On rebellious voter models

Jan M. Swart

Gothenburg, August 11, 2010

・ロン ・四と ・ヨン ・ヨン

Outline

Definition of the models

Outline

- Definition of the models
- Theoretical results

Outline

- Definition of the models
- Theoretical results
- Numerical results

< □ > < □ > < □ > < □ > < □ > .

The Neuhauser-Pacala model

Neuhauser & Pacala (1999): Markov process in space $\{(x(i))_{i \in \mathbb{Z}^d} : x(i) \in \{0, 1\}\}$, where spin x(i) flips:

$$0 \mapsto 1$$
 with rate $f_1(f_0 + \alpha_{01}f_1)$,
 $1 \mapsto 0$ with rate $f_0(f_1 + \alpha_{10}f_0)$,

with

$$f_{\tau}(i) := \frac{\#\{j \in \mathcal{N}_i : x(j) = \tau\}}{\#\mathcal{N}_i} \quad \mathcal{N}_i := \{j : 0 < \|i - j\|_{\infty} \leq R\}.$$

the local frequency of type $\tau = 0, 1$.

Interpretation: Interspecific competition rates α_{01}, α_{10} . Organism of type 0 dies with rate $f_0 + \alpha_{01}f_1$ and is replaced by type sampled at random from distance $\leq R$.

Definition of the models Numerical results

One has coexistence if there exists an invariant law concentrated

on states with sites of both types.

times.

Pure voter model: Neither type survives. One has coexistence iff d > 3.

Jan M. Swart On rebellious voter models

Case $\alpha_{01} = \alpha_{10} = 1$ is pure voter model. Case $\alpha_{01}, \alpha_{10} < 1$ gives advantage to minority types.

Definitions: Type τ survives if started with a single site of type τ , there is a positive probability that there are sites of type τ at all

The Neuhauser-Pacala model

Duality

In the symmetric case $\alpha_{01} = \alpha_{10} =: \alpha$ the Neuhauser-Pacala model X is dual to a system Y of branching-annihilating particles.

Dual model:

If y(i) = 1 there is a particle at *i*.

With rate α a particle at *i* jumps to a uniformly chosen site in \mathcal{N}_i . With rate $1 - \alpha$ a particle at *i* gives birth to two new particles at independently, uniformly chosen sites in \mathcal{N}_i .

Two particles at the same site annihilate.

$$\mathbb{P}\big[|X_t Y_0| \text{ is odd}\big] = \mathbb{P}\big[|X_0 Y_t| \text{ is odd}\big] \qquad (t \ge 0)$$

whenever X and Y are independent. Here

$$|x| := \sum_i x(i)$$
 and $xy(i) := x(i)y(i)$.

回 と く ヨ と く ヨ と

The rebellious voter model

One-sided rebellious voter model Spin x(i) flips:

$$0 \leftrightarrow 1$$
 with rate $\alpha \mathbb{1}_{\{x(i-1) \neq x(i)\}} + (1-\alpha)\mathbb{1}_{\{x(i-2) \neq x(i-1)\}}$.

Two-sided rebellious voter model

$$0 \leftrightarrow 1 \text{ with rate } \frac{1}{2} \alpha \mathbf{1}_{\{x(i-1) \neq x(i)\}} + \frac{1}{2} (1-\alpha) \mathbf{1}_{\{x(i-2) \neq x(i-1)\}} \\ \frac{1}{2} \alpha \mathbf{1}_{\{x(i) \neq x(i+1)\}} + \frac{1}{2} (1-\alpha) \mathbf{1}_{\{x(i+1) \neq x(i+2)\}}.$$

Dual one-sided model Particles jump from *i* to i - 1 with rate α and produce two new particles at i - 2, i - 1 with rate $1 - \alpha$.

Dual two-sided model analoguous.

- 4 同 6 4 日 6 4 日 6

Graphical representation

Graphical representation

Graphical representation of the dual of the rebellious voter model.

・ロン ・雪 ・ ・ ヨ ・ ・ ヨ ・ ・

3

Proof of duality

$|X_t Y_0|$ is odd

- $\Leftrightarrow \quad \# \text{ paths from } X_0 \text{ to } Y_0 \text{ is odd}$
- $\Leftrightarrow |X_0 Y_t| \text{ is odd.}$

・ロン ・四と ・日と ・日と

Consequences of duality

The branching-annihilating particle system Y preserves parity.

If X is started in product measure with intensity 1/2 and $Y_0 = 1_{\{i,j\}}$, then

$$\begin{split} \mathbb{P}\big[X_t(i) \neq X_t(j)\big] &= \mathbb{P}\big[|X_t Y_0| \text{ is odd}\big] = \mathbb{P}\big[|X_0 Y_t| \text{ is odd}\big] \\ &= \frac{1}{2} \mathbb{P}\big[Y_s \neq 0\big] \xrightarrow[t \to \infty]{} \frac{1}{2} \mathbb{P}\big[Y_s \neq 0 \ \forall s \ge 0\big]. \end{split}$$

Consequence: X has coexistence iff Y started with an even number of particles survives.

Similarly: X survives iff Y has a nontrivial invariant law.

伺下 イヨト イヨト

First results

Recall: $\alpha = 1$ is pure voter, $1 - \alpha$ is branching rate of Y.

Neuhauser & Pacala '99 If $d \lor R > 1$, then one has coexistence and survival of both types for α sufficiently close to zero.

In the special case d = 1 = R ('disagreement voter model'), one has noncoexistence for all $\alpha > 0$.

Conjecture Except in the case d = 1 = R, one has coexistence for all $\alpha < 1$.

イロト イポト イヨト イヨト

Cox, Perkins and Merle

Cox & Perkins '07 In dimensions $d \ge 3$ there exists some 0 < c < 1 such that for $\alpha_{01} \land \alpha_{10}$ sufficiently close to *one* and $c\alpha_{01} \le \alpha_{10} \le c^{-1}\alpha_{01}$, one has coexistence and survival of both types.

Cox, Merle & Perkins '10 In dimensions d = 2 there exists some function $f : [0,1] \rightarrow [0,1]$ with $f(\alpha) < \alpha$ on (0,1) such that for $\alpha_{01} \wedge \alpha_{10}$ sufficiently close to *one* and $\alpha_{01} \ge f(\alpha_{10})$, $\alpha_{10} \ge f(\alpha_{01})$, one has coexistence and survival of both types.

Proof As $\alpha \uparrow 1$, the process X started with a sparse configuration of ones, suitably rescaled, converges to supercritical super-Brownian motion. Comparison with oriented percolation.

Morally, this implies coexistence for all $0 \le \alpha < 1$ but not known if survival of Y is monotone in the branching rate $1 - \alpha$.

Dimension one

Corrected conjecture In dimension d = 1, there exists some $0 \le \alpha_c < 1$ such that the symmetric model has coexistence for $\alpha < \alpha_c$ and noncoexistence for $\alpha_c < \alpha$.

Open problem Prove noncoexistence in any other case than 'trivial' R = 1.

Open problem Prove that noncoexistence is monotone in α .

向下 イヨト イヨト

Interface model

Interface model $(Y_t)_{t\geq 0}$ associated with $(X_t)_{t\geq 0}$ defined by

$$Y_t(i) := 1_{\{X_t(i) \neq X_t(i+1)\}}$$
 $(i \in \mathbb{Z}).$

voter models

rebellious X Y' DBARW

★ 医 ▶ ★ 医 ▶ … 臣

V''SARW

Interface tightness

Definition A one-dimensional voter model X exhibits *interface tightness* if its interface model Y started with an odd number of particles is positively recurrent modulo translations.

Consequence System spends positive fraction of time in states with |Y| = 1.

Interface tightness for long-range voter models was proved by Cox and Durrett (1995) under a third moment condition on the infection rates. This was improved to a second moment condition, which is sharp, by Belhaouari, Mountford and Valle (2007).

イロト イポト イヨト イヨト

The swapping voter model

The swapping voter model X'' has a mixture of voter and exclusion dynamics:

 $\begin{array}{l} 01 \rightarrow 11 \text{ with rate } \frac{1}{2}\alpha, \\ 01 \rightarrow 00 \text{ with rate } \frac{1}{2}\alpha, \\ 01 \leftrightarrow 10 \text{ with rate } 1 - \alpha. \end{array}$

For this model, the number of ones (resp. zeroes) is a martingale, hence in X'' both types die out for $\alpha > 0$.

The dual is a system of swapping and annihilating random walks (without branching), hence X'' exhibits noncoexistence for $\alpha > 0$. Interface tightness for X'' was proved in Sturm and S. (2008).

(4 回) (4 回) (4 回)

Two-sided rebellious interface model

Interface process Y of the two-sided rebellious voter model for $\alpha = {\rm 0.4, 0.5, 0.51, 0.6.}$

One-sided rebellious interface model

Interface process Y of the one-sided rebellious voter model for $\alpha = 0.3, 0.5, 0.6.$

Edge speeds

Edge speeds for the rebellious voter model (left) and its one-sided counterpart (right).

< 🗗 >

- < ≣ →

< ≣⇒

Theoretical results

Sturm and S. (2008):

Neuhauser-Pacala models and rebellious voter model:

If X exhibits coexistence, then there is a unique shift-invariant coexisting invariant law which is the limit law started from any shift-invariant coexisting initial law.

Rebellious voter model:

Coexistence for α sufficiently close to zero. Complete convergence for α sufficiently close to zero. Survival equivalent to coexistence.

Numerical results

S. and Vrbenský (2010):

Start $X_0 = \dots 00000100000 \dots$, $Y_0 = \dots 00000100000 \dots$. Define

$$\rho(\alpha) = \mathbb{P}[X_t \neq 0 \ \forall t \ge 0],$$
$$\chi(\alpha) = \lim_{t \to \infty} \mathbb{P}[|Y_t| = 1].$$

ho(lpha) > 0 iff ones survive, $\chi(lpha) > 0$ iff interface tightness.

(4回) (1日) (日)

2

Numerical data

The functions ρ and χ for the two-sided rebelious voter model.

A B >
 A B >
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

< ∃⇒

< E.

Numerical data

The functions ρ and χ for the one-sided rebelious voter model.

A B >
 A B >
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

< ∃⇒

Explicit formulas

It seems that for the one-sided model, the functions ρ and χ are described by the explicit formulas:

$$ho(lpha) = \mathsf{0} \lor rac{1-2lpha}{1-lpha} \quad ext{and} \quad \chi(lpha) = \mathsf{0} \lor ig(2-rac{1}{lpha}ig).$$

In particular, one has the symmetry $\rho(1-\alpha) = \chi(\alpha)$ and the critical parameter seems to be given by $\alpha_c = 1/2$.

Explanation?

- 4 回 2 - 4 □ 2 - 4 □

Numerical data

Differences of ρ and χ with presumed explicit formulas.

Harmonic functions

Recall that for the voter model, the number of ones is a martingale, hence $f_x := |x|$ is a harmonic function.

Numerically, we can find a harmonic function $f_x(\alpha)$ for all values of α .

æ

- < 토 ▶ < 토 ▶

Harmonic functions

Numerical data for $f_x(\alpha)$ for the one-sided model.

・ロン ・回 と ・ ヨン ・ ヨン

Harmonic functions

・ロン ・回 と ・ ヨン ・ モン

Э