On rebellious voter models

Jan M. Swart

Gothenburg, August 11, 2010

Outline

- Definition of the models

Outline

- Definition of the models
- Theoretical results

Outline

- Definition of the models
- Theoretical results
- Numerical results

The Neuhauser-Pacala model

Neuhauser \& Pacala (1999): Markov process in space $\left\{(x(i))_{i \in \mathbb{Z}^{d}}: x(i) \in\{0,1\}\right\}$, where spin $x(i)$ flips:
$0 \mapsto 1$ with rate $f_{1}\left(f_{0}+\alpha_{01} f_{1}\right)$,
$1 \mapsto 0$ with rate $f_{0}\left(f_{1}+\alpha_{10} f_{0}\right)$,
with

$$
f_{\tau}(i):=\frac{\#\left\{j \in \mathcal{N}_{i}: x(j)=\tau\right\}}{\# \mathcal{N}_{i}} \quad \mathcal{N}_{i}:=\left\{j: 0<\|i-j\|_{\infty} \leq R\right\} .
$$

the local frequency of type $\tau=0,1$.
Interpretation: Interspecific competition rates α_{01}, α_{10}. Organism of type 0 dies with rate $f_{0}+\alpha_{01} f_{1}$ and is replaced by type sampled at random from distance $\leq R$.

The Neuhauser-Pacala model

Case $\alpha_{01}=\alpha_{10}=1$ is pure voter model. Case $\alpha_{01}, \alpha_{10}<1$ gives advantage to minority types.

Definitions: Type τ survives if started with a single site of type τ, there is a positive probability that there are sites of type τ at all times.
One has coexistence if there exists an invariant law concentrated on states with sites of both types.

Pure voter model: Neither type survives. One has coexistence iff $d \geq 3$.

Duality

In the symmetric case $\alpha_{01}=\alpha_{10}=: \alpha$ the Neuhauser-Pacala model X is dual to a system Y of branching-annihilating particles.

Dual model:

If $y(i)=1$ there is a particle at i.
With rate α a particle at i jumps to a uniformly chosen site in \mathcal{N}_{i}. With rate $1-\alpha$ a particle at i gives birth to two new particles at independently, uniformly chosen sites in \mathcal{N}_{i}.
Two particles at the same site annihilate.

$$
\mathbb{P}\left[\left|X_{t} Y_{0}\right| \text { is odd }\right]=\mathbb{P}\left[\left|X_{0} Y_{t}\right| \text { is odd }\right] \quad(t \geq 0)
$$

whenever X and Y are independent. Here

$$
|x|:=\sum_{i} x(i) \quad \text { and } \quad x y(i):=x(i) y(i) .
$$

The rebellious voter model

One-sided rebellious voter model Spin $x(i)$ flips:

$$
0 \leftrightarrow 1 \text { with rate } \alpha 1_{\{x(i-1) \neq x(i)\}}+(1-\alpha) 1_{\{x(i-2) \neq x(i-1)\}} .
$$

Two-sided rebellious voter model

$$
\begin{aligned}
0 \leftrightarrow 1 \text { with rate } & \frac{1}{2} \alpha 1_{\{x(i-1) \neq x(i)\}} \\
& +\frac{1}{2}(1-\alpha) 1_{\{x(i-2) \neq x(i-1)\}} \\
\frac{1}{2} \alpha 1_{\{x(i) \neq x(i+1)\}} & +\frac{1}{2}(1-\alpha) 1_{\{x(i+1) \neq x(i+2)\}} .
\end{aligned}
$$

Dual one-sided model Particles jump from i to $i-1$ with rate α and produce two new particles at $i-2, i-1$ with rate $1-\alpha$.

Dual two-sided model analoguous.

Graphical representation

Graphical representation of the rebellious voter model.

Graphical representation

Graphical representation of the dual of the rebellious voter model.

Proof of duality

$\left|X_{t} Y_{0}\right|$ is odd

$\Leftrightarrow \quad \#$ paths from X_{0} to Y_{0} is odd
$\Leftrightarrow \quad\left|X_{0} Y_{t}\right|$ is odd.

Consequences of duality

The branching-annihilating particle system Y preserves parity. If X is started in product measure with intensity $1 / 2$ and $Y_{0}=1_{\{i, j\}}$, then

$$
\begin{aligned}
& \mathbb{P}\left[X_{t}(i) \neq X_{t}(j)\right]=\mathbb{P}\left[\left|X_{t} Y_{0}\right| \text { is odd }\right]=\mathbb{P}\left[\left|X_{0} Y_{t}\right| \text { is odd }\right] \\
& \quad=\frac{1}{2} \mathbb{P}\left[Y_{s} \neq 0\right] \underset{t \rightarrow \infty}{\longrightarrow} \frac{1}{2} \mathbb{P}\left[Y_{s} \neq 0 \forall s \geq 0\right] .
\end{aligned}
$$

Consequence: X has coexistence iff Y started with an even number of particles survives.

Similarly: X survives iff Y has a nontrivial invariant law.

First results

Recall: $\alpha=1$ is pure voter, $1-\alpha$ is branching rate of Y.
Neuhauser \& Pacala '99 If $d \vee R>1$, then one has coexistence and survival of both types for α suffiently close to zero.

In the special case $d=1=R$ ('disagreement voter model'), one has noncoexistence for all $\alpha>0$.

Conjecture Except in the case $d=1=R$, one has coexistence for all $\alpha<1$.

Cox, Perkins and Merle

Cox \& Perkins '07 In dimensions $d \geq 3$ there exists some $0<c<1$ such that for $\alpha_{01} \wedge \alpha_{10}$ sufficiently close to one and $c \alpha_{01} \leq \alpha_{10} \leq c^{-1} \alpha_{01}$, one has coexistence and survival of both types.

Cox, Merle \& Perkins '10 In dimensions $d=2$ there exists some function $f:[0,1] \rightarrow[0,1]$ with $f(\alpha)<\alpha$ on $(0,1)$ such that for $\alpha_{01} \wedge \alpha_{10}$ sufficiently close to one and $\alpha_{01} \geq f\left(\alpha_{10}\right)$, $\alpha_{10} \geq f\left(\alpha_{01}\right)$, one has coexistence and survival of both types.

Proof As $\alpha \uparrow 1$, the process X started with a sparse configuration of ones, suitably rescaled, converges to supercritical super-Brownian motion. Comparison wih oriented percolation.

Morally, this implies coexistence for all $0 \leq \alpha<1$ but not known if survival of Y is monotone in the branching rate $1-\alpha$.

Dimension one

Corrected conjecture In dimension $d=1$, there exists some $0 \leq \alpha_{\mathrm{c}}<1$ such that the symmetric model has coexistence for $\alpha<\alpha_{\mathrm{c}}$ and noncoexistence for $\alpha_{\mathrm{c}}<\alpha$.

Open problem Prove noncoexistence in any other case than 'trivial' $R=1$.

Open problem Prove that noncoexistence is monotone in α.

Interface model

Interface model $\left(Y_{t}\right)_{t \geq 0}$ associated with $\left(X_{t}\right)_{t \geq 0}$ defined by

$$
Y_{t}(i):=1_{\left\{X_{t}(i) \neq X_{t}(i+1)\right\}} \quad(i \in \mathbb{Z})
$$

$$
\begin{aligned}
& X_{t}=\ldots 1111000011110001100100010100 \ldots \\
& Y_{t}=\ldots 000100010001001010110011110 \ldots
\end{aligned}
$$

voter models

random walks Y ADBARW
$Y^{\prime \prime}$ SARW

Interface tightness

Definition A one-dimensional voter model X exhibits interface tightness if its interface model Y started with an odd number of particles is positively recurrent modulo translations.

Consequence System spends positive fraction of time in states with $|Y|=1$.
Interface tightness for long-range voter models was proved by Cox and Durrett (1995) under a third moment condition on the infection rates. This was improved to a second moment condition, which is sharp, by Belhaouari, Mountford and Valle (2007).

The swapping voter model

The swapping voter model $X^{\prime \prime}$ has a mixture of voter and exclusion dynamics:

$$
\begin{aligned}
& 01 \rightarrow 11 \text { with rate } \frac{1}{2} \alpha, \\
& 01 \rightarrow 00 \text { with rate } \frac{1}{2} \alpha, \\
& 01 \leftrightarrow 10 \text { with rate } 1-\alpha .
\end{aligned}
$$

For this model, the number of ones (resp. zeroes) is a martingale, hence in $X^{\prime \prime}$ both types die out for $\alpha>0$.

The dual is a system of swapping and annihilating random walks (without branching), hence $X^{\prime \prime}$ exhibits noncoexistence for $\alpha>0$. Interface tightness for $X^{\prime \prime}$ was proved in Sturm and S. (2008).

Two-sided rebellious interface model

Interface process Y of the two-sided rebellious voter model for $\alpha=0.4,0.5,0.51,0.6$.

One-sided rebellious interface model

Interface process Y of the one-sided rebellious voter model for $\alpha=0.3,0.5,0.6$.

Edge speeds

Edge speeds for the rebellious voter model (left) and its one-sided counterpart (right).

Theoretical results

Sturm and S. (2008):
Neuhauser-Pacala models and rebellious voter model:
If X exhibits coexistence, then there is a unique shift-invariant coexisting invariant law which is the limit law started from any shift-invariant coexisting initial law.

Rebellious voter model:
Coexistence for α sufficiently close to zero. Complete convergence for α sufficiently close to zero. Survival equivalent to coexistence.

Numerical results

S. and Vrbenský (2010):

Start $X_{0}=\ldots 00000100000 \ldots, Y_{0}=\ldots 00000100000 \ldots$
Define

$$
\begin{aligned}
& \rho(\alpha)=\mathbb{P}\left[X_{t} \neq 0 \forall t \geq 0\right] \\
& \chi(\alpha)=\lim _{t \rightarrow \infty} \mathbb{P}\left[\left|Y_{t}\right|=1\right]
\end{aligned}
$$

$\rho(\alpha)>0$ iff ones survive,
$\chi(\alpha)>0$ iff interface tightness.

Numerical data

The functions ρ and χ for the two-sided rebelious voter model.

Numerical data

The functions ρ and χ for the one-sided rebelious voter model.

Explicit formulas

It seems that for the one-sided model, the functions ρ and χ are described by the explicit formulas:

$$
\rho(\alpha)=0 \vee \frac{1-2 \alpha}{1-\alpha} \quad \text { and } \quad \chi(\alpha)=0 \vee\left(2-\frac{1}{\alpha}\right) .
$$

In particular, one has the symmetry $\rho(1-\alpha)=\chi(\alpha)$ and the critical parameter seems to be given by $\alpha_{\mathrm{c}}=1 / 2$.

Explanation?

Numerical data

Differences of ρ and χ with presumed explicit formulas.

Harmonic functions

Recall that for the voter model, the number of ones is a martingale, hence $f_{x}:=|x|$ is a harmonic function.

Numerically, we can find a harmonic function $f_{x}(\alpha)$ for all values of α.

Harmonic functions

Numerical data for $f_{x}(\alpha)$ for the one-sided model.

Harmonic functions

