The Algebraic Approach to Duality:
Blackboard talk (145 minutes)

Anja Sturm, Jan M. Swart, and Florian Vollering
August 4, 2017

Outline
Giardina, Redig, Carinci, Giberti, Kurchan, Vafayi: JSP 2009, SPA 2015.

e Dualities as intertwiners between representations of Lie algebras.

— Markov duality
— Lie algebras

— Product spaces
e (Duality based on symmetry).
Lloyd, Sudbury: AOP 1995, AOP 1997, JTP 2000.

e ¢-duality
e thinning relations

Markov duality

Q fin. set, R := {f : Q — R}

Markov generator L : R? — R® charact. by matrix

Lf(x) =Y L(x,y)f(y)
L(z,y) >0 (z#y) Y Lz,y) =0.
Semigroup P; = etl = i %t”L”.
n=0
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P,(x,y) transit. probab.

Let L, L Markov generators on {2, O
D : Q) x Q — R function
Lemma The following are equivalent:

(i) LD(-,y)(x) = LD(x, - )(y) Yz, y

(i) LD = DLf Af(z,y) == A(y, z) adjoint
(iii) D = DP] vt

(iv) E*[D(X;,y)] = E'[D(x,Y})] ¥, y,t

Xy gener. L, Y; gener. L.

Proposition 1 A;D = DB;r (1=1,2) =
o (1 Ay +79A5)D = D(r1By + roBo)t
o (A1A2)D = D(ByBy)T.
Corollary L, L Markov generators on (2, Q
L=rgl +1r1A; + 1934 A5 + 111343 A3,
L=ryI +r1By + 1238385 + 111383 B,
Then
A;D=DB! Yi = LD=DL"

Remark

pathwise approach algebraic approach

building blocks maps m, m ‘ operators A;, B;
assumption D(m(x).y) = D(x.i(y)) | AD(-.)(x) = BD(x. -)(y)
result D((I)&t(ﬁ), y) = D(a:, @,t7,s(y)) a.s. PtD< ' ,y) (LU) = ptD(xv : )(LE)

dual stochastic flows dual semigroups



Example
Wright-Fisher diffusion with selection s > 0

Li(@) = (1 — )25 + so(1 — 2) L f(z)
=A"(1-A)AT(s+ A" f(x)

with
A" f(z) = (1 —2)f(z), ATf(2):= g f(2).
Observation
AED(-,y)(z) = B*D(z, -,)(y) with D(x,n):=(1— )",
and
B~ f(n):=f(n+1) BYf(n):=-nf(n—1).
Consequence L dual w.r.t. D to
Lf(z)=(s+B")B*(1—B")B f(n)
=n(n—D{f(n—1) = f(n)} +sn{f(n+1) — f(n)}.

'Markov for s > 0.

Note AT satisfy the commutation relations of the Heisenberg algebra

[A=, AT =1, [A* I]=0.

Idea: take for Ay, ..., A, basis of representation of a Lie algebra.

Lie algebras

Lie algebra g = fin. dim. lin. space with a Lie bracket

e (a,b) — [a,b] bilinear
e [a,b] = —[b, a] skew symmetry

e [a,[b,c|]] + [b,[c,a]] + [c,[a,b]] = 0 Jacobi identity.



ai,...,a, basis then Lie bracket determined by commutation relations
a’LJ a] E Cijk Q-

Representation = collection of operators Ay,..., A, on lin. space V s.t.

[4;, Aj] Z CijnAr.

faithful iff A;,..., A, lin. indep.
Given: Two representations A;,..., A, onV By,...,B, on W
Def. Intertwiner = lin. map ® : W — V s.t.

AP =®B; Vi

® invertible = representations equivalent.

Repres. V' irreducible iff no nontriv. invariant subspaces:

AV CV ViV ={0}or V' =V

Schur’s lemma For equivalent, irreducible representations, the intertwiner is
unique up to a multiplicative constant.

Classification of representations

Lie algebra su(2) basis j—, 5, j° defined by
5 =4 [0 = -2

Repres. of su(2) For each d > 2 3 irred. repres. of su(2) on R?
and all irred. repr. with same dim. are equivalent.

Classification theory different for each Lie algebral

Proposition 2 Assume A;, ..., A, and (B))',..., (B,)" define
equivalent irreducible repres. of same Lie algebra.
= 7 duality function D, unique up to multiplic. cst, s.t.

AiD(- y)(z) = BiD(z, - )(y)  Va,y,i.
Remark If

Aza A ch]kAk7



then

[Bi, Bj| = — Z Cijk B,
K

commutation relations of conjugate Lie algebra.

Example
Wright-Fisher diffusion with selection s > 0
Lf(x)=x(1— x)aa—; +sz(1— )2 f(z)
A5 — AN AT (V5 - A7) f(x)

with

A fa) = arf(@), ATf(r) = 2 f()

A, AT I central representation of Heisenberg algebra

[A=, AT =1, [A* 1]=0.

Central = third element represented as I.

Observation BT := A~, B~ := A" satisty [B~,Bt] = —I
commut. relat. of conjugate Lie algebra.
Hence (B™)T, (B*)t, I def. repres. of Heisenberg algebra.

Stone-von Neumann theorem says more/less:
all central representations of Heisenberg algebra equivalent.
—sxyY

Indeed: 3 intertwiner: D(z,y) = € satisfies
A*D = D(B*)!
Consequence L dual w.r.t. duality function D to

Ef(@)=~B~(V5~ B")B* (Y5~ B*)[(a)

— CAY(V5 — AT)AT(5 — A () = L (2)

self-duality.
Product spaces
Q,Q, finite spaces, R? := {f : Q — R}

R @ R .= R tensor product

(f@g)(@,y) = f(x)gly)  (f €R™, geR™®).




o {fi,....fu} basis of R, {gy,..., gm} basis of R
= {fi ®g;} basis of R @ R,

e Vbh: Rﬂl_x R — V bilinear B
I linear b : R x R®2 — V s.t. b(f ® g) = b(f, ).

Abstract definition of V; ® V5.

(A ® A)(f@g) = (Aif) @ (A2g) (A€ L(V}), i=1,2).

Let Al = Zl & [, AQ =1 ®ZQ Then

Ajdy = A, ® Ay
with
A f(z,y) = ZZ z, 1) ,Y)
Ay, Ay act only on
Asf(z,y)= ZX v) first, second coordinate.
Y’

Ai1y ..., A, def. repres. of Lie alg. g; on V; = R% (i = 1,2).

AL]' = zl,j X I A2,j =1 X Z2,j'

Ak, Ajml =0 (0 #£J) [Aig, Aim] = chmnAi,n commut. relat. of g;.

{Ai;:i=1,2, 5=1,...,n;} def. repres. of
g1 @ go direct sum of Lie algebras.
Example

S finite set
a:S — (0,00)
q:S xS —10,00) satisfies ¢(i,7) = q(j, i) and ¢(i,7) =0

Generator of Brownian energy process (BEP)

Li=3> ali, i)z — aiz) (G — 52) + 20262 — 52)°].

ijes
e Diffusion (Z;)i0 in [0, 00)°.

o > . Z(i) preserved.



e Drift towards state z; = Ao (A > 0).
Write L =1 q(i,j)[AfA; + A7 AT — 24049 + Layay).

2
ijes

with A7 f(z) = Zi%f(z) +aigef(2),
AT f(2) =2 (2),
A f(2) = zigl f(2) + gauf(2).
Commut. relat.
[A?aA}t] = +5,;AF and [A;,Aj] = 26;;AY.
Repres. of direct sum of |S| copies of Lie algebra su(1,1).

Representations with different function «a; are not equivalent!

Dual process state space N°.
B f(z):=zif(x — d;),

B f() = (i + ;) f(x + 6y),
BYf(2) = (b + 1) £ ().
satisfy conjugate comm. rel.

[B), B] = ¥6;B;" and [B;,B]]=—20;;B;.
Intertwiner of product form
=)

i€s

A= (@ ®I0A @I )P @)

32 004 P00 -0
3% - 0090(B ) @dw - ©d=>BE
Duality function of product form
- = ['(a+n) fout
D(z,z) = HD(Z“"E’) with  D(z,n) = Wz’” = z”l}_[o(oz + k)

Dual generator
L= alij)| e e =6 +5;) = £(x)}
1,jES
—i—xixj{f(x —d0; + 5;’) - f(x) }} .
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Inclusion process

Lloyd Sudbury duals for interacting particle systems

S finite set. ¢ : S? — [0, 00) symmetric q(i,5) = q(J, 1)
with g(i,i) = 0, i,j € S.

L = L(a,b,c,d,e) is Markov generator (state space {0,1}) with

11— 00 atrate aq(i,j) (annihilation),
01— 11 at rate bg(i,7) (branching),
11+— 01 atrate cq(i,j) (coalecence),
01 — 00 at rate dq(i,j) (death),

01 — 10 at rate eq(i,j) (exclusion).

(Note that 00 is a trap.)

Examples:
voter b=d=1 (other par = 0),
contact b=\ c=d=1 (other par =0)
symmetric exclusion e =1 (other par = 0)
g-duality:

Duality function D on {0,1}° x {0,1}* as linear operator acting on

r{0,1}% o QRN
=
Ansatz: duality function of product form w.r.t. margin sites.
ies
(same @ for all sites)

specialize to @ = @), for ¢ € R\{1} with

(Qq(O,U) Qq(0,1)
1,0 1,1



sz‘yi = IAJJ N Ay|
i€S
where A, = {i € S,z(i) = 1} and A, N A, is the cardinality of intersection
of “occupied sites” in x and y.
(One paper [JTP 2000] also takes a duality function on this intersection set

as the starting point to deduce this kind of duality.)

Additive systems duality qg=0. Dy(z,y) = 1{,493 nA, =0}
= 4,04, =0}

Cancellative systems duality ¢=—1. D_j(z,y) = (—1) Az N Ay

1 |A, N Ayl even
1 -1 AN Ayl odd

=1=2-104,n 4, odd}
— These have pathwise interpretations (unlike for other ¢).

Theorem (q-duality)
L = L(a,b,c,d,e) and L' = L(a', ¥, ,d,€') are dual with D, if

a=a+2qy, V=047 (d=c—(1+q), d=d+vy, =ec—7,
where v = (a +¢—d+gb)/(1 — q).

Duality and intertwining

Suppose L1, Ly are dual to L with D+, Do:
LiD; = D;LT, =12 (%
If D, are invertible then

Di'L, =L = D;'L,D,
=  Li(DiDyY) =(DiD; )Ly (i)
~— ~——

K K

“intertwining of L; with Ly” (instead of L} as in duality)
K “intertwiner”

If Ly, Ly are generators of Markov processes X1, X2
(semigroups P}, P?, distributions p}, u?)

9



and K is a probability kernel then (i) is equivalent to
(ii) P'K = KP?
(i) poK =py = mK=pni t>0
Note that we obtain X? from X! started from u}K by appying K or in
other words we can apply the operator K to a starting distribution and
then evolve with the dynamics of X? or first evolve with the dynamics of X*

and then apply the operator K in order to arrive at the same distribution.
In fact, coupling exists:

P(X7 € - [(XDo<s<t) = K(X/, -) as., t > 0.

Note: We have K 'L, = LyK ! if K is invertible,
but K~! not a probab. kernel
(reversed roles of L; and Ly, intertwining is not symmetric)

q-duality and p-thinning

(Back to interacting particle systems as in ¢-duality section)
Ansatz: K(x,y) = H M (x;,y;) (M probabability kernel

i€s “independent coint flips dependent on x;”)
If M(0,0) =1 (natural if 00 is trap) then

= (32 e )= (02,0,

— “Thinning kernel” K,: at each site independently keep

particle with probab. p.
Note: K, K,y = Ky

€

* 1—
:)Kpifp: a

1—¢q

(romar = (1 1) =00 (10 L) wsn

h (11N [ =¢ 1 L0
QqQ;:(l—qV(l q)( h —1):(?23 ﬁ):Mp)

Proposition: Let Lq, Ly be generators of Markov processes

Easy to see QqQ;,l =M, = DqD(;1

with state space {0,1}5 and L an operator s.t.
L;D, = D, L (compare (x))
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1—
then for p = - Z; €[0,1] (g#1)
Lle - KpL2

Proof K =D, D! from (i) is the intertwiner
(%) K,.
Example

Biased voter model Ly;,s b=14+s,d=1
From the g-duality Theorem (amongst others, restricted to a’ = 0)
qg=0 : bV =s, =1, ¢ =1 branching-coal r.w. (braco)
q=(1+s)"t' : V=5, d=d (biased voter)
— self-duality
= Lbias, Lbraco are (1 + s)7'- and 0-dual to Lyjas

1—(14s)" s
1-0 S 1l+4s
= NBiaSKp — ,ugraco = M?iast — ,ui)raco

= Lbiast = Kprraco with b=
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