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The Neuhauser-Pacala model

1 0 1 1 1 0

1 0 0 0 1 1

1 0 0 0 1 1

0 1 0 1 1 0

1 0 1 0 1 0

0’s and 1’s represent two closely related species.
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The 0’s and 1’s evolve in a Markovian way.
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The Neuhauser-Pacala model

Ni := {j ∈ Zd : 0 < ‖i − j‖∞ ≤ R} neighborhood of a site.
(Here R = 1, d = 2).
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The Neuhauser-Pacala model
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f0 = 3/8, f1 = 5/8 local frequencies of types 0, 1.
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The Neuhauser-Pacala model
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†

With rate with rate f0 + α01f1 an organism of type 0 dies. . .
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The Neuhauser-Pacala model
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. . . and is replaced by a random type from the neighborhood.
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The Neuhauser-Pacala model

Neuhauser & Pacala (1999): Markov process in the space

{0, 1}Zd
of spin configurations x = (x(i))i∈Zd , where spin x(i) flips:

0 7→ 1 with rate f1(f0 + α01f1),

1 7→ 0 with rate f0(f1 + α10f0),

with

fτ (i) :=
#{j ∈ Ni : x(j) = τ}

#Ni
Ni := {j : 0 < ‖i − j‖∞ ≤ R}.

the local frequency of type τ = 0, 1.

Interpretation: Interspecific competition rates α01, α10. Organism
of type 0 dies with rate f0 + α01f1 and is replaced by type sampled
at random from distance ≤ R.
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The Neuhauser-Pacala model

By definition, type 0 survives if starting from a single organism of
type 0 and all other organisms of type 1, there is a positive
probability that the organisms of type 0 never die out.

By definition, one has coexistence if there exists an invariant law
concentrated on states where both types are present.
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Mean field model
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Dimension d ≥ 3
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Dimension d = 2

0’s survive

1’s survive

co
ex

ist
en

ce

?

α01

α10

1

1

Jan M. Swart On rebellious voter models



Dimension d = 1, range R ≥ 2
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Dimension d = 1, range R = 1
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Consequences for biodiversity

Conjecture There exists a critical dimension dc ∼= 4/3 such that in
dimensions d < dc, two species must be sufficiently different to be
able to coexist, but in dimensions d > dc, any difference, no
matter how small, suffices.
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Rigorous results for d ≥ 3

α01

α10

1

1

[NP99]

[NP99]

[NP99]

[CP07]
d =2 Cox, Merle &
Perkins ’10

[NP99]=Neuhauser & Pacala ’99, [CP07]=Cox & Perkins ’07.
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Open problem for d = 1
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Open problem: noncoexistence.
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Special models

α01

α10

1

1 pure voter model

cancellative system
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Pure voter model

Pure voter model

If started with finitely many organisms of type 1, then number of
1’s is a martingale. Consequence: 1’s (and likewise 0’s) die out.

Dual to coalescing random walks. Consequence: coexistence in
transient dimensions d ≥ 3, clustering in d = 1, 2.
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The symmetric case

The symmetric case α01 = α10 = α ≤ 1 is a cancellative system.

There is a dual process Y such that

P
[
|XtY0| is odd

]
= P

[
|X0Yt | is odd

]
(t ≥ 0)

whenever X and Y are independent. Here

|x | :=
∑

i x(i) and xy(i) := x(i)y(i).
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Cancellative systems

Equip {0, 1} with the usual product and with addition modulo 2,

denoted as ⊕. Then {0, 1} is a finite field. We may view {0, 1}Zd

(equipped with ⊕) as a linear space over {0, 1}.

A cancellative system X = (Xt)t≥0 is a linear system w.r.t. to the
finite field {0, 1}, that evolves as

x 7→ x ⊕ Ax with rate r(A) ≥ 0,

where
Ax(i) :=

⊕
j∈Zd

A(i , j)x(j)

with A(i , j) = 1 for finitely many i , j and A(i , j) = 0 otherwise.
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The rebellious voter model

Example For k ∈ Z, define:

Ak(k − 1, k) := 1, Ak(k , k) := 1, Ak(i , j) := 0 otherwise,

A′k(k − 2, k) := 1, A′k(k − 1, k) := 1, A′k(i , j) := 0 otherwise.

Set r(Ak) := α, r(A′k) := 1 = α, and r(A) := 0 for all other A.

This yields one-sided rebellious voter model where x(k) flips

0↔ 1 with rate α1{x(k−1) 6=x(k)} + (1− α)1{x(k−2)6=x(k−1)}.
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Graphical representation

Draw space horizontally, time vertically.

If the local map A applies at time t,
draw an arrow from (i , t) to (j , t)
whenever A(i , j) = 1.
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Graphical representation

Xt

X0

Ak

k

A′m

m

Xt(i) = 1 iff there is a odd number of paths from X0 to (i , t).
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Graphical representation

Xt
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Xt(i) = 1 iff there is a odd number of paths from X0 to (i , t).
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Graphical representation of dual model

Yt

Y0

A†k

k

A′†m

m

Time runs backwards and all arrows are reversed.
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Duality

Y0

X0

A†k

k

A′†m

m

|X0Yt | is odd ⇔ # paths from X0 to Y0 is odd ⇔ |XtY0| is odd.
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Cancellative system duality

Rates of the dual model:

rY (A†) = rX (A),

where A†(i , j) = A(j , i) denotes the adjoint of A.

Duality:

P
[
|XtY0| is odd

]
= P

[
|X0Yt | is odd

]
(t ≥ 0)

whenever X and Y are independent, where

|x | :=
∑

i x(i) and xy(i) := x(i)y(i).
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Examples of duality

If X has voter model dynamics:(
x(k − 1), x(k)

)
7→
(
x(k − 1), x(k − 1)

)
with rate α,

then Y has annihilating random walk dynamics:(
y(k − 1), y(k)

)
7→
(
y(k − 1)⊕ y(k), 0

)
with rate α1{y(k)=1},

i.e., a particle at k jumps to k − 1;
if there is already a particle at k − 1,
the two particles annihilate.
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Examples of duality

If X has rebellious dynamics:

x(k) 7→ 1− x(k) with rate (1− α)1{x(k−2) 6=x(k−1)},

then Y has annihilating branching dynamics:

y 7→ y ⊕ δk−2 ⊕ δk−1, with rate (1− α)1{y(k)=1},

i.e., a particle at k produces two new particles
at positions k − 2 and k − 1
and these particles annihilate with any particles that may already
be present.
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Examples of duality

Similarly, the Neuhauser-Pacala model is dual to a system of
branching-annihilating particles, where:
particles jump with rate α to a new place at distance ≤ R,
and each particle produces two new particles at distances ≤ R with
rates proportional to 1− α.

Since the number of particles of Y is always increased or decreased
by 2, the process is parity preserving, i.e., |Yt | is odd⇔ |Y0| is odd.
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Behavior of the dual model

By definition, Y survives if starting from an even number of
particles, there is a positive probability that the particles never die
out.

By definition, Y is stable if starting from one particle, the process
‘modulo translations’ is positively recurrent, i.e., the system
returns to a state with only one particle infinitely often and spends
a positive fraction of its time in such states.

By definition, Y is persistent if there exists an invariant law
concentrated on nonempty configurations.
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Simple consequences of duality

Lemma X has coexistence ⇔ Y survives.

Proof Start X in product measure with intensity 1/2 and let
Y0 := δi + δj . Then

P
[
Xt(i) 6= Xt(j)

]
= P

[
|XtY0| is odd

]
= P

[
|X0Yt | is odd

]
= 1

2P
[
Yt 6= 0

]
−→
t→∞

1
2P
[
Ys 6= 0 ∀s ≥ 0

]
.

Lemma In X both types survive ⇔ Y is persistent.
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Proofs of coexistence

For small α, coexistence and survival of both types for the
Neuhauser-Pacala model proved by showing that dual model
survives and is persistent.

Main tool: comparison with oriented percolation.

In dimensions d ≥ 2, Cox, Merle and Perkins prove that as
α01, α10 → 1 and α01 ≈ α10, rescaled sparse models converge to
supercritical super Brownian motion.

Using this, for α01, α10 fixed but very close to one, they are able to
compare with oriented percolation and prove coexistence.

Intermediate α still open since monotonicity not proved.
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Coexistence results for d ≥ 3

α01

α10

1

1

[NP99]

?

[CP07]
d =2 Cox, Merle &
Perkins ’10

[NP99]=Neuhauser & Pacala ’99, [CP07]=Cox & Perkins ’07.
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Interfaces

By definition, a cancellative spin-system X is type-symmetric if it
treats the types symmetrically, i.e., 1− Xt has the same dynamics
as Xt .

Lemma X type-symmetric ⇔ dual Y parity preserving.

For one-dimensional, type-symmetric X , setting

Y ′t (i) := 1{Xt(i − 1
2) 6= Xt(i + 1

2)} (i ∈ Z + 1
2)

defines the interface model of X .

Lemma [Swa13] Y ′ is a also a parity preserving cancellative
system and

Y X ′

X Y ′
interface

interface

dual dual
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The rebellious voter model

For the rebellious voter model, the dual and interface models
coincide:

Y

X

dual interface

Lemma [SS08] For the rebellious voter model both types survive
⇔ the model exhibits coexistence.
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Interface tightness

By definition, X exhibits interface tightness if its interface model
Y ′ is stable, i.e., Y ′ modulo translations is positively recurrent.

Interface tightness means that starting from . . . 000000111111 . . .,
the system spends a positive fraction of time in such states: the
types cannot invade each other’s territory.

Interface tightness for long-range voter models was proved by Cox
and Durrett (1995) under a third moment condition on the
infection rates. This was improved to a second moment condition,
which is sharp, by Belhaouari, Mountford and Valle (2007). A
simpler proof was given by S. & Sturm (2008).

Interface tightness for the Neuhauser-Pacala model with R ≥ 2 or
for the rebellious voter model is an open problem.
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Strong interface tightness

By definition, X exhibits strong interface tightness if for the
invariant law of the interface model modulo shifts E[|Y ′∞|] <∞,
i.e., the expected number of sites such that Xt(i − 1

2) 6= Xt(i + 1
2)

is finite.

Strong interface tightness is known to hold for voter models and
numerically observed for the rebellious voter model with α > αc.
By contrast, the expected length of the interface (distance from
left-most one to right-most zero) is known to be infinite for voter
models.

Theorem [Swa13] Strong interface tightness implies
noncoexistence.
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Numerical simulation

Interface process Y of the two-sided rebellious voter model for
α = 0.4, 0.5, 0.51, 0.6.
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One-sided rebellious interface model

Interface process Y of the one-sided rebellious voter model for
α = 0.3, 0.5, 0.6.
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Edge speeds
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Edge speeds for the rebellious voter model (left) and its one-sided
counterpart (right) [S. & Vrbenský ’10].
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Two functions of the process

Define the survival probability

ρ(α) := Pδ0 [Xt 6= 0 ∀t ≥ 0].

• coexistence ⇔ ρ(α) > 0.

Define the fraction of time spent with a single interface

χ(α) := P
[
|Y∞| = 1

]
.

• interface tightness ⇔ χ(α) > 0.
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Numerical data

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

ρ(α)

χ(α)

The functions ρ and χ for the two-sided rebelious voter model.
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The functions ρ and χ for the one-sided rebelious voter model.
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Explicit formulas

It seems that for the one-sided model, the functions ρ and χ are
described by the explicit formulas:

ρ(α) = 0 ∨ 1− 2α

1− α
and χ(α) = 0 ∨

(
2− 1

α

)
.

In particular, one has the symmetry ρ(1− α) = χ(α) and the
critical parameter seems to be given by αc = 1/2.

Explanation?
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Numerical data
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Differences of ρ and χ with presumed explicit formulas.
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A critical exponent

Theoretical physicists believe that

ρ(α) ∼ (αc − α)β as α ↑ αc,

where β is a critical exponent.

It has been conjectured by I. Jensen (1994) that β = 13/14 and
that β = 1 [Inui & Tretyakov ’98]. More recent estimates are
β ≈ 0.92, β ≈ 0.95 [Hinrichsen ’00] [Ódor & Szolnoki ’05]. Our
formula would imply β = 1.
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Interface tightness

Let ξ1, ξ2, ξ3 be independent random walks started from
(ξ10 , ξ

2
0 , ξ

3
0) = (−1, 0, 1).

Set τij := inf{t ≥ 0 : ξit = ξjt} and

τ := τ12 ∧ τ23 ∧ τ31.

Then
P[τ > t] ∼ t−3/2 ast →∞,
E[τ ] = 1 <∞.

Observed: for small branching rate 1− α, system Y spends
fraction of time of order (1− α)m with 1 + 2m particles.
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