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The Neuhauser-Pacala model

Neuhauser & Pacala (1999): Markov process in space
{(x(i))i∈Zd : x(i) ∈ {0, 1}}, where spin x(i) flips:

0 7→ 1 with rate f1(f0 + α01f1),

1 7→ 0 with rate f0(f1 + α10f0),

with

fτ (i) :=
#{j ∈ Ni : x(j) = τ}

#Ni
Ni := {j : 0 < ‖i − j‖∞ ≤ R}.

the local frequency of type τ = 0, 1.

Interpretation: Interspecific competition rates α01, α10. Organism
of type 0 dies with rate f0 + α01f1 and is replaced by type sampled
at random from distance ≤ R.
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The Neuhauser-Pacala model

Case α01 = α10 = 1 is pure voter model. Case α01, α10 < 1 gives
advantage to minority types.

Definitions: Type τ survives if started with a single site of type τ ,
there is a positive probability that there are sites of type τ at all
times.
One has coexistence if there exists an invariant law concentrated
on states with sites of both types.

Pure voter model: Neither type survives. One has coexistence iff
d ≥ 3.
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Duality

In the symmetric case α01 = α10 =: α the Neuhauser-Pacala
model X is dual to a system Y of branching-annihilating particles.

Dual model:
If y(i) = 1 there is a particle at i .
With rate α a particle at i jumps to a uniformly chosen site in Ni .
With rate 1− α a particle at i gives birth to two new particles at
independently, uniformly chosen sites in Ni .
Two particles at the same site annihilate.

P
[
|XtY0| is odd

]
= P

[
|X0Yt | is odd

]
(t ≥ 0)

whenever X and Y are independent. Here

|x | :=
∑

i x(i) and xy(i) := x(i)y(i).
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The rebellious voter model

One-sided rebellious voter model Spin x(i) flips:

0↔ 1 with rate α1{x(i−1)6=x(i)} + (1− α)1{x(i−2) 6=x(i−1)}.

Two-sided rebellious voter model

0↔ 1 with rate 1
2α1{x(i−1)6=x(i)} + 1

2(1− α)1{x(i−2) 6=x(i−1)}
1
2α1{x(i) 6=x(i+1)} + 1

2(1− α)1{x(i+1)6=x(i+2)}.

Dual one-sided model Particles jump from i to i − 1 with rate α
and produce two new particles at i − 2, i − 1 with rate 1− α.

Dual two-sided model analoguous.
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Graphical representation

X0

Xt

Graphical representation of the rebellious voter model.
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Graphical representation

Yt

Y0

Graphical representation of the dual of the rebellious voter model.
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Proof of duality

|XtY0| is odd

⇔ # paths from X0 to Y0 is odd

⇔ |X0Yt | is odd.
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Consequences of duality

The branching-annihilating particle system Y preserves parity.

If X is started in product measure with intensity 1/2 and
Y0 = 1{i ,j}, then

P
[
Xt(i) 6= Xt(j)

]
= P

[
|XtY0| is odd

]
= P

[
|X0Yt | is odd

]
= 1

2P
[
Ys 6= 0

]
−→
t→∞

1
2P
[
Ys 6= 0 ∀s ≥ 0

]
.

Consequence: X has coexistence iff Y started with an even
number of particles survives.

Similarly: X survives iff Y has a nontrivial invariant law.
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First results

Recall: α = 1 is pure voter, 1− α is branching rate of Y .

Neuhauser & Pacala ’99 If d ∨ R > 1, then one has coexistence
and survival of both types for α suffiently close to zero.

In the special case d = 1 = R (‘disagreement voter model’), one
has noncoexistence for all α > 0.

Conjecture Except in the case d = 1 = R, one has coexistence for
all α < 1.
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Cox, Perkins and Merle

Cox & Perkins ’07 In dimensions d ≥ 3 there exists some
0 < c < 1 such that for α01 ∧ α10 sufficiently close to one and
cα01 ≤ α10 ≤ c−1α01, one has coexistence and survival of both
types.

Cox, Merle & Perkins ’10 In dimensions d = 2 there exists some
function f : [0, 1]→ [0, 1] with f (α) < α on (0, 1) such that for
α01 ∧ α10 sufficiently close to one and α01 ≥ f (α10),
α10 ≥ f (α01), one has coexistence and survival of both types.

Proof As α ↑ 1, the process X started with a sparse configuration
of ones, suitably rescaled, converges to supercritical
super-Brownian motion. Comparison wih oriented percolation.

Morally, this implies coexistence for all 0 ≤ α < 1 but not known if
survival of Y is monotone in the branching rate 1− α.
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Dimension one

Corrected conjecture In dimension d = 1, there exists some
0 ≤ αc < 1 such that the symmetric model has coexistence for
α < αc and noncoexistence for αc < α.

Open problem Prove noncoexistence in any other case than
‘trivial’ R = 1.

Open problem Prove that noncoexistence is monotone in α.
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Interface model

Interface model (Yt)t≥0 associated with (Xt)t≥0 defined by

Yt(i) := 1{Xt(i)6=Xt(i+1)} (i ∈ Z).

Xt = . . . 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 1 1 0 0 1 0 0 0 1 0 1 0 0 . . .
Yt = . . . 0 0 0 1 0 0 0 1 0 0 0 1 0 0 1 0 1 0 1 1 0 0 1 1 1 1 0 . . .

Y

X
�

U �

dual interface

Y ′

X ′

X ′′

Y ′′

? ?

6

-

�

6
dual dual

interface

interface

voter models
X rebellious
X ′ disagreement
X ′′ swapping

random walks
Y ADBARW
Y ′ DBARW
Y ′′ SARW
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Interface tightness

Definition A one-dimensional voter model X exhibits interface
tightness if its interface model Y started with an odd number of
particles is positively recurrent modulo translations.

Consequence System spends positive fraction of time in states
with |Y | = 1.

Interface tightness for long-range voter models was proved by Cox
and Durrett (1995) under a third moment condition on the
infection rates. This was improved to a second moment condition,
which is sharp, by Belhaouari, Mountford and Valle (2007).
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The swapping voter model

The swapping voter model X ′′ has a mixture of voter and exclusion
dynamics:

01→ 11 with rate 1
2α,

01→ 00 with rate 1
2α,

01↔ 10 with rate 1− α.

For this model, the number of ones (resp. zeroes) is a martingale,
hence in X ′′ both types die out for α > 0.

The dual is a system of swapping and annihilating random walks
(without branching), hence X ′′ exhibits noncoexistence for α > 0.

Interface tightness for X ′′ was proved in Sturm and S. (2008).
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Two-sided rebellious interface model

Interface process Y of the two-sided rebellious voter model for
α = 0.4, 0.5, 0.51, 0.6.
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One-sided rebellious interface model

Interface process Y of the one-sided rebellious voter model for
α = 0.3, 0.5, 0.6.
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Edge speeds
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Edge speeds for the rebellious voter model (left) and its one-sided
counterpart (right).
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Theoretical results

Sturm and S. (2008):

Neuhauser-Pacala models and rebellious voter model:
If X exhibits coexistence, then there is a unique shift-invariant
coexisting invariant law which is the limit law started from any
shift-invariant coexisting initial law.

Rebellious voter model:
Coexistence for α sufficiently close to zero.
Complete convergence for α sufficiently close to zero.
Survival equivalent to coexistence.
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Numerical results

S. and Vrbenský (2010):

Start X0 = . . . 00000100000 . . ., Y0 = . . . 00000100000 . . ..
Define

ρ(α) = P[Xt 6= 0 ∀t ≥ 0],

χ(α) = lim
t→∞

P[|Yt | = 1].

ρ(α) > 0 iff ones survive,
χ(α) > 0 iff interface tightness.
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Numerical data
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The functions ρ and χ for the two-sided rebelious voter model.
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Numerical data
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The functions ρ and χ for the one-sided rebelious voter model.
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Explicit formulas

It seems that for the one-sided model, the functions ρ and χ are
described by the explicit formulas:

ρ(α) = 0 ∨ 1− 2α

1− α
and χ(α) = 0 ∨

(
2− 1

α

)
.

In particular, one has the symmetry ρ(1− α) = χ(α) and the
critical parameter seems to be given by αc = 1/2.

Explanation?
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Numerical data
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Differences of ρ and χ with presumed explicit formulas.
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Harmonic functions

Recall that for the voter model, the number of ones is a
martingale, hence fx := |x | is a harmonic function.

Numerically, we can find a harmonic function fx(α)
for all values of α.
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Harmonic functions
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Numerical data for fx(α) for the one-sided model.
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Harmonic functions
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Derivatives ∂
∂α fx(α).
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