Stochastic flows in the Brownian web and net

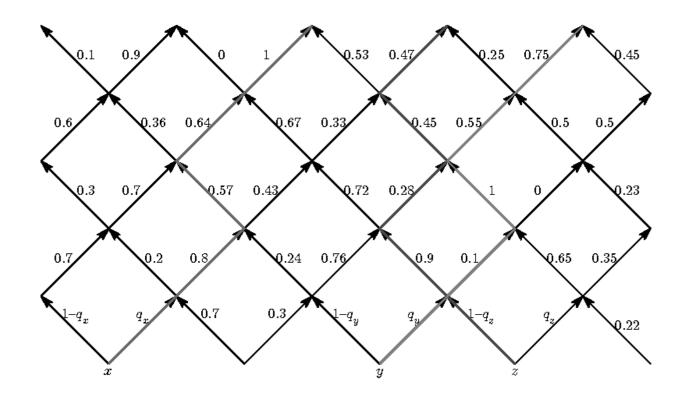
Jan M. Swart

Institute of Information Theory and Automation of the ASCR (ÚTIA)

Prague

Stochastic flows in the Brownian web and net - p.1/35

Let $\mathbb{Z}^2_{\text{even}} := \{(x, t) \in \mathbb{Z}^2 : x + t \text{ is even}\}.$ Interpretation: *x* is space, *t* is time (upwards).



Fix a probability law μ on [0, 1]. Let $(q_z)_{z \in \mathbb{Z}^2_{even}}$ be i.i.d. [0, 1]-valued r.v.'s with law μ .

Fix some probability measure ρ_0 on \mathbb{Z}_{even} , and define inductively, for $(x, t) \in \mathbb{Z}_{even}^2$:

$$\rho_t(x) := q_{(x-1,t-1)}\rho_{t-1}(x-1) + (1 - q_{(x+1,t-1)})\rho_{t-1}(x+1).$$

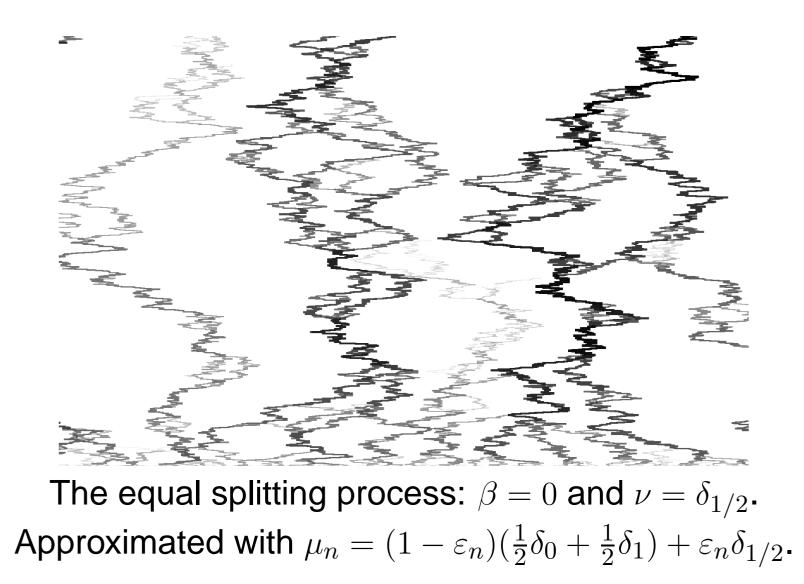
Interpretation: in the time step from t to t + 1, a $q_{(x,t)}$ fraction of the mass at x is sent to x + 1 and the rest is sent to x - 1. Then $(\rho_t)_{t\geq 0}$ is a Markov chain taking values alternatively in the probability measures on \mathbb{Z}_{even} and \mathbb{Z}_{odd} .

Theorem [Le Jan & Raimond '04, Howitt & Warren '06] Let $\varepsilon_n \to 0$ and rescale diffusively: $\tilde{\rho}_{\varepsilon_n^2 t}^{(n)}(\varepsilon_n x) := \rho_t^{(n)}(x)$, where $\rho_t^{(n)}(x)$ are Markov chains defined by splitting laws μ_n satisfying:

(i)
$$\frac{1}{\varepsilon_n} \int 2(q - \frac{1}{2})\mu(\mathrm{d}q) \underset{n \to \infty}{\longrightarrow} \beta,$$

(ii) $\frac{1}{\varepsilon_n}q(1-q)\mu(\mathrm{d}q) \underset{n \to \infty}{\Longrightarrow} \nu(\mathrm{d}q),$

with $\beta \in \mathbb{R}$ and ν a finite measure on [0, 1]. Then $\tilde{\rho}^{(n)} \Rightarrow \rho$, where $(\rho_t)_{t \ge 0}$ is a Markov process taking values in the probability measures on \mathbb{R} , with dynamics characterized by β and ν .



n-point motions

Given the random environment created by the $(q_z)_{z \in \mathbb{Z}^2_{even}}$, let $X_1(t), \ldots, X_n(t)$ be random walks started from x_1, \ldots, x_n such that

$$X_k(t+1) = \begin{cases} X_k(t) + 1 & \text{with probab. } q_{(X_k(t),t)}, \\ X_k(t) - 1 & \text{with probab. } 1 - q_{(X_k(t),t)}, \end{cases}$$

independently for each k and t.

Observation If we forget about the random environment, then $(X_1(t), \ldots, X_n(t))_{t>0}$ is a Markov chain:

discrete *n*-point motion.

n-point motions

Theorem [Howitt & Warren '06]

The discrete *n*-point motions, diffusively rescaled, converge to an \mathbb{R}^n -valued Markov process $(X_1(t), \ldots, X_n(t))_{t\geq 0}$ characterized by β and ν . Each component is a Brownian motion with drift β . The Brownian motions interact with a form of sticky interaction described by ν .

Theorem [Le Jan & Raimond '04] Any consistent family of Feller processes defines a probability-measure valued Markov process.

Theorem [Le Jan & Raimond '04]

The process with $\beta = 0$ and $\nu(dq) = dq$ is reversible, with explicit invariant law.

Path properties

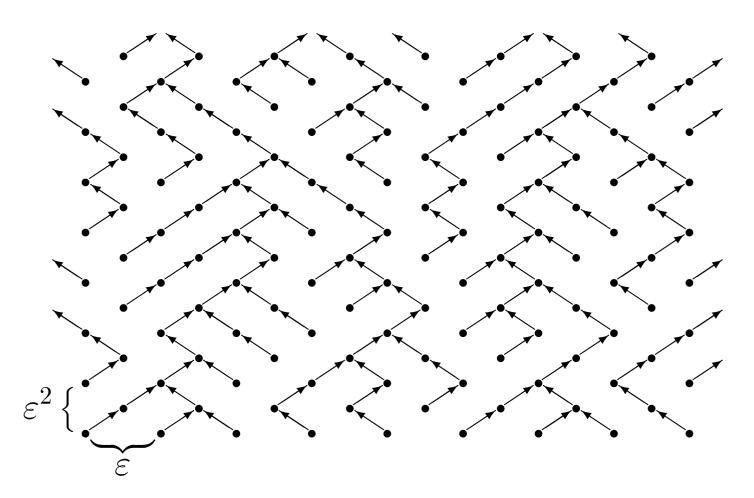
Theorem [E. Schertzer, R. Sun & J.S. '09] Case 1 Assume $\int \nu(dq)q^{-1}(1-q)^{-1} < \infty$, $\nu \neq 0$. Then:

(i) supp(ρ_t) is locally finite at each deterministic t > 0.
(ii) There exist random times when ρ_t is purely non-atomic.
(iii) supp(ρ_t) is a Markov process.

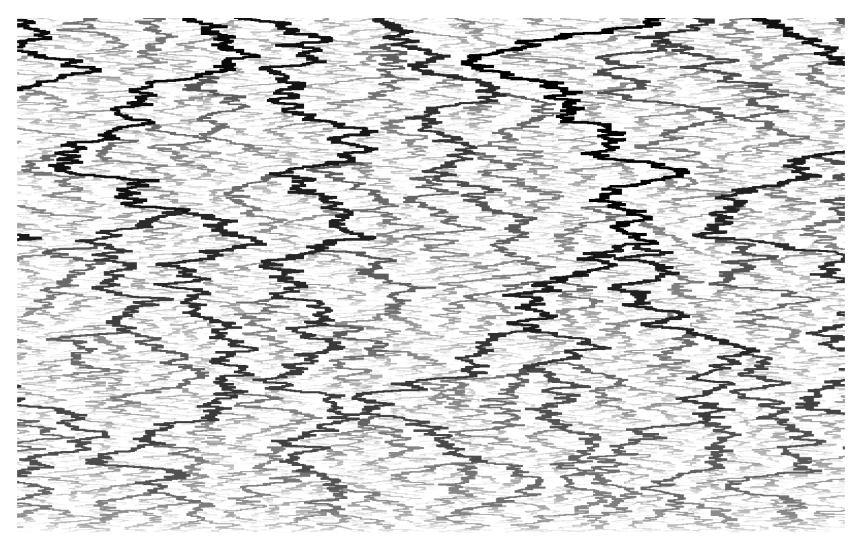
Case 2 Assume $\int_0^{\varepsilon} \nu(dq)q^{-1} = \infty = \int_{1-\varepsilon}^1 \nu(dq)(1-q)^{-1}$. Then:

(i)' ρ_t is purely atomic at each deterministic t > 0. (iii)' $\operatorname{supp}(\rho_t) = \mathbb{R}$ at each t > 0.

Conjecture: (ii) holds also in Case 2.



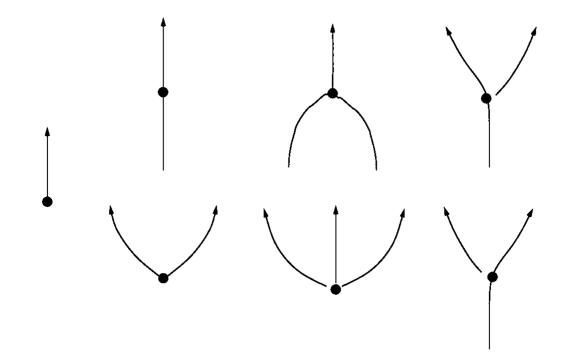
Extreme case: $\mu = \frac{1}{2}\delta_0 + \frac{1}{2}\delta_1$, hence $q_z \in \{0, 1\}$. Coalescing random walks start from each point in \mathbb{Z}^2_{even} .



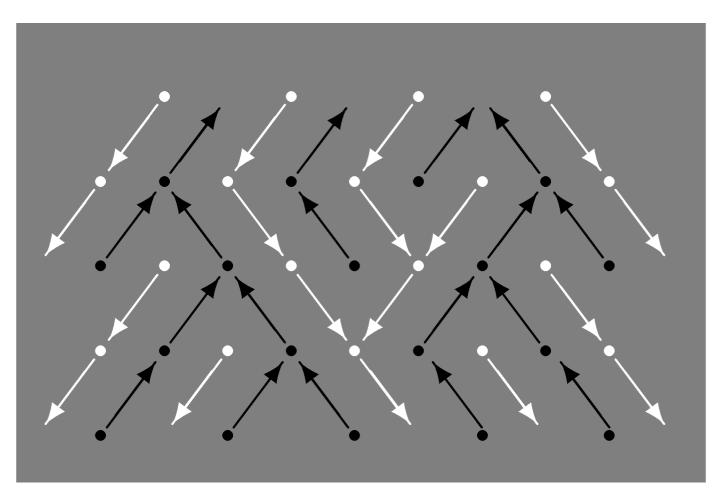
In the limit we obtain the Brownian web.

Introduced by Arratia '79, Tóth & Werner '98, and Fontes, Isopi, Newman & Ravishankar '02. Formally, a Brownian web \mathcal{W} is a compact set of paths, such that

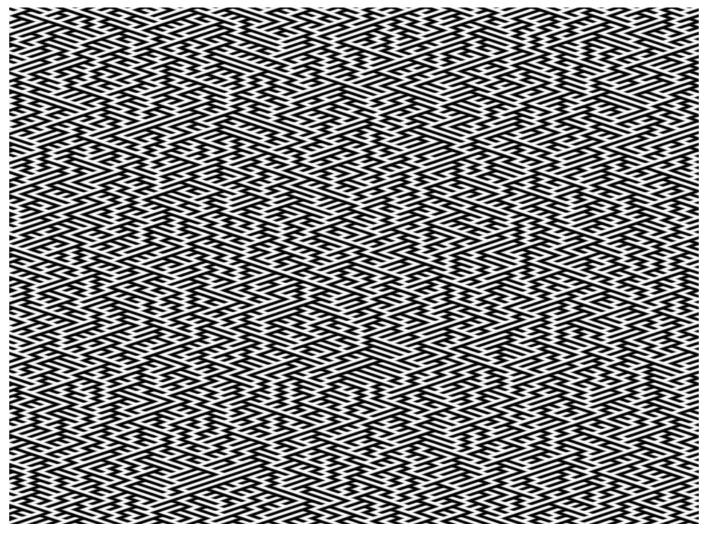
- (i) At deterministic $z \in \mathbb{R}^2$ there a.s. starts a unique path p_z .
- (ii) Paths started at different points are coalescing Brownian motions.
- (iii) For any deterministic countable dense $\mathcal{D} \subset \mathbb{R}^2$, the web \mathcal{W} is the closure of $\{p_z : z \in \mathcal{D}\}$.



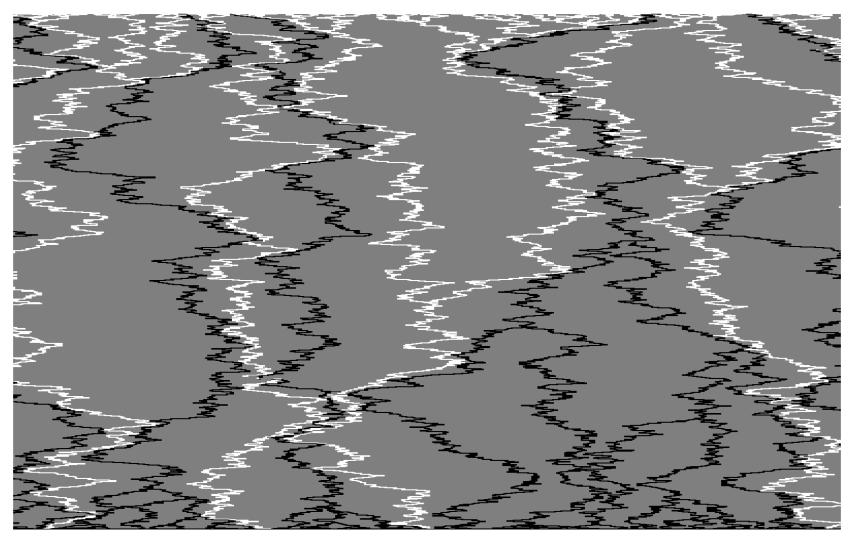
Special points of types $(0,1),\,(1,1)/(0,2),\,(2,1)/(0,3)$ and $(1,2)_l/(1,2)_r.$



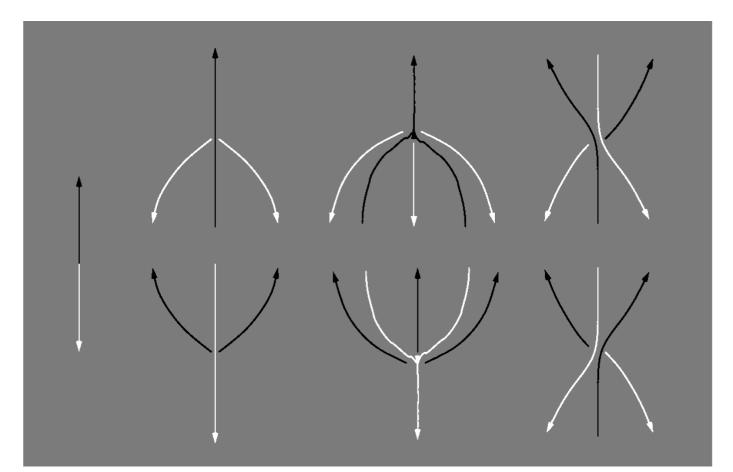
Forward and dual arrows.



Approximation of the forward and dual Brownian web.



Forward and dual paths started from fixed times.



Special points of types $(0,1),\,(1,1)/(0,2),\,(2,1)/(0,3)$ and $(1,2)_l/(1,2)_r.$

Observation

Fix random $(q_z)_{z \in \mathbb{Z}^2_{even}}$ with law μ . Given this random environment, for $(x,t) \in \mathbb{Z}^2_{even}$, draw an arrow to (x+1,t+1)with probability $q_{(x,t)}$ and to (x-1,t+1) with probability $1-q_{(x,t)}$. Let p_z be the unique path starting in z following the arrows. Then $(\rho_t)_{t\geq 0}$ is given (in law) by

$$\rho_t(y) = \sum_{x \in \mathbb{Z}_{\text{even}}} \rho_0(x) \mathbb{P}\left[p_{(x,0)}(t) = y \mid (q_z)_{z \in \mathbb{Z}_{\text{even}}^2}\right].$$

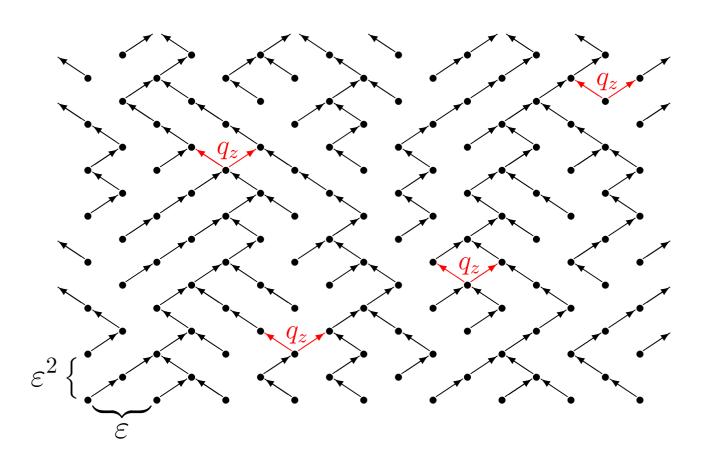
Alternative discrete construction

Define weighted laws $\mu_l(dq) := \frac{1}{Z_l}(1-q)\mu(dq)$ and

 $\mu_{\rm r}({\rm d}q) := \frac{1}{Z_{\rm r}}q\mu({\rm d}q)$, where $Z_{\rm l}, Z_{\rm r}$ are normalizing constants. Fix a discrete 'reference' web W with drift $\int 2(q - \frac{1}{2})\mu({\rm d}q)$. Let $(q_z)_{z\in\mathbb{Z}^2_{\rm even}}$ be independent random variables, where q_z has law $\mu_{\rm l}$ (resp. $\mu_{\rm r}$) if the arrow at z points to the left (resp. right).

Define a 'modified' discrete web \tilde{W} by drawing an arrow to (x+1,t+1) with probability $q_{(x,t)}$ and to (x-1,t+1) with probability $1-q_{(x,t)}$. Then

$$\rho_t(y) = \sum_{x \in \mathbb{Z}_{\text{even}}} \rho_0(x) \mathbb{P}\left[p_{(x,0)}(t) = y \mid W, (q_z)_{z \in \mathbb{Z}_{\text{even}}^2}\right].$$



Construction of the modified discrete web.

Construction when ν is concentrated on (0, 1).

Fix a reference Brownian web \mathcal{W} .

Let ℓ be the reflection local time between ${\mathcal W}$ and its dual.

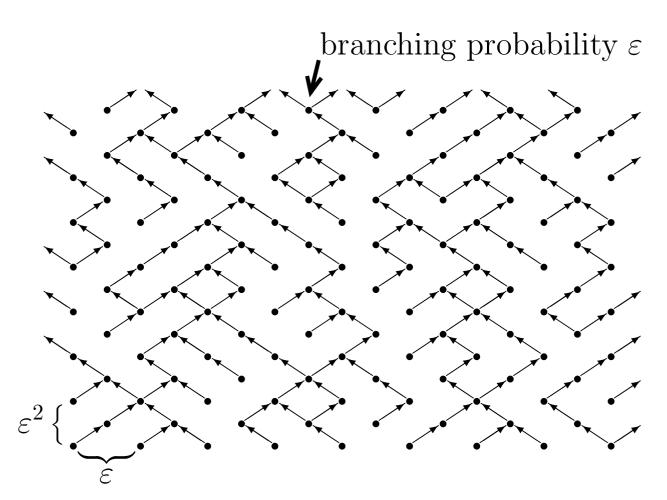
Let S_l and S_r be the sets of points of type $(1,2)_l$ and $(1,2)_r$, respectively.

Let \mathcal{M}_l be a Poisson point set on $S_l \times (0,1)$ with intensity $\ell(dz)q^{-1}\nu(dq)$, and let \mathcal{M}_r be a Poisson point set on $S_r \times (0,1)$ with intensity $\ell(dz)(1-q)^{-1}\nu(dq)$.

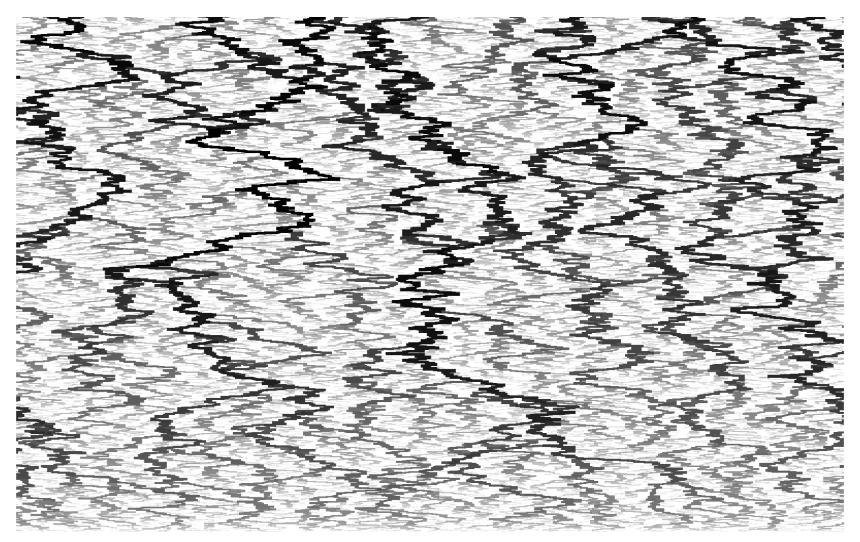
Construct a new web \tilde{W} as follows: Independently for each $(z,q) \in \mathcal{M}_1$ we change z into a point of type $(1,2)_r$ with probability q. Likewise, independently for each $(z,q) \in \mathcal{M}_r$ we change z into a point of type $(1,2)_l$ with probability 1-q. Then

$$\rho_t(\mathrm{d}x) := \int \rho_0(\mathrm{d}y) \mathbb{P}\big[\tilde{p}_{(y,0)}(t) \in \mathrm{d}x \,\big|\, (\mathcal{W}, \mathcal{M})\big]$$

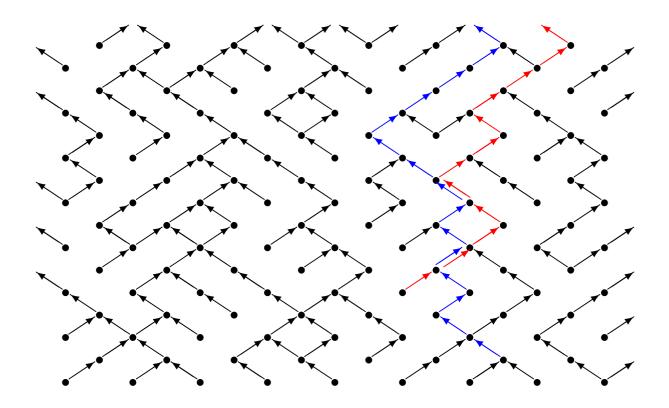
defines a Howitt-Warren process, where \tilde{p}_z denotes the a.s. unique path in $\tilde{\mathcal{W}}$ starting from a deterministic point z. In the special case $\int \nu(\mathrm{d}q)q^{-1}(1-q)^{-1} < \infty$, the Howitt-Warren process can be embedded in a Brownian *net*.



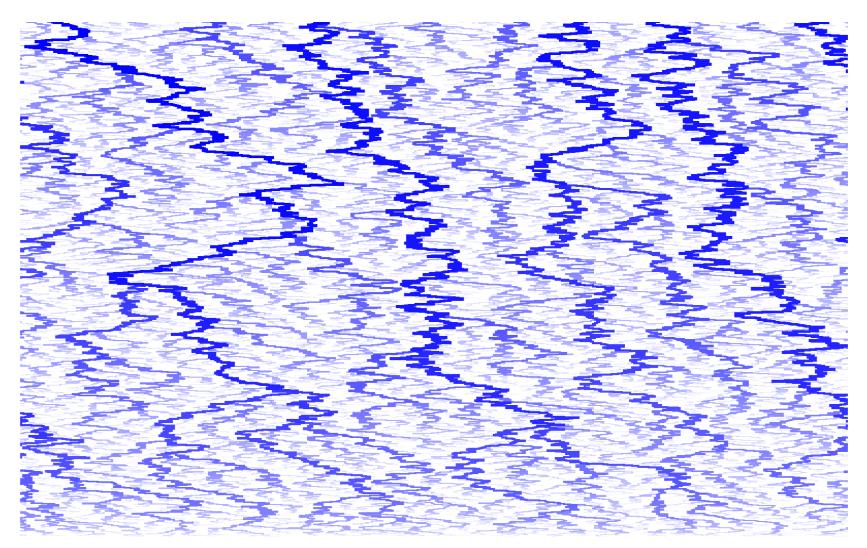
Discrete approximation of the Brownian net.



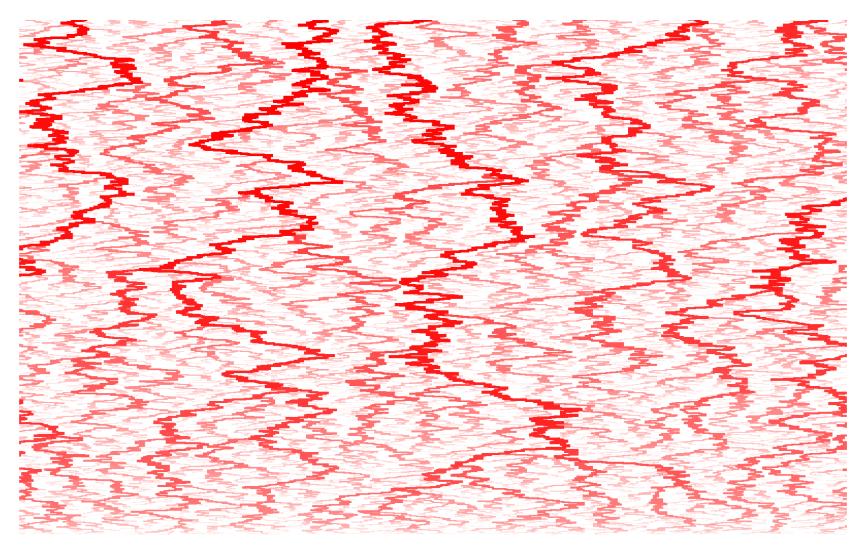
Brownian net.



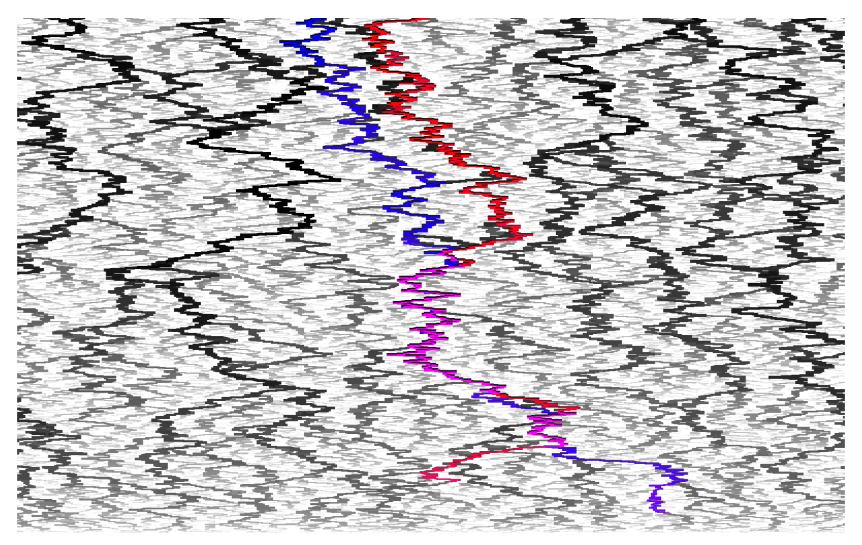
Draw left-most paths in blue and right-most paths in red.



The left-most paths converge to a left Brownian web...



... and the right-most paths to a right Brownian web.



Left-most and right-most paths interact in a sticky way.

The interaction between left-most and right-most paths is described by the stochastic differential equation (SDE):

$$dL_{t} = 1_{\{L_{t} \neq R_{t}\}} dB_{t}^{I} + 1_{\{L_{t} = R_{t}\}} dB_{t}^{S} - dt,$$

$$dR_{t} = 1_{\{L_{t} \neq R_{t}\}} dB_{t}^{r} + 1_{\{L_{t} = R_{t}\}} dB_{t}^{S} + dt,$$

where B_t^1, B_t^r, B_t^s are independent Brownian motions, and L_t and R_t are subject to the constraint that $L_t \leq R_t$ for all $t \geq T := \inf\{u \geq 0 : L_u \leq R_u\}.$

Introduced by Sun & S. '08 and by Newman, Ravishankar & Schertzer '09.

Hopping construction A Brownian net ${\cal N}$ is a compact set of paths, such that

- (i) At deterministic $z \in \mathbb{R}^2$ there a.s. starts a unique left-most path l_z and right-most paths r_z .
- (ii) Paths started at different points are left-right coalescing Brownian motions.
- (iii) If $\mathcal{D} \subset \mathbb{R}^2$ is countable and deterministic, then \mathcal{N} is the closure of all paths that are finite concatenations of paths in $\{l_z : z \in \mathcal{D}\}$ and $\{r_z : z \in \mathcal{D}\}$.

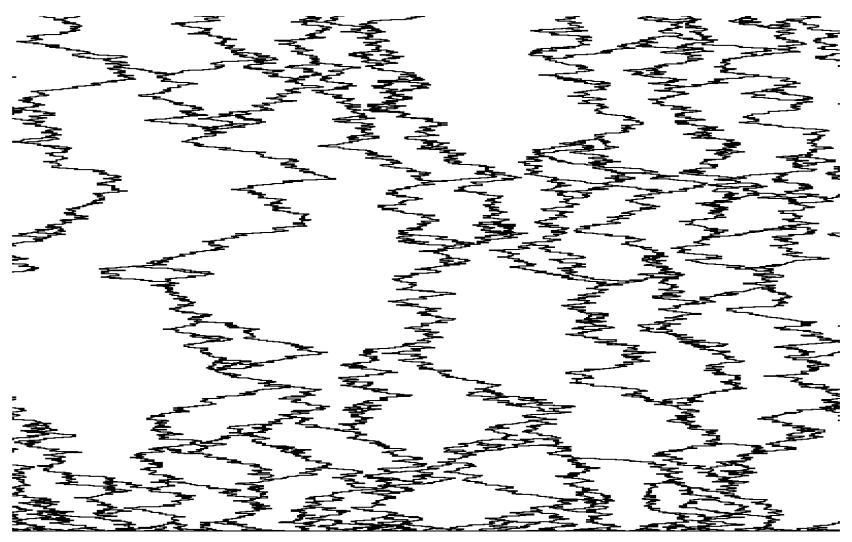
Alternative constructions: *wedges, meshes* (Sun & S.), *marking* (Newman, Ravishankar & Schertzer).

Let \mathcal{N} be a Brownian net. Let $\xi_0 \subset \mathbb{R}$ be closed. Then

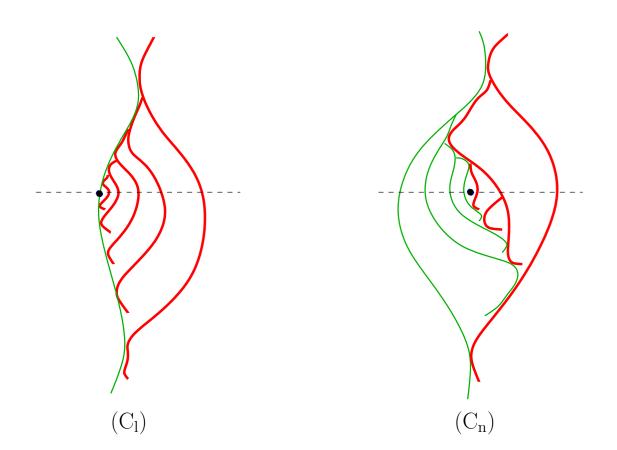
 $\xi_t := \{ x : \exists y \in \xi_0 \text{ s.t. } \exists \text{ path in } \mathcal{N} \text{ from } (y, 0) \text{ to } (x, t) \}$

defines a Markov process taking values in the closed subsets of \mathbb{R} , called *branching-coalescing point set*. At deterministic times t > 0, the set ξ_t is locally finite. There exist random times when ξ_t has no isolated points.

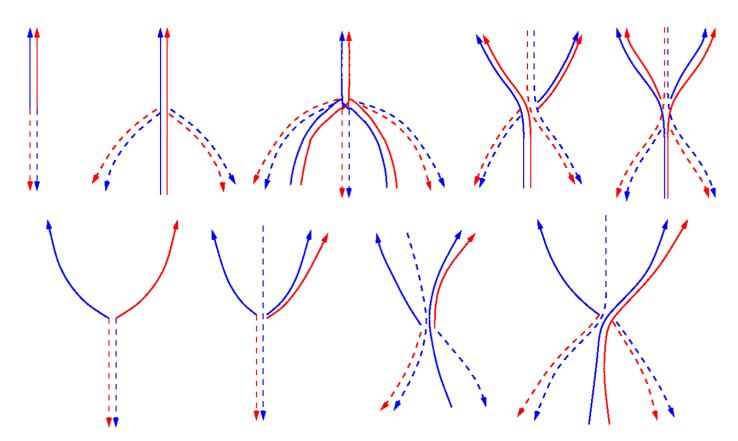
The branching-coalescing point set



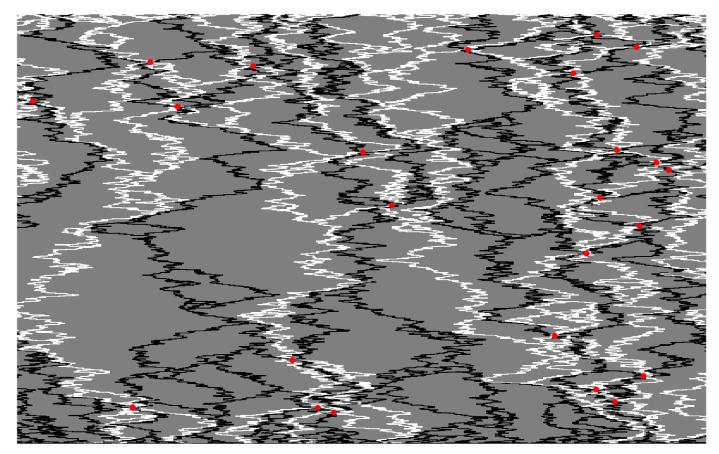
The branching-coalescing point set started in $\xi_0 = \mathbb{R}$.



Cluster points of nested excursions between left-most and right-most paths give rise to random times when ξ_t has no isolated points and ρ_t is purely non-atomic.



Modulo symmetry, there exist 9 types of special points of the Brownian net. [Schertzer, Sun & S. '09].



'Relevant' separation points, where the forward Brownian net crosses its dual, are locally finite.