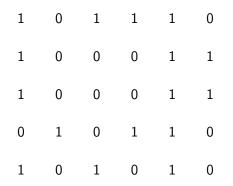
On rebellious voter models

Jan M. Swart

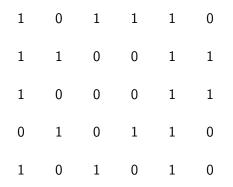
Vienna, June 18, 2013 joint with Anja Sturm and Karel Vrbenský

< E > < E >



0's and 1's represent two closely related species.

< ≣ >



The 0's and 1's evolve in a Markovian way.

1	0	1	1	1	0
1	1	0	0	1	1
1	0	0	0	1	1
0	0	0	1	1	0
1	0	1	0	1	0

The 0's and 1's evolve in a Markovian way.

白 ト く ヨ ト く ヨ ト

1	0	1	1	0	0
1	1	0	0	1	1
1	0	0	0	1	1
0	0	0	1	1	0
1	0	1	0	1	0

The 0's and 1's evolve in a Markovian way.

白 ト く ヨ ト く ヨ ト

1	0	1	1	0	0
1	1	0	0	1	1
1	0	0	0	1	1
0	0	1	1	1	0
1	0	1	0	1	0

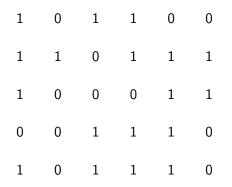
The 0's and 1's evolve in a Markovian way.

白 ト く ヨ ト く ヨ ト

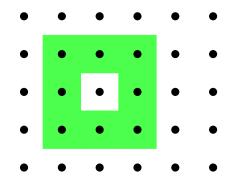
1	0	1	1	0	0
1	1	0	0	1	1
1	0	0	0	1	1
0	0	1	1	1	0
1	0	1	1	1	0

The 0's and 1's evolve in a Markovian way.

白 ト く ヨ ト く ヨ ト



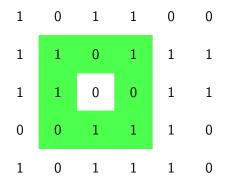
The 0's and 1's evolve in a Markovian way.



$$\mathcal{N}_i := \{ j \in \mathbb{Z}^d : 0 < \|i - j\|_{\infty} \le R \} \text{ neighborhood of a site.}$$

(Here $R = 1, d = 2$).

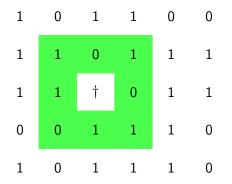
< 注 → < 注 →



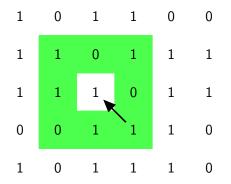
 $f_0 = 3/8$, $f_1 = 5/8$ local frequencies of types 0, 1.

白 と く ヨ と く ヨ と …

3



With rate with rate $f_0 + \alpha_{01}f_1$ an organism of type 0 dies...



... and is replaced by a random type from the neighborhood.

< ≣ >

Neuhauser & Pacala (1999): Markov process in the space $\{0,1\}^{\mathbb{Z}^d}$ of spin configurations $x = (x(i))_{i \in \mathbb{Z}^d}$, where spin x(i) flips:

$$0 \mapsto 1 \text{ with rate } f_1(f_0 + \alpha_{01}f_1),$$

$$1 \mapsto 0 \text{ with rate } f_0(f_1 + \alpha_{10}f_0),$$

with

$$f_{ au}(i):=rac{\#\{j\in\mathcal{N}_i:x(j)= au\}}{\#\mathcal{N}_i}\quad\mathcal{N}_i:=\{j:0<\|i-j\|_\infty\leq R\}.$$

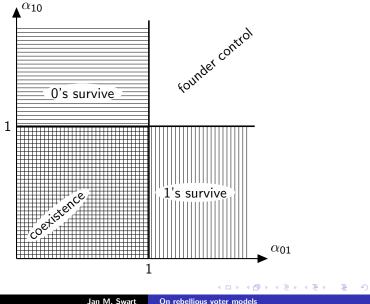
the local frequency of type $\tau = 0, 1$.

Interpretation: Interspecific competition rates α_{01}, α_{10} . Organism of type 0 dies with rate $f_0 + \alpha_{01}f_1$ and is replaced by type sampled at random from distance $\leq R$.

By definition, type 0 *survives* if starting from a single organism of type 0 and all other organisms of type 1, there is a positive probability that the organisms of type 0 never die out.

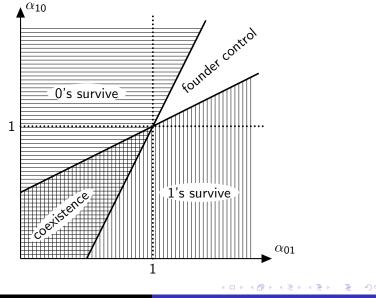
By definition, one has *coexistence* if there exists an invariant law concentrated on states where both types are present.

Mean field model



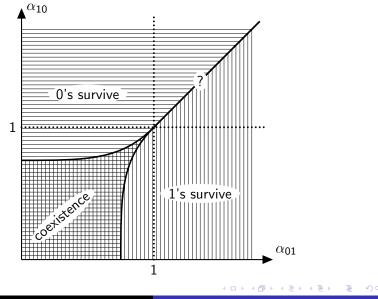
Jan M. Swart

Dimension $d \ge 3$



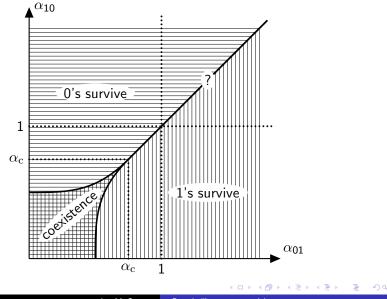
Jan M. Swart On rebellious voter models

Dimension d = 2



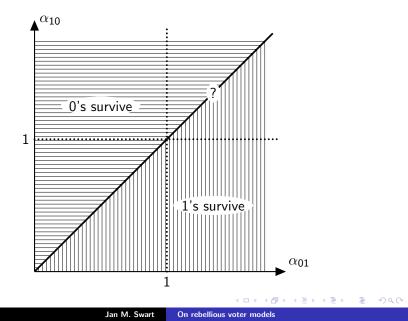
Jan M. Swart On rebellious voter models

Dimension d = 1, range $R \ge 2$



Jan M. Swart On rebellious voter models

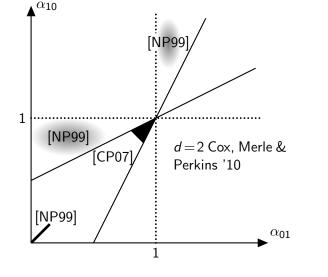
Dimension $d = \overline{1}$, range R = 1



Conjecture There exists a critical dimension $d_c \cong 4/3$ such that in dimensions $d < d_c$, two species must be sufficiently different to be able to coexist, but in dimensions $d > d_c$, any difference, no matter how small, suffices.

(3)

Rigorous results for $d \ge 3$

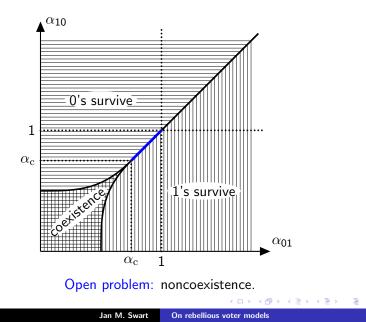


[NP99]=Neuhauser & Pacala '99, [CP07]=Cox & Perkins, '07.

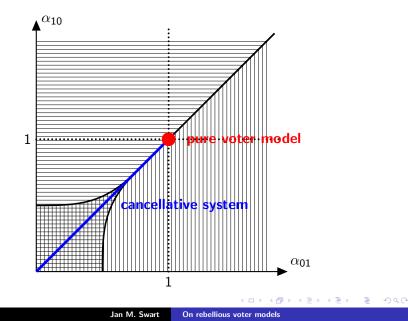
Jan M. Swart

On rebellious voter models

Open problem for d = 1



Special models



Pure voter model

If started with finitely many organisms of type 1, then number of 1's is a martingale. Consequence: 1's (and likewise 0's) die out.

Dual to coalescing random walks. Consequence: coexistence in transient dimensions $d \ge 3$, clustering in d = 1, 2.

The symmetric case $\alpha_{01} = \alpha_{10} = \alpha \le 1$ is a *cancellative system*. There is a *dual process* Y such that

$$\mathbb{P}\big[|X_t Y_0| \text{ is odd}\big] = \mathbb{P}\big[|X_0 Y_t| \text{ is odd}\big] \qquad (t \ge 0)$$

whenever X and Y are independent. Here

$$|x| := \sum_i x(i)$$
 and $xy(i) := x(i)y(i)$.

Equip $\{0,1\}$ with the usual product and with addition modulo 2, denoted as \oplus . Then $\{0,1\}$ is a *finite field*. We may view $\{0,1\}^{\mathbb{Z}^d}$ (equipped with \oplus) as a *linear space* over $\{0,1\}$.

A cancellative system $X = (X_t)_{t \ge 0}$ is a linear system w.r.t. to the finite field $\{0, 1\}$, that evolves as

$$x \mapsto x \oplus Ax$$
 with rate $r(A) \ge 0$,

where

$$Ax(i) := \bigoplus_{j \in \mathbb{Z}^d} A(i,j)x(j)$$

with A(i,j) = 1 for finitely many i, j and A(i, j) = 0 otherwise.

¬<</p>

Example For $k \in \mathbb{Z}$, define:

$$egin{aligned} & A_k(k-1,k) := 1, \quad A_k(k,k) := 1, \quad A_k(i,j) := 0 \ ext{otherwise}, \ & A_k'(k-2,k) := 1, \quad A_k'(k-1,k) := 1, \quad A_k'(i,j) := 0 \ ext{otherwise}. \end{aligned}$$

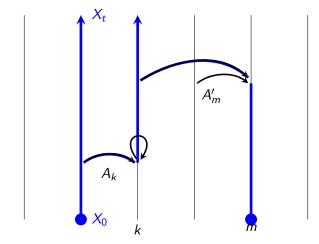
Set $r(A_k) := \alpha$, $r(A'_k) := 1 = \alpha$, and r(A) := 0 for all other A. This yields *one-sided rebellious voter model* where x(k) flips

 $0 \leftrightarrow 1$ with rate $\alpha \mathbb{1}_{\{x(k-1) \neq x(k)\}} + (1-\alpha) \mathbb{1}_{\{x(k-2) \neq x(k-1)\}}$.

Draw space horizontally, time vertically.

If the local map A applies at time t, draw an arrow from (i, t) to (j, t)whenever A(i, j) = 1.

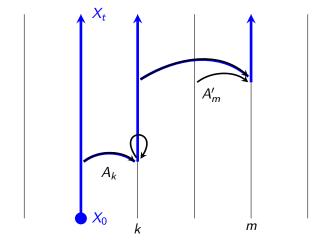
Graphical representation



 $X_t(i) = 1$ iff there is a odd number of paths from X_0 to (i, t).

個 と く ヨ と く ヨ と 。

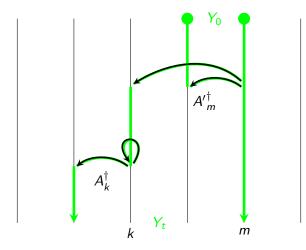
Graphical representation



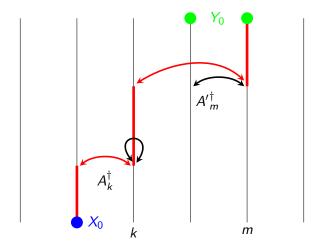
 $X_t(i) = 1$ iff there is a odd number of paths from X_0 to (i, t).

> < 물 > < 물 >

Graphical representation of dual model



Time runs backwards and all arrows are reversed.



 $|X_0Y_t|$ is odd $\Leftrightarrow \#$ paths from X_0 to Y_0 is odd $\Leftrightarrow |X_tY_0|$ is odd.

▶ < 문 ▶ < 문 ▶</p>

3

Rates of the dual model:

$$r_Y(A^{\dagger})=r_X(A),$$

where $A^{\dagger}(i, j) = A(j, i)$ denotes the *adjoint* of *A*. **Duality:**

$$\mathbb{P}\big[|X_t Y_0| \text{ is odd}\big] = \mathbb{P}\big[|X_0 Y_t| \text{ is odd}\big] \qquad (t \ge 0)$$

whenever X and Y are independent, where

$$|x| := \sum_i x(i)$$
 and $xy(i) := x(i)y(i)$.

프 🖌 🛪 프 🕨

If X has voter model dynamics:

$$ig(x(k-1),x(k)ig)\mapstoig(x(k-1),x(k-1)ig) \quad ext{with rate } lpha,$$

then Y has annihilating random walk dynamics:

$$(y(k-1), y(k)) \mapsto (y(k-1) \oplus y(k), 0)$$
 with rate $\alpha 1_{\{y(k)=1\}}$,

i.e., a particle at k jumps to k - 1; if there is already a particle at k - 1, the two particles *annihilate*. If X has rebellious dynamics:

$$x(k)\mapsto 1-x(k)$$
 with rate $(1-lpha)1_{\{x(k-2)
eq x(k-1)\}}$,

then Y has annihilating branching dynamics:

$$y \mapsto y \oplus \delta_{k-2} \oplus \delta_{k-1}$$
, with rate $(1 - \alpha) \mathbb{1}_{\{y(k)=1\}}$,

i.e., a particle at k produces two new particles at positions k - 2 and k - 1and these particles *annihilate* with any particles that may already be present. Similarly, the Neuhauser-Pacala model is dual to a system of *branching-annihilating* particles, where: particles jump with rate α to a new place at distance $\leq R$, and each particle produces two new particles at distances $\leq R$ with rates proportional to $1 - \alpha$.

Since the number of particles of Y is always increased or decreased by 2, the process is *parity preserving*, i.e., $|Y_t|$ is odd $\Leftrightarrow |Y_0|$ is odd.

김 글 아이지 글 아

By definition, Y survives if starting from an *even* number of particles, there is a positive probability that the particles never die out.

By definition, Y is *stable* if starting from *one* particle, the process 'modulo translations' is positively recurrent, i.e., the system returns to a state with only one particle infinitely often and spends a positive fraction of its time in such states.

By definition, Y is *persistent* if there exists an invariant law concentrated on nonempty configurations.

Lemma X has coexistence \Leftrightarrow Y survives.

Proof Start X in product measure with intensity 1/2 and let $Y_0 := \delta_i + \delta_j$. Then

$$\begin{split} \mathbb{P}\big[X_t(i) \neq X_t(j)\big] &= \mathbb{P}\big[|X_t Y_0| \text{ is odd}\big] = \mathbb{P}\big[|X_0 Y_t| \text{ is odd}\big] \\ &= \frac{1}{2}\mathbb{P}\big[Y_t \neq 0\big] \xrightarrow[t \to \infty]{} \frac{1}{2}\mathbb{P}\big[Y_s \neq 0 \ \forall s \ge 0\big]. \end{split}$$

Lemma In X both types survive \Leftrightarrow Y is persistent.

For small α , coexistence and survival of both types for the Neuhauser-Pacala model proved by showing that dual model survives and is persistent.

Main tool: comparison with oriented percolation.

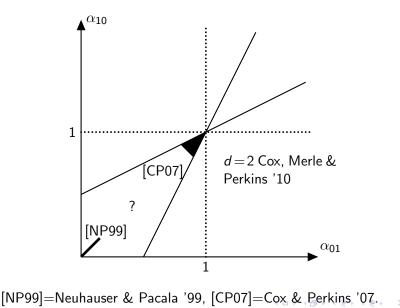
In dimensions $d \ge 2$, Cox, Merle and Perkins prove that as $\alpha_{01}, \alpha_{10} \rightarrow 1$ and $\alpha_{01} \approx \alpha_{10}$, rescaled sparse models converge to supercritical super Brownian motion.

Using this, for α_{01}, α_{10} fixed but very close to *one*, they are able to compare with oriented percolation and prove coexistence.

Intermediate α still open since monotonicity not proved.

• • = • • = •

Coexistence results for $d \ge 3$



Jan M. Swart

On rebellious voter models

Interfaces

By definition, a cancellative spin-system X is *type-symmetric* if it treats the types symmetrically, i.e., $1 - X_t$ has the same dynamics as X_t .

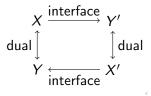
Lemma X type-symmetric \Leftrightarrow dual Y parity preserving.

For one-dimensional, type-symmetric X, setting

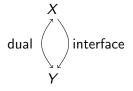
$$Y'_t(i) := 1_{\{X_t(i-rac{1}{2}) \neq X_t(i+rac{1}{2})\}}$$
 $(i \in \mathbb{Z} + rac{1}{2})$

defines the *interface model* of X.

Lemma [Swa13] Y' is a also a parity preserving cancellative system and



For the rebellious voter model, the dual and interface models coincide:



Lemma [SS08] For the rebellious voter model both types survive \Leftrightarrow the model exhibits coexistence. By definition, X exhibits *interface tightness* if its interface model Y' is stable, i.e., Y' modulo translations is positively recurrent.

Interface tightness means that starting from ... 000000111111..., the system spends a positive fraction of time in such states: the types *cannot invade* each other's territory.

Interface tightness for long-range voter models was proved by Cox and Durrett (1995) under a third moment condition on the infection rates. This was improved to a second moment condition, which is sharp, by Belhaouari, Mountford and Valle (2007). A simpler proof was given by S. & Sturm (2008).

Interface tightness for the Neuhauser-Pacala model with $R \ge 2$ or for the rebellious voter model is an *open problem*.

回 と く ヨ と く ヨ と

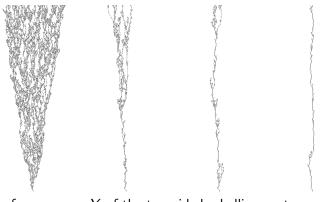
By definition, X exhibits strong interface tightness if for the invariant law of the interface model modulo shifts $\mathbb{E}[|Y'_{\infty}|] < \infty$, i.e., the expected number of sites such that $X_t(i - \frac{1}{2}) \neq X_t(i + \frac{1}{2})$ is finite.

Strong interface tightness is known to hold for voter models and numerically observed for the rebellious voter model with $\alpha > \alpha_c$. By contrast, the expected *length* of the interface (distance from left-most one to right-most zero) is known to be infinite for voter models.

Theorem [Swa13] Strong interface tightness implies noncoexistence.

• • = • • = •

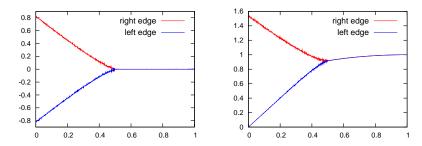
Numerical simulation



Interface process Y of the two-sided rebellious voter model for $\alpha = {\rm 0.4, 0.5, 0.51, 0.6.}$

One-sided rebellious interface model

Interface process Y of the one-sided rebellious voter model for $\alpha = 0.3, 0.5, 0.6.$



Edge speeds for the rebellious voter model (left) and its one-sided counterpart (right) [S. & Vrbenský '10].

< ≣⇒

Define the survival probability

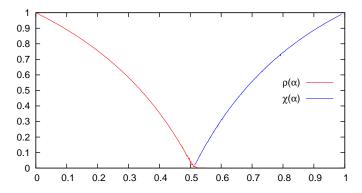
$$\rho(\alpha) := \mathbb{P}^{\delta_0}[X_t \neq 0 \ \forall t \ge 0].$$

• coexistence $\Leftrightarrow \rho(\alpha) > 0$.

Define the fraction of time spent with a single interface

$$\chi(\alpha) := \mathbb{P}\big[|Y_{\infty}| = 1\big].$$

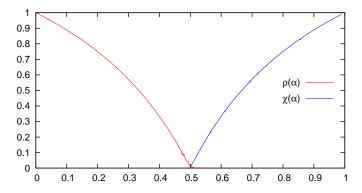
• interface tightness $\Leftrightarrow \chi(\alpha) > 0$.



The functions ρ and χ for the two-sided rebelious voter model.

< ≣⇒

э



The functions ρ and χ for the one-sided rebelious voter model.

< ∃⇒

э

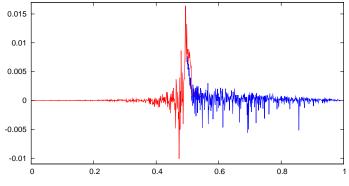
It seems that for the one-sided model, the functions ρ and χ are described by the explicit formulas:

$$ho(lpha) = \mathsf{0} \lor rac{1-2lpha}{1-lpha} \quad ext{and} \quad \chi(lpha) = \mathsf{0} \lor ig(2-rac{1}{lpha}ig).$$

In particular, one has the symmetry $\rho(1-\alpha) = \chi(\alpha)$ and the critical parameter seems to be given by $\alpha_c = 1/2$.

Explanation?

(E) < E)</p>



Differences of ρ and χ with presumed explicit formulas.

3

Theoretical physicists believe that

$$ho(lpha)\sim (lpha_{
m c}-lpha)^{eta}$$
 as $lpha\uparrow lpha_{
m c},$

where β is a *critical exponent*.

It has been conjectured by I. Jensen (1994) that $\beta = 13/14$ and that $\beta = 1$ [Inui & Tretyakov '98]. More recent estimates are $\beta \approx 0.92$, $\beta \approx 0.95$ [Hinrichsen '00] [Ódor & Szolnoki '05]. Our formula would imply $\beta = 1$.

Let ξ^1, ξ^2, ξ^3 be independent random walks started from $(\xi_0^1, \xi_0^2, \xi_0^3) = (-1, 0, 1).$

Set $\tau_{ij} := \inf\{t \ge 0 : \xi_t^i = \xi_t^j\}$ and

 $\tau := \tau_{12} \wedge \tau_{23} \wedge \tau_{31}.$

Then

$$\mathbb{P}[au > t] \sim t^{-3/2} \quad ext{as} t o \infty,$$

 $\mathbb{E}[au] = 1 < \infty.$

Observed: for small branching rate $1 - \alpha$, system Y spends fraction of time of order $(1 - \alpha)^m$ with 1 + 2m particles.

• • = • • = •