The Algebraic Approach to Duality: Blackboard talk (145 minutes)

Anja Sturm, Jan M. Swart, and Florian Völlering
August 4, 2017

Outline

Giardinà, Redig, Carinci, Giberti, Kurchan, Vafayi: JSP 2009, SPA 2015.

- Dualities as intertwiners between representations of Lie algebras.
 - Markov duality
 - Lie algebras
 - Product spaces
- (Duality based on symmetry).

Lloyd, Sudbury: AOP 1995, AOP 1997, JTP 2000.

- q-duality
- thinning relations

Markov duality

$$\Omega$$
 fin. set, $\mathbb{R}^{\Omega} := \{ f : \Omega \to \mathbb{R} \}$

Markov generator $L:\mathbb{R}^\Omega\to\mathbb{R}^\Omega$ charact. by matrix

$$Lf(x) = \sum_{y} L(x, y) f(y)$$

$$L(x,y) \ge 0 \quad (x \ne y) \qquad \sum_{y} L(x,y) = 0.$$

Semigroup
$$P_t = e^{tL} = \sum_{n=0}^{\infty} \frac{1}{n!} t^n L^n$$
.

 $P_t(x,y)$ transit. probab.

Let L, \hat{L} Markov generators on $\Omega, \hat{\Omega}$ $D: \Omega \times \hat{\Omega} \to \mathbb{R}$ function Lemma The following are equivalent:

- (i) $LD(\cdot, y)(x) = \hat{L}D(x, \cdot)(y) \ \forall x, y$
- (ii) $LD = D\hat{L}^{\dagger}$ $A^{\dagger}(x,y) := A(y,x)$ adjoint
- (iii) $P_t D = D \hat{P}_t^{\dagger} \ \forall t$
- (iv) $\mathbb{E}^x [D(X_t, y)] = \mathbb{E}^y [D(x, Y_t)] \ \forall x, y, t$ X_t gener. L, Y_t gener. \hat{L} .

Proposition 1
$$A_iD = DB_i^{\dagger} \ (i = 1, 2) \Rightarrow$$

- $(r_1A_1 + r_2A_2)D = D(r_1B_1 + r_2B_2)^{\dagger}$
- $(A_1A_2)D = D(B_2B_1)^{\dagger}$.

Corollary L, \hat{L} Markov generators on $\Omega, \hat{\Omega}$

$$L = r_{\emptyset}I + r_1A_1 + r_{23}A_2A_3 + r_{113}A_1^2A_3,$$

$$\hat{L} = r_{\emptyset}I + r_1B_1 + r_{23}B_3B_2 + r_{113}B_3B_1^2,$$

Then

$$A_i D = D B_i^{\dagger} \quad \forall i \quad \Rightarrow \quad L D = D \hat{L}^{\dagger}.$$

Remark

	pathwise approach	algebraic approach
building blocks	maps m, \hat{m}	operators A_i, B_i
assumption	$D(m(x), y) = D(x, \hat{m}(y))$	$A_i D(\cdot, y)(x) = B_i D(x, \cdot)(y)$
result	$D(\Phi_{s,t}(x), y) = D(x, \hat{\Phi}_{-t,-s}(y)) \text{ a.s.}$ dual stochastic flows	$P_t D(\cdot, y)(x) = \hat{P}_t D(x, \cdot)(x)$ dual semigroups

Example

Wright-Fisher diffusion with selection $s \geq 0$

$$Lf(x) = x(1-x)\frac{\partial^2}{\partial x^2} + sx(1-x)\frac{\partial}{\partial x}f(x)$$
$$= A^-(1-A^-)A^+(s+A^+)f(x)$$

with

$$A^-f(x) := (1-x)f(x), \quad A^+f(x) := \frac{\partial}{\partial x}f(x).$$

Observation

$$A^{\pm}D(\cdot,y)(x) = B^{\pm}D(x,\cdot,)(y)$$
 with $D(x,n) := (1-x)^n$,

and

$$B^-f(n) := f(n+1)$$
 $B^+f(n) := -nf(n-1).$

Consequence L dual w.r.t. D to

$$\hat{L}f(x) = (s+B^+)B^+(1-B^-)B^-f(n)$$

$$= n(n-1)\{f(n-1) - f(n)\} + sn\{f(n+1) - f(n)\}.$$

!Markov for $s \geq 0$.

Note A^{\pm} satisfy the <u>commutation relations</u> of the <u>Heisenberg algebra</u>

$$[A^-, A^+] = I, \quad [A^{\pm}, I] = 0.$$

<u>Idea:</u> take for A_1, \ldots, A_n basis of representation of a Lie algebra.

Lie algebras

Lie algebra g = fin. dim. lin. space with a <u>Lie bracket</u>

- $(a,b) \mapsto [a,b]$ bilinear
- [a, b] = -[b, a] skew symmetry
- [a, [b, c]] + [b, [c, a]] + [c, [a, b]] = 0 Jacobi identity.

 a_1, \ldots, a_n basis then Lie bracket determined by <u>commutation relations</u>

$$[a_i, a_j] = \sum_k c_{ijk} a_k.$$

Representation = collection of operators A_1, \ldots, A_n on lin. space V s.t.

$$[A_i, A_j] = \sum_k c_{ijk} A_k.$$

<u>faithful</u> iff A_1, \ldots, A_n lin. indep.

Given: Two representations A_1, \ldots, A_n on $V = B_1, \ldots, B_n$ on WDef. Intertwiner = lin. map $\Phi : W \to V$ s.t.

$$A_i \Phi = \Phi B_i \quad \forall i$$

 Φ invertible \Rightarrow representations equivalent.

Repres. V irreducible iff no nontriv. invariant subspaces:

$$A_i V' \subset V' \quad \forall i \Rightarrow V' = \{0\} \text{ or } V' = V$$

<u>Schur's lemma</u> For equivalent, irreducible representations, the intertwiner is unique up to a multiplicative constant.

Classification of representations

Lie algebra su(2) basis j^-, j^+, j^0 defined by

$$[j^0, j^{\pm}] = \pm j^{\pm} \quad [j^-, j^+] = -2j^0.$$

Repres. of su(2) For each $d \ge 2 \exists$ irred. repres. of su(2) on \mathbb{R}^d and all irred. repr. with same dim. are equivalent.

Classification theory different for each Lie algebra!

Proposition 2 Assume A_1, \ldots, A_n and $(B_1)^{\dagger}, \ldots, (B_n)^{\dagger}$ define equivalent irreducible repres. of same Lie algebra.

 $\Rightarrow \exists$ duality function D, unique up to multiplic. cst, s.t.

$$A_i D(\cdot, y)(x) = B_i D(x, \cdot)(y) \quad \forall x, y, i.$$

Remark If

$$[A_i, A_j] = \sum_k c_{ijk} A_k,$$

$$[B_i, B_j] = -\sum_k c_{ijk} B_k,$$

commutation relations of conjugate Lie algebra.

Example

Wright-Fisher diffusion with selection $s \geq 0$

$$\begin{split} Lf(x) &= x(1-x)\frac{\partial^2}{\partial x^2} + sx(1-x)\frac{\partial}{\partial x}f(x) \\ &= -A^+(\sqrt{s}-A^+)A^-(\sqrt{s}-A^-)f(x) \end{split}$$

with

$$A^{-}f(x) := \sqrt{s}xf(x), \quad A^{+}f(x) := \frac{-1}{\sqrt{s}}\frac{\partial}{\partial x}f(x).$$

 A^-,A^+,I central representation of Heisenberg algebra

$$[A^-, A^+] = I, \quad [A^{\pm}, I] = 0.$$

 $\underline{\text{Central}} = \text{third element represented as } I.$

Observation $B^+ := A^-, B^- := A^+$ satisfy $[B^-, B^+] = -I$ commut. relat. of conjugate Lie algebra.

Hence $(B^-)^{\dagger}, (B^+)^{\dagger}, I^{\dagger}$ def. repres. of Heisenberg algebra.

<u>Stone-von Neumann theorem</u> says more/less: all central representations of Heisenberg algebra equivalent.

Indeed: \exists intertwiner: $D(x,y) = e^{-sxy}$ satisfies

$$A^{\pm}D = D(B^{\pm})^{\dagger}$$

Consequence L dual w.r.t. duality function D to

$$\hat{L}f(x) = -B^{-}(\sqrt{s} - B^{-})B^{+}(\sqrt{s} - B^{+})f(x)$$

$$= -A^{+}(\sqrt{s} - A^{+})A^{-}(\sqrt{s} - A^{-})f(x) = Lf(x)$$
self-duality.

Product spaces

 Ω_1, Ω_2 finite spaces, $\mathbb{R}^{\Omega} := \{f : \Omega \to \mathbb{R}\}$

$$\mathbb{R}^{\Omega_1} \otimes \mathbb{R}^{\Omega_1} := \mathbb{R}^{\Omega_1 \times \Omega_2}$$
 tensor product

$$(f \otimes g)(x,y) := f(x)g(y) \qquad (f \in \mathbb{R}^{\Omega_1}, \ g \in \mathbb{R}^{\Omega_2}).$$

- $\{f_1, \ldots, f_n\}$ basis of \mathbb{R}^{Ω_1} , $\{g_1, \ldots, g_m\}$ basis of \mathbb{R}^{Ω_2} $\Rightarrow \{f_i \otimes g_j\}$ basis of $\mathbb{R}^{\Omega_1} \otimes \mathbb{R}^{\Omega_1}$.
- $\forall b : \mathbb{R}^{\Omega_1} \times \mathbb{R}^{\Omega_2} \to V$ bilinear $\exists ! \text{ linear } \bar{b} : \mathbb{R}^{\Omega_1} \times \mathbb{R}^{\Omega_2} \to V \text{ s.t. } \bar{b}(f \otimes g) = b(f,g).$

Abstract definition of $V_1 \otimes V_2$.

$$(\overline{A}_1 \otimes \overline{A}_2)(f \otimes g) := (\overline{A}_1 f) \otimes (\overline{A}_2 g) \qquad (\overline{A}_i \in \mathcal{L}(V_i), \ i = 1, 2).$$
Let $A_1 := \overline{A}_1 \otimes I, \quad A_2 := I \otimes \overline{A}_2.$ Then
$$A_1 A_2 = \overline{A}_1 \otimes \overline{A}_2$$

with

$$A_1 f(x,y) = \sum_{x'} \overline{A}_1(x,x') f(x',y)$$

$$A_2 f(x,y) = \sum_{y'} \overline{A}_2(y,y') f(x,y')$$

$$A_1, A_2 \text{ act only on first, second coordinate.}$$

 $\overline{A}_{i,1},\ldots,\overline{A}_{i,n_i}$ def. repres. of Lie alg. \mathfrak{g}_i on $V_i=\mathbb{R}^{\Omega_i}$ (i=1,2).

$$A_{1,j} := \overline{A}_{1,j} \otimes I \quad A_{2,j} := I \otimes \overline{A}_{2,j}.$$

$$[A_{i,k}, A_{j,m}] = 0$$
 $(i \neq j)$ $[A_{i,k}, A_{i,m}] = \sum_{n} c_{kmn} A_{i,n}$ commut. relat. of g_i .

 $\{A_{i,j}: i=1,2,\ j=1,\ldots,n_i\}$ def. repres. of $\mathfrak{g}_1\oplus\mathfrak{g}_2$ direct sum of Lie algebras.

Example

S finite set

$$\alpha: S \to (0, \infty)$$

$$q: S \times S \to [0, \infty)$$
 satisfies $q(i, j) = q(j, i)$ and $q(i, i) = 0$

Generator of Brownian energy process (BEP)

$$L := \frac{1}{2} \sum_{i,j \in S} q(i,j) \left[(\alpha_j z_i - \alpha_i z_j) \left(\frac{\partial}{\partial z_j} - \frac{\partial}{\partial z_i} \right) + z_i z_j \left(\frac{\partial}{\partial z_j} - \frac{\partial}{\partial z_i} \right)^2 \right].$$

- Diffusion $(Z_t)_{t>0}$ in $[0,\infty)^S$.
- $\sum_{i} Z_t(i)$ preserved.

• Drift towards state $z_i = \lambda \alpha_i \ (\lambda > 0)$.

Write
$$L = \frac{1}{2} \sum_{i,j \in S} q(i,j) \left[A_i^+ A_j^- + A_i^- A_j^+ - 2 A_i^0 A_j^0 + \frac{1}{2} \alpha_i \alpha_j \right].$$
with
$$A_i^- f(z) := z_i \frac{\partial^2}{\partial z_i^2} f(z) + \alpha_i \frac{\partial}{\partial z_i} f(z),$$

$$A_i^+ f(z) := z_i f(z),$$

$$A_i^0 f(z) := z_i \frac{\partial}{\partial z_i} f(z) + \frac{1}{2} \alpha_i f(z).$$
Commut. relat.

$$[A_i^0, A_i^{\pm}] = \pm \delta_{ij} A_i^{\pm}$$
 and $[A_i^-, A_i^+] = 2\delta_{ij} A_i^0$.

Repres. of direct sum of |S| copies of Lie algebra su(1, 1). !Representations with <u>different</u> function α_i are not equivalent!

Dual process state space \mathbb{N}^S .

$$B_i^- f(x) := x_i f(x - \delta_i),$$

$$B_i^+ f(x) := (\alpha_i + x_i) f(x + \delta_i),$$

$$B_i^0 f(x) := (\frac{1}{2}\alpha_i + x_i) f(x).$$

satisfy conjugate comm. rel.

$$[B_i^0, B_j^{\pm}] = \mp \delta_{ij} B_i^{\pm}$$
 and $[B_i^-, B_j^+] = -2\delta_{ij} B_i^0$.

Intertwiner of product form

$$\Phi = \bigotimes_{i \in S} \overline{\Phi}$$

$$A_{i}^{\pm}\Phi = (I \otimes \cdots \otimes I \otimes \overline{A}^{\pm} \otimes I \otimes \cdots \otimes I)(\overline{\Phi} \otimes \cdots \otimes \overline{\Phi})$$

$$= \overline{\Phi} \otimes \cdots \otimes \overline{\Phi} \otimes \overline{A}^{\pm} \overline{\Phi} \otimes \overline{\Phi} \otimes \cdots \otimes \overline{\Phi}$$

$$= \overline{\Phi} \otimes \cdots \otimes \overline{\Phi} \otimes \overline{\Phi}(\overline{B}^{\pm})^{\dagger} \otimes \overline{\Phi} \otimes \cdots \otimes \overline{\Phi} = \Phi B_{i}^{\pm}.$$

Duality function of product form

$$D(z,x) = \prod_{i} \overline{D}(z_{i},x_{i})$$
 with $\overline{D}(z,n) = \frac{\Gamma(\alpha+n)}{\Gamma(\alpha)} z^{n} = z^{n} \prod_{k=0}^{n-1} (\alpha+k)$

Dual generator

$$\hat{L} := \sum_{i,j \in S} q(i,j) \left[\alpha_j x_i \left\{ f\left(x - \delta_i + \delta_j\right) - f\left(x\right) \right\} + x_i x_j \left\{ f\left(x - \delta_i + \delta_j\right) - f\left(x\right) \right\} \right].$$

Inclusion process

Lloyd Sudbury duals for interacting particle systems

S finite set.
$$q: S^2 \to [0, \infty)$$
 symmetric $q(i, j) = q(j, i)$ with $q(i, i) = 0, i, j \in S$.

L = L(a, b, c, d, e) is Markov generator (state space $\{0, 1\}^S$) with

$$11 \mapsto 00$$
 at rate $aq(i,j)$ (annihilation),

$$01 \mapsto 11$$
 at rate $bq(i,j)$ (branching),

$$11 \mapsto 01$$
 at rate $cq(i,j)$ (coalecence),

$$01 \mapsto 00$$
 at rate $dq(i,j)$ (death),

$$01 \mapsto 10$$
 at rate $eq(i, j)$ (exclusion).

(Note that 00 is a trap.)

Examples:

voter
$$b = d = 1$$
 (other par = 0),

contact
$$b = \lambda, c = d = 1$$
 (other par = 0)

symmetric exclusion
$$e = 1$$
 (other par = 0)

Duality function D on $\{0,1\}^{\begin{subarray}{c} q-duality:\\ \hline S\times\{0,1\}^S\end{subarray}}$ as linear operator acting on

$$\mathbb{R}^{\{0,1\}^S} \cong \bigotimes_{i \in S} \mathbb{R}^{\{0,1\}}$$

Ansatz: duality function of product form w.r.t. margin sites.

$$D(x,y) = \prod_{i \in S} Q(x_i, y_i)$$
(same Q for all sites)

specialize to $Q = Q_q$ for $q \in \mathbb{R} \setminus \{1\}$ with

$$\begin{pmatrix} Q_q(0,0) & Q_q(0,1) \\ Q_q(1,0) & Q_q(1,1) \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & q \end{pmatrix}$$

$$\Rightarrow D_q(x,y) = q^{\sum_{i \in S} x_i y_i}$$

$$\sum_{i \in S} x_i y_i = |A_x \cap A_y|$$

where $A_x = \{i \in S, x(i) = 1\}$ and $A_x \cap A_y$ is the cardinality of intersection of "occupied sites" in x and y.

(One paper [JTP 2000] also takes a duality function on this intersection set as the starting point to deduce this kind of duality.)

Additive systems duality
$$q=0$$
. $D_0(x,y)=1_{\{A_x\cap A_y=\emptyset\}}$ $=1_{\{|A_x\cap A_y|=0\}}$ Cancellative systems duality $q=-1$. $D_{-1}(x,y)=(-1)^{|A_x\cap A_y|}$

Cancellative systems duality
$$q = -1$$
. $D_{-1}(x, y) = (-1)^{|A_x \cap A_y|}$

$$= \begin{cases} 1 & |A_x \cap A_y| \text{ even} \\ -1 & |A_x \cap A_y| \text{ odd} \end{cases}$$

$$= 1 - 2 \cdot 1_{\{|A_x \cap A_y| \text{ odd}\}}$$

 \rightarrow These have pathwise interpretations (unlike for other q).

L = L(a, b, c, d, e) and L' = L(a', b', c', d', e') are dual with D_q if

$$a' = a + 2q\gamma$$
, $b' = b + \gamma$, $c' = c - (1+q)\gamma$, $d' = d + \gamma$, $e' = e - \gamma$,
where $\gamma = (a+c-d+qb)/(1-q)$.

Duality and intertwining

Suppose L_1, L_2 are dual to \hat{L} with D_1, D_2 :

$$L_i D_i = D_i \hat{L}^{\dagger}, \qquad i = 1, 2 \quad (*)$$

If D_i are invertible then

$$D_1^{-1}L_1 = \hat{L}^{\dagger} = D_2^{-1}L_2D_2$$

$$\Rightarrow L_1(\underbrace{D_1D_2^{-1}}_{K}) = (\underbrace{D_1D_2^{-1}}_{K})L_2 \qquad (i)$$

"intertwining of L_1 with L_2 " (instead of L_2^{\dagger} as in duality) K "intertwiner"

If L_1, L_2 are generators of Markov processes X^1, X^2 (semigroups P_t^1, P_t^2 , distributions μ_t^1, μ_t^2)

and K is a probability kernel then (i) is equivalent to

(ii)
$$P_t^1 K = K P_t^2$$

(iii)
$$\mu_0^1 K = \mu_0^2 \implies \mu_t^1 K = \mu_t^2, \quad t \ge 0$$

Note that we obtain X^2 from X^1 started from $\mu_0^1 K$ by appying K or in other words we can apply the operator K to a starting distribution and then evolve with the dynamics of X^2 or first evolve with the dynamics of X^1 and then apply the operator K in order to arrive at the same distribution. In fact, coupling exists:

$$\mathbb{P}(X_t^2 \in \cdot | (X_s^1)_{0 \le s \le t}) = K(X_t^1, \cdot) \text{ a.s., } t \ge 0.$$

Note: We have $K^{-1}L_1 = L_2K^{-1}$ if K is invertible, but K^{-1} not a probab. kernel (reversed roles of L_1 and L_2 , intertwining is not symmetric)

q-duality and p-thinning

(Back to interacting particle systems as in q-duality section)

Ansatz:
$$K(x,y) = \prod_{i \in S} M(x_i, y_i)$$
 (*M* probabability kernel "independent coint flips dependent on x_i ")

If $M(0,0) = 1$ (natural if 00 is trap) then

$$M_p = \begin{pmatrix} M_p(0,0) & M_p(0,1) \\ M_p(1,0) & M_p(1,1) \end{pmatrix} := \begin{pmatrix} 1 & 0 \\ 1-p & p \end{pmatrix},$$

 \rightarrow "Thinning kernel" K_p : at each site independently keep particle with probab. p.

Note:
$$K_p K_{p'} = K_{pp'}$$

Easy to see
$$Q_q Q_{q'}^{-1} = M_p \implies D_q D_{q'}^{-1} \stackrel{(**)}{=} K_p$$
 if $p = \frac{1-q}{1-q'}$

$$\left(\text{from } Q_q^{-1} = \begin{pmatrix} 1 & 1 \\ 1 & q \end{pmatrix}^{-1} = (1-q)^{-1} \begin{pmatrix} -q & 1 \\ 1 & -1 \end{pmatrix} \qquad (q \neq 1),\right.$$

$$Q_q Q_{q'}^{-1} = (1 - q')^{-1} \begin{pmatrix} 1 & 1 \\ 1 & q \end{pmatrix} \begin{pmatrix} -q' & 1 \\ 1 & -1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ \frac{q - q'}{1 - q'} & \frac{1 - q}{1 - q'} \end{pmatrix} = M_p$$

Proposition: Let L_1, L_2 be generators of Markov processes with state space $\{0, 1\}^S$ and \hat{L} an operator s.t.

$$L_i D_{q_i} = D_{q_i} \hat{L}^{\dagger}$$
 (compare (*))

then for
$$p = \frac{1-q_1}{1-q_2} \in [0,1] \quad (q_2 \neq 1)$$

$$L_1 K_p = K_p L_2$$

Proof $K = D_{q_1} D_{q_2}^{-1}$ from (i) is the intertwiner $\stackrel{(**)}{=} K_p$.

Example

Biased voter model L_{bias} b = 1 + s, d = 1

From the q-duality Theorem (amongst others, restricted to a' = 0) q = 0: b' = s, c' = 1, e' = 1 branching-coal r.w. (braco) $q = (1+s)^{-1}$: b' = b, d' = d (biased voter) \rightarrow self-duality $\Rightarrow L_{\text{bias}}, L_{\text{braco}}$ are $(1+s)^{-1}$ - and 0-dual to L_{bias} $\Rightarrow L_{\text{bias}}K_p = K_pL_{\text{braco}}$ with $p = \frac{1-(1+s)^{-1}}{1-0} = \frac{s}{1+s}$.

 $\Rightarrow \mu_0^{\text{bias}} K_p = \mu_0^{\text{braco}} \quad \Rightarrow \quad \mu_t^{\text{bias}} K_p = \mu_t^{\text{braco}}$