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Howitt-Warren processes
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Let Z2

even

= {(x,t) € Z* : x + t is even}.
Interpretation: z IS space, t Is time (upwards).
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Howitt-Warren processes

Fix a probability law p on [0, 1].

Let (¢.).ez2. be lid. [0,1]-valued r.v's with law .

o



Howitt-Warren processes

-

fFix some probability measure pg 0N Zeven, and define
inductively, for (z,t) € Z2_,:

pr(z) = qe—1-1)pt—1( = 1) + (1 = q(py1,0-1)) pt—1(z + 1).

Interpretation: in the time step from ¢ to ¢ + 1, a q(, 4 fraction
of the mass at = Is sentto z + 1 and the rest is sentto =z — 1.

Then (p;)+>0 IS @ Markov chain taking values alternatively in

the probability measures on Zgyen and Zgq4.
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Howitt-Warren processes

fTheorem [Le Jan & Raimond '04, Howitt & Warren '06] T

Let ¢,, — 0 and rescale diffusively: ﬁg%(snw) = p\"(2),

where p§”)(a:) are Markov chains defined by splitting laws .,
satisfying:

i) L / 2g — buldg) —

n—oo

(i)  Fq(1—q)p(dg) = v(dg),

n—oo

with 5 € R and v a finite measure on |0, 1].
Then 5" = p, where (p;)i>0 is a Markov process taking val-

ues in the probability measures on R, with dynamics charac-

Lterized by 5 and v. J
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Howitt-Warren processes
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%_, = ____.,— : Tar - - | = SR
The equal splitting process: 5 =0 and v = 4 /5.
Approximated with i, = (1 — &,) (580 + $01) + £ndy 2.
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n-point motions

-

Given the random environment created by the (¢,),cz2 , let

even

X1(t),..., X,(t) be random walks started from x1,..., z,
such that

Xi(t)+1 with probab. q(X5(1),t)s

X(t+1) =
k( + ) { Xk(t) — 1 with probab. 1 — Xk (t),t);

iIndependently for each & and ¢.

Observation If we forget about the random environment, then
(X1(t), ..., Xn(t)),s, is @ Markov chain:

discrete n-point motion.

|
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n-point motions

fTheorem [Howitt & Warren ’06] T
The discrete n-point motions, diffusively rescaled, converge

to an R™-valued Markov process (X1 (1), ... ,Xn(t))t>0

characterized by 5 and v. Each component is a Brownian
motion with drift 3. The Brownian motions interact with a
form of sticky interaction described by v.

Theorem [Le Jan & Raimond '04]
Any consistent family of Feller processes defines a
probability-measure valued Markov process.

Theorem [Le Jan & Raimond '04]
The process with 6 = 0 and v(dg) = dq IS reversible, with

explicit invariant law.
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Path properties

|7Theorem [E. Schertzer, R. Sun & J.S. '09] T
Case 1 Assume [v(dq)q (1 —¢q)~! < oo, v # 0. Then:

() supp(p;) Is locally finite at each deterministic ¢ > 0.
(i) There exist random times when p; IS purely non-atomic.
(i) supp(p;) Is a Markov process.

Case 2 Assume [ v(dg)g! = oo = [, _v(dg)(1 —¢)~ L. Then:

()’ p: Is purely atomic at each deterministic ¢ > 0.
(i)’ supp(p;) =R ateacht > 0.

LConjecture: (i) holds also in Case 2. J
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The Brownian web
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even*

01, hence ¢, € {0,1}. Coalescing

1
2

random walks start from each point in Z

—%5()—|—

Extreme case: u =

o



The Brownian web

L In the limit we obtain the Brownian web. J



The Brownian web

- N

Introduced by Arratia '79, Toth & Werner '98, and Fontes,
Isopi, Newman & Ravishankar '02.

Formally, a Brownian web )V is a compact set of paths,
such that

(i) At deterministic z € R? there a.s. starts a unique path
DPz-

(i) Paths started at different points are coalescing
Brownian motions.

(iii) For any deterministic countable dense D C R?, the web
W is the closure of {p, : z € D}.

o |
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The Brownian web

| /J\\/
\/\/\K

Special points of types (0,1), (1,1)/(0,2), (2,1)/(0,3) and
(17 2)1/(17 2)r-
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The dual Brownian web

Forward and dual arrows.



The dual Brownian web

- %"2{"3’ = 2%5{'{5‘ S5 2 .
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L Approximation of the forward and dual Brownian web. J
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The dual Brownian web

i~ 'f“"- e

Forward and dual paths started from fixed times. J




The dual Brownian web

Special points of types (0,1), (1,1)/(0,2), (2,1)/(0,3) and
B (1,2)1/(1,2)s. .



Construction of Howitt-Warren processes

B

Observation T
Fix random (g.).czz  with law ;. Given this random

environment, for (z,t) € Z2, ., draw an arrow to (z + 1, + 1)

even’

with probability ¢, ;) and to (x — 1,¢ + 1) with probability
1 —q(, - Let p, be the unique path starting in 2 following the
arrows. Then (p;)i>o0 IS given (in law) by

Pt(y) — Z pO(w)P[p(x,O) (t) =Y | (QZ)ZEngen}'

XL EZGVGII

|
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Construction of Howitt-Warren processes

B

Alternative discrete construction T
Define weighted laws 11(dq) :== (1 — ¢)p(dg) and

pr(dq) == & L q1(dq), where Z;, Z, are normalizing constants.

Fix a discrete ‘reference’ web W with drift [ 2(¢ — 3)u(dg).
Let (¢.).cz2. . be Independent random variables, where ¢,
has law . (resp. u.) if the arrow at z points to the left (resp.
right).

Define a ‘modified’ discrete web W by drawing an arrow to
(z +1,t + 1) with probability ¢, ;) and to (z — 1,¢ + 1) with
probability 1 — ¢, . Then

Z 100 =Y ’ W Qz zézgven}-

T ELieven

o |
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Construction of Howitt-Warren processes
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Construction of the modified discrete web.
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Construction of Howitt-Warren processes

B

Construction when v is concentrated on (0, 1).

Fix a reference Brownian web W.

Let ¢ be the reflection local time between VW and its dual.
Let S; and S; be the sets of points of type (1,2), and (1, 2),,
respectively.

Let M; be a Poisson point set on S; x (0,1) with intensity
/(dz)q~tv(dq), and let M, be a Poisson point set on S, x (0, 1)
with intensity /(dz)(1 — q)~'v(dgq).

o |
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Construction of Howitt-Warren processes

Construct a new web W as follows: Independently for each
(z,q) € M; we change z into a point of type (1, 2), with
probability ¢. Likewise, independently for each (z,q) € M,
we change z into a point of type (1, 2); with probability 1 — 4.
Then

p(dr) := / po(dy)P[By.0)(t) € dz | (W, M)]

defines a Howitt-Warren process, where p, denotes the a.s.
unique path in YV starting from a deterministic point z.

In the special case [v(dq)g (1 — q)~! < oo, the Howitt-

Warren process can be embedded in a Brownian net.

o |
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The Brownian net
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Discrete approximation of the Brownian net.
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The Brownian net

Brownian net.



The Brownian net
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Draw left-most paths in blue and right-most paths in red.
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The Brownian net

\_ The left-most paths converge to a left Brownian web. .. J
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The Brownian net

e
LR

... and the right-most paths to a right Brownian web. J



The Brownian net

L Left-most and right-most paths interact in a sticky way. J



The Brownian net

- N

The interaction between left-most and right-most paths is
described by the stochastic differential equation (SDE):

dLi=1(7,2p1dB; + 1(1,—p d 5] — dt,
th — 1{Lt7§Rt}dB£ + 1{Lt:Rt}d + dt,

where B}, B!, 13; are independent Brownian motions, and L,
and R; are subject to the constraint that L; < R; for all
t>T:=influ>0:L, < Ry,}.

o |
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The Brownian net

-

Introduced by Sun & S. '08 and by Newman, Ravishankar &

Schertzer '09.
Hopping construction A Brownian net A/ is a compact set of

paths, such that

(i) At deterministic z € R? there a.s. starts a unique
left-most path [, and right-most paths ..

(i) Paths started at different points are left-right coalescing
Brownian motions.

(ii) If D c R? is countable and deterministic, then A\ is the
closure of all paths that are finite concatenations of
pathsin {l,: z € D} and {r. : z € D}.

Alternative constructions: wedges, meshes (Sun & S.),

marking (Newman, Ravishankar & Schertzer). J
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The Brownian net

-

Let A be a Brownian net. Let £, C R be closed. Then T
& = {x: Jy € § s.t. I path in A from (y,0) to (z,t)}

defines a Markov process taking values in the closed sub-

sets of R, called branching-coalescing point set. At deter-

ministic times ¢ > 0, the set & Is locally finite. There exist

random times when & has no isolated points.

o |
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The branching-coalescing point set

g e g -
L he branching-coalescing point set started |
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The Brownian net

(&) (Cu)

Cluster points of nested excursions between left-most and
right-most paths give rise to random times when & has no
Isolated points and p; IS purely non-atomic.

o |
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The Brownian net
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Modulo symmetry, there exist 9 types of special points of
the Brownian net. [Schertzer, Sun & S. '09].

o |
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The Brownian net

== - . — =
‘Relevant’ separation points, where the forward Brownian
net crosses its dual, are locally finite.

|
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