Jan's open problems

The half-sphere SDE

Statement of the problem

It is known that for each $c \geq 0$ and for each initial condition $X_{0}=x$ in the unit ball $\left\{x \in \mathbb{R}^{d}:|x| \leq 1\right\}$, the d-dimensional the Itô stochastic differential equation (SDE)

$$
\begin{equation*}
\mathrm{d} X_{t}=-c X_{t} \mathrm{~d} t+\sqrt{2\left(1-\left|X_{t}\right|^{2}\right)} \mathrm{d} B_{t} \quad(t \geq 0) \tag{1}
\end{equation*}
$$

has a unique weak solution that stays inside the unit ball. The question is for what values of d and c this SDE has a unique strong solution.

What is known

Standard results show that in dimension $d=1$ (1) has a unique strong solution for all $c \geq 0$. For dimensions $d \geq 2$, it has been proved in [Swa02] that strong uniqueness holds for $c=0$ and for $c \geq 1$. This has been improved in [DeB04] where it was shown that strong uniqueness holds for $c>\frac{1}{2}(\sqrt{2}-1)$.

What is conjectured

It seems plausible that there exists a critical value $c_{*}(d)$ such that strong uniqueness does not hold for $0<c<c_{*}(d)$ and on the other hand strong uniqueness holds for $c>c_{*}(d)$. But it is hard to tell, perhaps strong uniqueness holds for all $c \geq 0$ after all and we just don't know how to prove it.

How to attack the problem

Past experience has shown that numerical simulations can help quite a bit to find the right conjectures that one can then try to prove rigorously. One can construct finite state space Markov chains that in a natural way approximate the process consisting of two solutions to the SDE, driven by the same Brownian motion. For such a Markov chain, one can try to calculate the expected time before two solutions reach a fixed distance ε from each other, as a function of the initial state. This function solves a difference equation, that in the continuum limit becomes a differential equation. Thus, it seems that the problem is closely related to potential theory.

References

[DeB04] D. DeBlassie. Uniqueness for diffusions degenerating at the boundary of a smooth bounded set. Ann. Probab. 32(4) (2004), 3167-3190.
[Swa02] J.M. Swart. Pathwise uniqueness for a SDE with non-Lipschitz coefficients. Stochastic Processes Appl. 98 (2002), 131-149.

