_{\left\{X_{t}\left(i-\frac{1}{2}\right) \neq X_{t}\left(i+\frac{1}{2}\right)\right\} \quad\left(i \in \mathbb{Z}+\frac{1}{2}\right)}
$$

defines the interface model of X.
Lemma [Swa13] Y^{\prime} is a also a parity preserving cancellative system and

The rebellious voter model

For the rebellious voter model, the dual and interface models coincide:

Lemma [SS08] For the rebellious voter model both types survive \Leftrightarrow the model exhibits coexistence.

Interface tightness

By definition, X exhibits interface tightness if its interface model Y^{\prime} is stable, i.e., Y^{\prime} modulo translations is positively recurrent. Interface tightness means that starting from ... $000000111111 . .$. , the system spends a positive fraction of time in such states: the types cannot invade each other's territory.

Interface tightness for long-range voter models was proved by Cox and Durrett (1995) under a third moment condition on the infection rates. This was improved to a second moment condition, which is sharp, by Belhaouari, Mountford and Valle (2007). A simpler proof was given by S. \& Sturm (2008).

Interface tightness for the Neuhauser-Pacala model with $R \geq 2$ or for the rebellious voter model is an open problem.

Strong interface tightness

By definition, X exhibits strong interface tightness if for the invariant law of the interface model modulo shifts $\mathbb{E}\left[\left|Y_{\infty}^{\prime}\right|\right]<\infty$, i.e., the expected number of sites such that $X_{t}\left(i-\frac{1}{2}\right) \neq X_{t}\left(i+\frac{1}{2}\right)$ is finite.

Strong interface tightness is known to hold for voter models and numerically observed for the rebellious voter model with $\alpha>\alpha_{\mathrm{c}}$. By contrast, the expected length of the interface (distance from left-most one to right-most zero) is known to be infinite for voter models.

Theorem [Swa13] Strong interface tightness implies noncoexistence.

Numerical simulation

One-sided rebellious interface model

Interface process Y of the one-sided rebellious voter model for $\alpha=0.3,0.5,0.6$.

Edge speeds

Edge speeds for the rebellious voter model (left) and its one-sided counterpart (right) [S. \& Vrbenský '10].

Two functions of the process

Define the survival probability

$$
\rho(\alpha):=\mathbb{P}^{\delta_{0}}\left[X_{t} \neq 0 \forall t \geq 0\right] .
$$

- coexistence $\Leftrightarrow \rho(\alpha)>0$.

Define the fraction of time spent with a single interface

$$
\chi(\alpha):=\mathbb{P}\left[\left|Y_{\infty}\right|=1\right]
$$

- interface tightness $\Leftrightarrow \chi(\alpha)>0$.

Numerical data

The functions ρ and χ for the two-sided rebelious voter model.

Numerical data

The functions ρ and χ for the one-sided rebelious voter model.

Explicit formulas

It seems that for the one-sided model, the functions ρ and χ are described by the explicit formulas:

$$
\rho(\alpha)=0 \vee \frac{1-2 \alpha}{1-\alpha} \quad \text { and } \quad \chi(\alpha)=0 \vee\left(2-\frac{1}{\alpha}\right) .
$$

In particular, one has the symmetry $\rho(1-\alpha)=\chi(\alpha)$ and the critical parameter seems to be given by $\alpha_{\mathrm{c}}=1 / 2$.

Explanation?

Numerical data

Differences of ρ and χ with presumed explicit formulas.

A critical exponent

Theoretical physicists believe that

$$
\rho(\alpha) \sim\left(\alpha_{\mathrm{c}}-\alpha\right)^{\beta} \quad \text { as } \quad \alpha \uparrow \alpha_{\mathrm{c}}
$$

where β is a critical exponent.
It has been conjectured by I. Jensen (1994) that $\beta=13 / 14$ and that $\beta=1$ [Inui \& Tretyakov '98]. More recent estimates are $\beta \approx 0.92, \beta \approx 0.95$ [Hinrichsen '00] [Ódor \& Szolnoki '05]. Our formula would imply $\beta=1$.

Interface tightness

Let $\xi^{1}, \xi^{2}, \xi^{3}$ be independent random walks started from $\left(\xi_{0}^{1}, \xi_{0}^{2}, \xi_{0}^{3}\right)=(-1,0,1)$.
Set $\tau_{i j}:=\inf \left\{t \geq 0: \xi_{t}^{i}=\xi_{t}^{j}\right\}$ and

$$
\tau:=\tau_{12} \wedge \tau_{23} \wedge \tau_{31}
$$

Then

$$
\begin{aligned}
& \mathbb{P}[\tau>t] \sim t^{-3 / 2} \quad \text { ast } \rightarrow \infty \\
& \mathbb{E}[\tau]=1<\infty
\end{aligned}
$$

Observed: for small branching rate $1-\alpha$, system Y spends fraction of time of order $(1-\alpha)^{m}$ with $1+2 m$ particles.

