Recursive tree processes and the mean-field limit of stochastic flows

Jan M. Swart (Czech Academy of Sciences)

joint with Tibor Mach (Prague) A. Sturm (Göttingen) Friday, October 9th, 2020 Let $S := \{0, 1\}$. Consider the maps:

$$\operatorname{cob}: S^3 \to S$$
 with $\operatorname{cob}(x_1, x_2, x_3) := x_1 \lor (x_2 \land x_3),$
 $\operatorname{dth}: S^0 \to S$ with $\operatorname{dth}(\varnothing) := 0.$

Let G = (V, E) be a graph. Let $X = (X_t)_{t \ge 0}$ with $X_t = (X_t(i))_{i \in V}$ be a Markov process with state space S^V that evolves as follows:

- (Cooperative branching) For each i ∈ V, with Poisson rate α, we pick i ~ j ~ k, all different, at random and replace X_t(i) by cob(X_t(i), X_t(j), X_t(k)).
- (death) For each i ∈ V, with Poisson rate one, we replace X_t(i) by dth(Ø) = 0.

- ▲冊 ▶ ▲ 臣 ▶ ▲ 臣 ● の Q @

A graphical representation

We denote cob and dth by suitable symbols.

3

A graphical representation

The random maps $(X_{s,t})_{s \leq t}$ form a stochastic flow

$$old X_{s,s} = 1$$
 and $old X_{t,u} \circ old X_{s,t} = old X_{s,u}$

with independent increments, in the sense that

$$X_{t_0,t_1},\ldots,X_{t_{n-1},t_n}$$

are independent for each $t_0 < \cdots < t_n$.

If X_0 is independent of $(X_{s,t})_{s \le t}$, then setting

$$X_t := \mathbf{X}_{0,t}(X_0) \qquad (t \ge 0)$$

defines a Markov process $(X_t)_{t\geq 0}$ with the right jump rates.

・ 同 ト ・ ヨ ト ・ ヨ ト

3

The mean-field limit

We are interested in the process on the *complete graph* with N vertices. Let $\mathcal{P}(S) :=$ the space of probability measures on S. For any deterministic map $g : S^k \to S$, define $T_g : \mathcal{P}(S) \to \mathcal{P}(S)$ by

$$\mathsf{T}_g(\mu) := ext{ the law of } g(X_1, \dots, X_k),$$

where $(X_i)_{i\geq 1}$ are i.i.d. with law μ . In the limit $N \to \infty$, the empirical measure $\mu_t^N := \frac{1}{N} \sum_{i=1}^N \delta_{X_t(i)}$ solves

$$\frac{\partial}{\partial t}\mu_t = \alpha \big\{ \mathsf{T}_{\rm cob}(\mu_t) - \mu_t \big\} + \big\{ \mathsf{T}_{\rm dth}(\mu_t) - \mu_t \big\}.$$

Rewriting this in terms of $p_t := \mu_t(\{1\})$ yields

$$\frac{\partial}{\partial t}\boldsymbol{p}_t = \alpha \boldsymbol{p}_t^2 (1 - \boldsymbol{p}_t) - \boldsymbol{p}_t =: F_\alpha(\boldsymbol{p}_t) \qquad (t \ge 0).$$

・吊り イヨト イヨト ニヨ

3 × 4 3 ×

Cooperative branching

3 . 3

Cooperative branching

For $\alpha > 4$, there are two stable fixed points and one unstable fixed point, which separates the domains of attraction of the other two.

A B K A B K

Cooperative branching

Fixed points of $\frac{\partial}{\partial t} p_t = F_{\alpha}(p_t)$ for different values of α .

イロン イヨン イヨン イヨン

æ

The general set-up

- (i) Polish space S local state space.
- (ii) $(\Omega, \mathcal{B}, \mathbf{r})$ Polish space with Borel σ -field and finite measure: source of external randomness.
- (iii) $\kappa: \Omega \to \mathbb{N}$ measurable function.

(iv) For each $\omega \in \Omega$, a measurable function $\gamma[\omega] : S^{\kappa(\omega)} \to S$.

Then the mean-field equation takes the form

$$\frac{\partial}{\partial t}\mu_t = \int_{\Omega} \mathbf{r}(\mathrm{d}\omega) \{ \mathbf{T}_{\gamma[\omega]}(\mu_t) - \mu_t \} \qquad (t \ge 0).$$
(1)

In our example $S=\{0,1\}$, $\Omega=\{1,2\}$,

$$\begin{split} \gamma[1] &= \texttt{cob}: S^3 \to S, \qquad \kappa(1) = 3, \qquad \texttt{r}(\{1\}) = \alpha, \\ \gamma[2] &= \texttt{dth}: S^0 \to S, \qquad \kappa(2) = 0, \qquad \texttt{r}(\{2\}) = 1. \end{split}$$

向下 イヨト イヨト

The mean-field equation

Theorem [Mach, Sturm, S. '20] Assume that

$$\int_{\Omega} \mathbf{r}(\mathrm{d}\omega) \,\kappa(\omega) < \infty \tag{2}$$

Then for each initial state, the mean-field equation (1) has a unique solution.

Define a (nonlinear) semigroup $(T_t)_{t\geq 0}$ of operators acting on probability measures by

$${\sf T}_t(\mu):=\mu_t \quad ext{where } (\mu_t)_{t\geq 0} ext{ solves } (1) ext{ with } \mu_0=\mu.$$

Proposition [Mach, Sturm, S. '20] Assume that $\forall k, x \in S^k$

$$\mathbf{r}(\{\omega:\kappa(\omega)=k,\;\gamma[\omega]\; ext{is discontinuous at x}\})=0.$$
 (3)

Then the operators T_t are continuous w.r.t. weak convergence.

Let $\mu_t^N := \frac{1}{N} \sum_{i=1}^N \delta_{X_t(i)}$ denote the empirical measure. Let *d* be any metric that generates the topology of weak convergence and let $\|\cdot\|$ denote the total variation norm.

Theorem [Mach, Sturm, S. '20] Assume (2) and at least one of the following conditions:

(i) $\mathbb{P}[d(\mu_0^N, \mu_0) \ge \varepsilon] \xrightarrow[N \to \infty]{} 0$ for all $\varepsilon > 0$, and (3) holds. (ii) $\|\mathbb{E}[(\mu_0^N)^{\otimes n}] - \mu_0^{\otimes n}\| \xrightarrow[N \to \infty]{} 0$ for all $n \ge 1$. Then

$$\mathbb{P}\big[\sup_{0\leq t\leq T}d\big(\mu_t^N,\mathsf{T}_t(\mu_0)\big)\geq \varepsilon\big]\underset{N\to\infty}{\longrightarrow}0\qquad (\varepsilon>0,\ T<\infty).$$

(4月) (3日) (3日) 日

Question

What is the mean-field limit of the stochastic flow $(X_{s,t})_{s \leq t}$?

Fix $d \in \mathbb{N}_+ \cup \{\infty\}$ such that $\kappa(\omega) \leq d$ for all $\omega \in \Omega$. Let $\mathbb{T} = \mathbb{T}^d$ denote the space of all words $\mathbf{i} = i_1 \cdots i_n$ made from the alphabet $\{1, \ldots, d\}$ (if $d < \infty$) resp. \mathbb{N}_+ (if $d = \infty$).

ヨット イヨット イヨッ

We view $\mathbb{T} = \mathbb{T}^d$ as a tree with root \varnothing , the word of length zero.

• 3 >

We attach i.i.d. $(\omega_i)_{i \in \mathbb{T}}$ with law $|\mathbf{r}|^{-1}\mathbf{r}$ to each node, which translate into maps $(\gamma[\omega_i])_{i \in \mathbb{T}}$.

通 とう ほうとう ほうど

Let ${\mathbb S}$ be the random subtree of ${\mathbb T}$ defined as

$$\mathbb{S} := \{i_1 \cdots i_n \in \mathbb{T} : i_m \le \kappa(\boldsymbol{\omega}_{i_1 \cdots i_{m-1}}) \ \forall 1 \le m \le n\}.$$

→ ∃ →

< E

For any rooted subtree $\mathbb{U} \subset \mathbb{S}$, let

$$\nabla \mathbb{U} := \left\{ i_1 \cdots i_n \in \mathbb{S} : i_1 \cdots i_{n-1} \in \mathbb{U}, \ i_1 \cdots i_n \notin \mathbb{U} \right\}$$

denote the boundary of \mathbb{U} relative to \mathbb{S} .

(4) (5) (4) (5) (4)

Given $(X_i)_{i \in \nabla U}$, we inductively define $(X_i)_{i \in U}$ by

$$X_{\mathbf{i}} = \gamma[\omega_{\mathbf{i}}] (X_{\mathbf{i}1}, \dots, X_{\mathbf{i}\kappa(\omega)}) \qquad (\mathbf{i} \in \mathbb{U}).$$

→ ∃ >

- ∢ ⊒ ⊳

3

Given $(X_i)_{i \in \nabla U}$, we inductively define $(X_i)_{i \in U}$ by

$$X_{\mathbf{i}} = \gamma[\omega_{\mathbf{i}}] (X_{\mathbf{i}1}, \dots, X_{\mathbf{i}\kappa(\omega)}) \qquad (\mathbf{i} \in \mathbb{U}).$$

31.1€

- E

Given $(X_i)_{i \in \nabla U}$, we inductively define $(X_i)_{i \in U}$ by

$$X_{\mathbf{i}} = \gamma[\omega_{\mathbf{i}}] (X_{\mathbf{i}1}, \dots, X_{\mathbf{i}\kappa(\omega)}) \qquad (\mathbf{i} \in \mathbb{U}).$$

Given $(X_i)_{i \in \nabla U}$, we inductively define $(X_i)_{i \in U}$ by

$$X_{\mathbf{i}} = \gamma[\omega_{\mathbf{i}}] (X_{\mathbf{i}1}, \dots, X_{\mathbf{i}\kappa(\omega)}) \qquad (\mathbf{i} \in \mathbb{U}).$$

Define
$$G_{\mathbb{U}}: S^{\nabla \mathbb{U}} \to S$$
 by $G_{\mathbb{U}}((X_i)_{i \in \nabla \mathbb{U}}) := X_{\varnothing}$.

 $G_{\mathbb{U}}$ is the concatenation of the maps $(\gamma[\omega_i])_{i \in \mathbb{U}}$ according to the tree structure of \mathbb{U} .

Let $|i_1 \cdots i_n| := n$ denote the length of a word **i** and set

$$\mathbb{S}_{(n)} := \{\mathbf{i} \in \mathbb{S} : |\mathbf{i}| < n\}$$
 and $\nabla \mathbb{S}_{(n)} = \{\mathbf{i} \in \mathbb{S} : |\mathbf{i}| = n\}.$

Aldous and Bandyopadyay (2005) observed that

$$\mathsf{T}^n(\mu):= ext{ the law of } G_{\mathbb{S}_{(n)}}ig((\mathsf{X}_{\mathbf{i}})_{\mathbf{i}\in
abla \mathbb{S}_{(n)}}ig),$$

where $(X_i)_{i\in\nabla\mathbb{S}_{(n)}}$ are i.i.d. with law μ and independent of $(\omega_i)_{i\in\mathbb{S}_{(n)}},$ and

$$\mathsf{T}(\mu) := |\mathbf{r}|^{-1} \int_{\Omega} \mathsf{r}(\mathrm{d}\omega) \mathsf{T}_{\gamma[\omega]}(\mu).$$

同下 イヨト イヨト ニヨ

Let $(\sigma_i)_{i \in \mathbb{T}}$ be i.i.d. exponentially distributed with mean $|\mathbf{r}|^{-1}$, independent of $(\omega_i)_{i \in \mathbb{T}}$, and set

$$\begin{split} \tau_{\mathbf{i}}^* &:= \sum_{m=1}^{n-1} \sigma_{i_1 \cdots i_m} \quad \text{and} \quad \tau_{\mathbf{i}}^{\dagger} &:= \tau_{\mathbf{i}}^* + \sigma_{\mathbf{i}} \qquad (\mathbf{i} = i_1 \cdots i_n), \\ \mathbb{S}_t &:= \left\{ \mathbf{i} \in \mathbb{S} : \tau_{\mathbf{i}}^{\dagger} \leq t \right\} \quad \text{and} \quad \nabla \mathbb{S}_t = \left\{ \mathbf{i} \in \mathbb{S} : \tau_{\mathbf{i}}^* \leq t < \tau_{\mathbf{i}}^{\dagger} \right\}. \end{split}$$

Let \mathcal{F}_t be the filtration

$$\mathcal{F}_t := \sigma \left(\nabla \mathbb{S}_t, (\boldsymbol{\omega}_{\mathbf{i}}, \sigma_{\mathbf{i}})_{\mathbf{i} \in \mathbb{S}_t} \right) \qquad (t \ge 0).$$

Theorem [Mach, Sturm, S. '20]

$$\mathsf{T}_t(\mu) :=$$
 the law of $G_{\mathbb{S}_t}((X_i)_{i \in \nabla \mathbb{S}_t}),$

where $(X_i)_{i \in \nabla S_t}$ are i.i.d. with law μ and independent of \mathcal{F}_t .

ヨト イヨト イヨト

A Recursive Distributional Equation is an equation of the form

$$X \stackrel{\mathrm{d}}{=} \gamma[\boldsymbol{\omega}](X_1, \ldots, X_{\kappa(\boldsymbol{\omega})})$$
 (RDE),

where X_1, X_2, \ldots are i.i.d. copies of X, independent of ω . A law ν solves (RDE) iff

(i)
$$\mathbf{T}_t(\nu) = \nu$$
 $(t \ge 0)$ or (ii) $\mathbf{T}(\nu) = \nu$.

We can view ν as the "invariant law" of a "Markov chain" where time has a tree-like structure.

In our example, solutions to the RDE are the Bernoulli distributions ν_{low} , ν_{mid} , ν_{upp} with density z_{low} , z_{mid} , z_{upp} .

向下 イヨト イヨト

For any rooted subtree $\mathbb{U}\subset\mathbb{T},$ let

$$\partial \mathbb{U} := \left\{ i_1 \cdots i_n \in \mathbb{T} : i_1 \cdots i_{n-1} \in \mathbb{U}, \ i_1 \cdots i_n \notin \mathbb{U} \right\}$$

denote the boundary of \mathbb{U} relative to \mathbb{T} .

For each solution ν of (RDE), there exists a *Recursive Tree Process* (*RTP*) (ω_i, X_i)_{*i* \in T}, unique in law, such that:

- (i) $(\boldsymbol{\omega}_{\mathbf{i}})_{\mathbf{i}\in\mathbb{T}}$ are i.i.d. with law $|\mathbf{r}|^{-1}\mathbf{r}$.
- (ii) For finite U ⊂ T, the r.v.'s (X_i)_{i∈∂U} are i.i.d. with ν and independent of (ω_i)_{i∈U}.

(iii) $\mathbf{X}_{\mathbf{i}} = \gamma[\omega_{\mathbf{i}}] (\mathbf{X}_{\mathbf{i}1}, \dots, \mathbf{X}_{\mathbf{i}\kappa(\omega_{\mathbf{i}})})$ ($\mathbf{i} \in \mathbb{T}$).

- If we add independent exponentially distributed lifetimes, then:
 - Conditional on \mathcal{F}_t , the r.v.'s $(X_i)_{i \in \nabla S_t}$ are i.i.d. with law ν .

イロン イボン イヨン イヨン 三日

Let $(\omega_i, X_i)_{i \in \mathbb{T}}$ be the RTP corresponding to a solution ν of the RDE.

Aldous and Bandyopadyay (2005) say that an RTP is endogenous if

 X_{\emptyset} is measurable w.r.t. the σ -field generated by $(\omega_i)_{i \in \mathbb{T}}$.

They proved that endogeny is equivalent to *bivariate uniqueness*. Warren (2005) links endogeny to *dynamical RTPs*.

Johnson, Podder & Skerman (2018) link endogeny to *pivotal* vertices.

(本部) ((日) (日) (日) (日)

n-Variate processes

For each $n \ge 1$, a measurable map $g : S^k \to S$ gives rise to *n*-variate map $g^{(n)} : (S^n)^k \to S^n$ defined as

$$g^{(n)}(x_1,...,x_k) = g^{(n)}(x^1,...,x^n) := (g(x^1),...,g(x^n)),$$

with $x = (x_i^m)_{i=1,...,k}^{m=1,...,n}$, $x_i = (x_i^1, ..., x_i^n)$, $x^m = (x_1^m, ..., x_k^m)$. We define an *n*-variate map

$$\mathsf{T}^{(n)}(\mu^{(n)}) := |\mathbf{r}|^{-1} \int_{\Omega} \mathsf{r}(\mathrm{d}\omega) \mathsf{T}_{\gamma^{(n)}[\omega]}(\mu^{(n)}),$$

which acts on probability measures $\mu^{(n)}$ on S^n . The *n*-variate mean-field equation

$$\frac{\partial}{\partial t}\mu_t^{(n)} = \int_{\Omega} \mathbf{r}(\mathrm{d}\omega) \{\mathbf{T}_{\gamma^{(n)}[\omega]}(\mu_t^{(n)}) - \mu_t^{(n)}\} \qquad (t \ge 0).$$

describes the mean-field limit of *n* coupled processes that are constructed using the same stochastic flow $(X_{s,u})_{s \leq u}$.

n-Variate processes

 $\mathcal{P}(S)$ space of probability measures on S. $\mathcal{P}_{svm}(S^n)$ space of probability measures on S^n that are symmetric under a permutation of the coordinates. S_{diag}^n { $x \in S^n : x_1 = \cdots = x_n$ } $\mathcal{P}(S^n)_{ii}$ space of probability measures on S^n whose one-dimensional marginals are all equal to μ . • If $(\mu_t^{(n)})_{t>0}$ solves the *n*-variate equation, then its *m*-dimensional marginals solve the *m*-variate equation. • $\mu_0^{(n)} \in \mathcal{P}_{sym}(S^n)$ implies $\mu_t^{(n)} \in \mathcal{P}_{sym}(S^n)$ $(t \ge 0)$. • $\mu_0^{(n)} \in \mathcal{P}(S_{\text{diag}}^n)$ implies $\mu_t^{(n)} \in \mathcal{P}(S_{\text{diag}}^n)$ $(t \ge 0)$.

• If
$$\mathsf{T}(\nu) = \nu$$
, then $\mu_0^{(n)} \in \mathcal{P}(S^n)_{\nu}$ implies $\mu_t^{(n)} \in \mathcal{P}(S^n)_{\nu}$.

マボン イラン イラン 一日

If $\nu = \mathbb{P}[X \in \cdot]$ solves the RDE $\mathsf{T}(\nu) = \nu$, then

$$\overline{\nu}^{(n)} := \mathbb{P}\big[(\underbrace{X, \dots, X}_{n \text{ times}}) \in \cdot\big]$$

solves the *n*-variate RDE $T^{(n)}(\nu^{(n)}) = \nu^{(n)}$.

Questions:

- ▶ Is $\overline{\nu}^{(n)}$ a stable fixed point of the *n*-variate equation?
- ▶ Is $\overline{\nu}^{(n)}$ the only solution in $\mathcal{P}_{sym}(S^n)_{\nu}$ of the *n*-variate RDE?

Recall that an RTP $(\omega_i, X_i)_{i \in \mathbb{T}}$ corresponding to a solution ν of the RDE is endogenous if

 X_{\emptyset} is measurable w.r.t. the σ -field generated by $(\omega_i)_{i \in \mathbb{T}}$.

Theorem [AB '05 & MSS '18] The following statements are equivalent:

(i) The RTP corresponding to ν is endogenous. (ii) $\mathbf{T}_t^{(n)}(\mu) \underset{t \to \infty}{\Longrightarrow} \overline{\nu}^{(n)}$ for all $\mu \in \mathcal{P}(S^n)_{\nu}$ and $n \ge 1$. (iii) $\overline{\nu}^{(2)}$ is the only solution in $\mathcal{P}_{\mathrm{sym}}(S^2)_{\nu}$ of the bivariate RDE. In our example, the RTPs for $\nu_{\mathrm{low}}, \nu_{\mathrm{upp}}$ are endogenous, but the RTP corresponding to ν_{mid} is not.

n-Variate processes

Fixed points of $\frac{\partial}{\partial t} p_t = F_{\alpha}(p_t)$ for different values of α .

イロン イヨン イヨン イヨン

æ

Cooperative branching with branching rate $\alpha > 4$

The RDE $T(\nu) = \nu$ has three solutions ν_{low}, ν_{mid} , and ν_{upp} , where $\nu_{...}$ is the probability measure on $\{0, 1\}$ with mean $\nu_{...}(\{1\}) = z_{...}$ (... = low, mid, upp), which give rise to solutions $\overline{\nu}_{low}^{(2)}, \overline{\nu}_{mid}^{(2)}$, and $\overline{\nu}_{upp}^{(2)}$ of the *bivariate RDE*. **Proposition [Mach, Sturm, S. '20]** Apart from $\overline{\nu}_{low}^{(2)}, \overline{\nu}_{mid}^{(2)}, \overline{\nu}_{upp}^{(2)},$ the *bivariate RDE* has one more solution $\underline{\nu}_{mid}^{(2)}$ in $\mathcal{P}_{sym}(S^2)$. The domains of attraction are:

$$\begin{split} \overline{\nu}_{\rm low}^{(2)} : & \left\{ \mu_0^{(2)} : \mu_0^{(1)}(\{1\}) < z_{\rm mid} \right\}, \\ \underline{\nu}_{\rm mid}^{(2)} : & \left\{ \mu_0^{(2)} : \mu_0^{(1)}(\{1\}) = z_{\rm mid}, \ \mu_0^{(2)} \neq \overline{\nu}_{\rm mid}^{(2)} \right\}, \\ \overline{\nu}_{\rm mid}^{(2)} : & \left\{ \overline{\nu}_{\rm mid}^{(2)} \right\}, \\ \overline{\nu}_{\rm upp}^{(2)} : & \left\{ \mu_0^{(2)} : \mu_0^{(1)}(\{1\}) > z_{\rm mid} \right\}. \end{split}$$

伺い イヨト イヨト 三日

The *n*-variate map $\mathbf{T}^{(n)}$ is defined even for $n = \infty$, and $\mathbf{T}^{(\infty)}$ maps $\mathcal{P}_{sym}(S^{\mathbb{N}_+})$ into itself.

By De Finetti's theorem, $(X_i)_{i \in \mathbb{N}_+}$ have a law in $\mathcal{P}_{sym}(S^{\mathbb{N}_+})$ if and only if there exists a random probability measure ξ on S such that conditional on ξ , the $(X_i)_{i \in \mathbb{N}_+}$ are i.i.d. with law ξ .

Let
$$\rho := \mathbb{P}[\xi \in \cdot]$$
 the law of ξ . Then $\rho \in \mathcal{P}(\mathcal{P}(S))$.
In view of this, $\mathcal{P}_{sym}(S^{\mathbb{N}_+}) \cong \mathcal{P}(\mathcal{P}(S))$.

The map $\mathbf{T}^{(\infty)} : \mathcal{P}_{sym}(S^{\mathbb{N}_+}) \to \mathcal{P}_{sym}(S^{\mathbb{N}_+})$ corresponds to a higher-level map $\check{\mathbf{T}} : \mathcal{P}(\mathcal{P}(S)) \to \mathcal{P}(\mathcal{P}(S)).$

・ 同 ト ・ ヨ ト ・ ヨ ト …

The higher-level equation

For any measurable map $g:S^k o S$, define $\check{g}:\mathcal{P}(S)^k o \mathcal{P}(S)$ by

 $\check{g} :=$ the law of $g(X_1, \ldots, X_k)$, where (X_1, \ldots, X_k) are independent with laws μ_1, \ldots, μ_k .

Then

$$\check{\mathsf{T}}(
ho):= ext{ the law of }\check{\gamma}[oldsymbol{\omega}](\xi_1,\ldots,\xi_{\kappa(oldsymbol{\omega})}),$$

with $\boldsymbol{\omega}$ as before and ξ_1, ξ_2, \ldots i.i.d. with law ρ .

Define *n*-th moment measures

$$\rho^{(n)} := \mathbb{E}\big[\underbrace{\xi \otimes \cdots \otimes \xi}_{n \text{ times}}\big] \text{ where } \xi \text{ has law } \rho.$$

Proposition [MSS '20] If $(\rho_t)_{t\geq 0}$ solves the *higher-level* mean-field equation, then its *n*-th moment measures $(\rho_t^{(n)})_{t\geq 0}$ solve the *n*-variate equation.

The higher-level equation

Equip
$$\mathcal{P}(\mathcal{P}(S))_{\nu} = \{\rho : \rho^{(1)} = \nu\}$$
 with the convex order

$$\rho_1 \leq_{\mathrm{cv}} \rho_2 \quad \text{iff} \quad \int \phi \, \mathrm{d}\rho_1 \leq \int \phi \, \mathrm{d}\rho_2 \quad \forall \text{ convex } \phi.$$

[Strassen '65] $\rho_1 \leq_{cv} \rho_2$ iff there exist a r.v. X with law ν and σ -fields $\mathcal{H}_1 \subset \mathcal{H}_2$ s.t. $\rho_i = \mathbb{P}\big[\mathbb{P}[X \in \cdot | \mathcal{H}_i] \in \cdot \big]$ (i = 1, 2).

Maximal and minimal elements: $\mathcal{H}_1 = \{\Omega, \emptyset\} \Rightarrow \rho_1 = \delta_{\nu}$. $\mathcal{H}_2 = \sigma(X) \Rightarrow \rho_2 = \overline{\nu} := \mathbb{P}[\delta_X \in \cdot] \text{ with } \mathbb{P}[X \in \cdot] = \nu$.

$$\delta_{\nu} \leq_{\mathrm{cv}} \rho \leq_{\mathrm{cv}} \overline{\nu} \qquad \forall \rho \in \mathcal{P}(\mathcal{P}(S))_{\nu}.$$

Proposition [MSS '18] \check{T} is monotone w.r.t. the convex order. There exists a solution $\underline{\nu}$ to the higher-level RDE s.t.

$$\check{\mathsf{T}}^n(\delta_
u) \underset{n \to \infty}{\Longrightarrow} \underline{\nu} \quad \text{and} \quad \check{\mathsf{T}}_t(\delta_
u) \underset{t \to \infty}{\Longrightarrow} \underline{\nu}$$

and any solution $ho \in \mathcal{P}(\mathcal{P}(\mathcal{S}))_{
u}$ to the higher-level RDE satisfies

$$\underline{
u} \leq_{\mathrm{cv}}
ho \leq_{\mathrm{cv}} \overline{
u} \qquad orall
ho \in \mathcal{P}(\mathcal{P}(\mathcal{S}))_{
u}.$$

Proposition [MSS '18]

Let $(\omega_i, X_i)_{i \in \mathbb{T}}$ be the RTP corresponding to γ and ν . Set

$$\xi_{\mathbf{i}} := \mathbb{P}[X_{\mathbf{i}} \in \cdot | (\boldsymbol{\omega}_{\mathbf{ij}})_{\mathbf{j} \in \mathbb{T}}].$$

Then $(\boldsymbol{\omega}_{\mathbf{i}}, \xi_{\mathbf{i}})_{\mathbf{i} \in \mathbb{T}}$ is an RTP corresponding to $\check{\gamma}$ and $\underline{\nu}$. Also, $(\boldsymbol{\omega}_{\mathbf{i}}, \delta_{X_{\mathbf{i}}})_{\mathbf{i} \in \mathbb{T}}$ is an RTP corresponding to $\check{\gamma}$ and $\overline{\nu}$.

Corollary The RTP is endogenous iff $\underline{\nu} = \overline{\nu}$.

伺下 イヨト イヨト

Theorem [Mach, Sturm, S. '20] One has

$$\underline{\nu}_{\rm low} = \overline{\nu}_{\rm low}, \quad \underline{\nu}_{\rm upp} = \overline{\nu}_{\rm upp}, \quad {\rm but} \quad \underline{\nu}_{\rm mid} \neq \overline{\nu}_{\rm mid}.$$

These are all solutions to the higher-level RDE. Any solution $(\rho_t)_{t\geq 0}$ to the higher-level mean-field equation converges to one of these fixed points. The domains of attraction are:

$$\begin{split} \overline{\nu}_{\rm low} &: \qquad \big\{ \rho_0 : \rho_0^{(1)}(\{1\}) < z_{\rm mid} \big\}, \\ \underline{\nu}_{\rm mid} &: \qquad \big\{ \rho_0 : \rho_0^{(1)}(\{1\}) = z_{\rm mid}, \ \rho_0 \neq \overline{\nu}_{\rm mid} \big\}, \\ \overline{\nu}_{\rm mid} &: \qquad \big\{ \overline{\nu}_{\rm mid} \big\}, \\ \overline{\nu}_{\rm upp} &: \qquad \big\{ \rho_0 : \rho_0^{(1)}(\{1\}) > z_{\rm mid} \big\}. \end{split}$$

ヨット イヨット イヨッ

The higher-level equation

The map $\mu \mapsto \mu(\{1\})$ defines a bijection $\mathcal{P}(\{0,1\}) \cong [0,1]$, and hence $\mathcal{P}(\mathcal{P}(\{0,1\})) \cong \mathcal{P}[0,1]$.

Then the higher-level RDE takes the form

$$\eta \stackrel{\mathrm{d}}{=} \chi \cdot (\eta_1 + (1 - \eta_1)\eta_2\eta_3),$$

where η takes values in [0, 1], η_1, η_2, η_3 are independent copies of η and χ is an independent Bernoulli r.v. with $\mathbb{P}[\chi = 1] = \alpha/(\alpha + 1)$. This RDE has three "trivial" solutions

$$\overline{\nu}_{\dots} = (1 - z_{\dots})\delta_0 + z_{\dots}\delta_1 \qquad (\dots = \mathrm{low}, \mathrm{mid}, \mathrm{upp}),$$

and a nontrivial solution

$$\underline{\nu}_{\mathrm{mid}} = \lim_{n \to \infty} \check{\mathsf{T}}^n(\delta_{z_{\mathrm{mid}}}).$$

伺い イヨト イヨト 三日

- 170

< ∃⇒

 < ≣⇒

< ∃⇒

< ∃⇒

< ∃⇒

< ∃⇒

< ∃⇒

< ∃⇒

< ∃⇒

< ∃⇒

< ≣⇒

< ∃⇒

 < ≣⇒

 < ≣⇒

 < ≣⇒

 < ≣⇒

 < ≣⇒

 < ≣⇒

< 🗇 🕨

< ≣⇒

< ≣⇒

 < ≣⇒

< 🗇 🕨

∃ ► < ∃ ►</p>

< 🗇 🕨

프 🖌 🛪 프 🕨

< 🗇 🕨

3

< ≣⇒

< ≣⇒

A ■

< ∃⇒

< ≣⇒