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Preface

Interacting particle systems, in the sense we will be using the word in these lec-
ture notes, are countable systems of locally interacting Markov processes. Each
interacting particle system is define on a lattice: a countable set with (usually)
some concept of distance defined on it; the canonical choice is the d-dimensional
integer lattice Zd. On each point in this lattice, there is situated a continuous-time
Markov process with a finite state space (often even of cardinality two) whose jump
rates depend on the states of the Markov processes on near-by sites. Interacting
particle systems are often used as extremely simplified ‘toy models’ for stochastic
phenomena that involve a spatial structure.

Although the definition of an interacting particle system often looks very simple,
and problems of existence and uniqueness have long been settled, it is often sur-
prisingly difficult to prove anything nontrivial about its behavior. With a few
exceptions, explicit calculations tend not to be feasible, so one has to be satisfied
with qualitative statements and some explicit bounds. Despite intensive research
for over more than thirty years, some easy-to-formulate problems still remain open
while the solution of others has required the development of nontrivial and com-
plicated techniques.

Luckily, as a reward for all this, it turns out that despite their simple rules, inter-
acting particle systems are often remarkably subtle models that capture the sort
of phenomena one is interested in much better than might initially be expected.
Thus, while it may seem outrageous to assume that “Plants of a certain type oc-
cupy points in the square lattice Z2, live for an exponential time with mean one,
and place seeds on unoccupied neighboring sites with rate λ” it turns out that mak-
ing the model more realistic often does not change much in its overall behavior.
Indeed, there is a general philosophy in the field, that is still unsufficiently under-
stood, which says that interacting particle systems come in ‘universality classes’
with the property that all models in one class have roughly the same behavior.

As a mathematical discipline, the subject of interacting particle systems is still
relatively young. It started around 1970 with the work of R.L. Dobrushin and
F. Spitzer,, with many other authors joining in during the next few years. By
1975, general existence and uniqueness questions had been settled, four classic
models had been introduced (the exclusion process, the stochastic Ising model,
the voter model and the contact process), and elementary (and less elementary)
properties of these models had been proved. In 1985, when Liggett’s published his
famous book [Lig85], the subject had established itself as a mature field of study.
Since then, it has continued to grow rapidly, to the point where it is impossible
to accurately capture the state of the art in a single book. Indeed, it would be
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possible to write a book on each of the four classic models mentioned above, while
many new models have been introduced and studied.
While interacting particle systems, in the narrow sense indicated above, have ap-
parently not been the subject of mathematical study before 1970, the subject has
close links to some problems that are considerably older. In particular, the Ising
model (without time evolution) has been studied since 1925 while both the Ising
model and the contact process have close connections to percolation, which has
been studied since the late 1950-ies. In recent years, more links between inter-
acting particle systems and other, older subjects of mathematical research have
been established, and the field continues to recieve new impulses not only from
the applied, but also from the more theoretical side.
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Chapter 1

Construction of interacting
particle systems

In this section, we prove a general result on the construction, existence and unique-
ness of interacting particle systems. As a preparation, we first review some neces-
sary background theory about Markov processes and Poisson point sets. Proofs of
these preliminary facts will mostly be omitted, although we sometimes give rough
sketches of proofs when this is useful for developing intuition.

1.1 Probability on Polish spaces

By definition, a Polish space is a separable topological space E on which there
exists a complete metric generating the topology. Polish spaces are particularly
nice for doing probability theory on. We equip a Polish space E standardly with
the Borel-σ-field B(E) generated by the open subsets of E. We let B(E) denote
space of bounded, real, B(E)-measurable functions on E. Polish spaces have nice
reproducing properties; for example, if E is a Polish space and F is a closed or
an open subset of E, then the space F is also Polish (in the embedded topology).
Also, if E1, E2, . . . is a finite or countably infinite sequence of Polish spaces, then
the product space E1×E2×· · · equipped with the product topology is again Polish,
and the Borel-σ-field on the product space coincides with the product-σ-field of
the Borel-σ-fields on the individual spaces.

Let E be a Polish space and letM1(E) be the space of probability measures on E,
equipped with the topology of weak convergence. By definition, a set R ⊂M1(E)
is tight if

∀ε > 0 ∃K ⊂ E s.t. K is compact and µ(E\K) ≤ ε ∀µ ∈ R.

7
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A well-known result says that the closure of R is compact (i.e., R is ‘precompact’)
as a subset ofM1(E) if and only ifR is tight. In particular, if (µn)n≥0 is a sequence
of probability measures on E then we say that such a sequence is tight if the set
{µn : n ≥ 0} ⊂ M1(E) is tight. Note that each tight sequence of probabability
measures has a weakly convergent subsequence. Recall that a cluster point of a
sequence is a limit of some subsequence of the sequence. We sometimes say ‘weak
cluster point’ when we mean a ‘cluster point in the topology of weak convergence’.
One often needs tightness because of the following simple fact.

Lemma 1.1 (Tightness and weak convergence) Let (µn)n≥0 be a tight se-
quence of probability measures on a Polish space E and assume that (µn)n≥0 has
only one weak cluster point µ. Then µn converges weakly to µ.

Note that if E is compact, then tightness comes for free, i.e., every sequence of
probability measures on E is tight and M1(E) is itself a compact space.

Let E,F be Polish spaces. By definition, a probability kernel from E to F is a
function K : E × B(F )→ R such that

(i) K(x, · ) is a probability measure on F for each x ∈ E,

(ii) K( · , A) is a real measurable function on E for each A ∈ B(F ).

If K(x, dy) is a probability kernel on a Polish space E, then setting

Kf(x) :=

∫
E

K(x, dy)f(y)
(
x ∈ E f ∈ B(E)

)
defines a linear operator K : B(E)→ B(E). We sometimes use this notation also
if f is not a bounded function, as long as the integral is well-defined for every x.
If K,L are probability kernels on E, then we define the composition of K and L
as

(KL)(x,A) :=

∫
E

K(x, dy)L(y, A)
(
x ∈ E f ∈ B(E)

)
.

It is straightforward to check that this formula defines a probability kernel on E. If
K : B(E)→ B(E) and L : B(E)→ B(E) are the linear operators associated with
the probability kernels K(x, dy) and L(x, dy), then the linear operator associated
with the composed kernel (KL)(x, dy) is just KL, the composition of the linear
operators K and L.

Proposition 1.2 (Decomposition of probability measures) Let E,F be Pol-
ish spaces and let µ be a probability measure on E×F . Then there exist a (unique)
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probability measure ν on E and a (in general not unique) probability kernel K from
E to F such that∫

fdµ =

∫
E

ν(dx)

∫
F

K(x, dy)f(x, y)
(
f ∈ B(E × F )

)
. (1.1)

If K,K ′ are probability kernels from E to F such that (1.1) holds, then there exists
a set N ∈ B(E) with ν(N) = 0 such that K(x, · ) = K(x, · ) for all x ∈ E\N .
Conversely, if ν is a probability measure on E and K is a probability kernel from
E to F , then formula (1.1) defines a unique probability measure on E × F .

Note that it follows obviously from (1.1) that

ν(A) = µ(A× F )
(
A ∈ B(E)

)
,

i.e., ν is the first marginal of the probability measure µ.

If X and Y are random variables, defined on some probability space (Ω,F ,P), and
taking values in E and F , respectively, then setting

µ(A) := P[(X, Y ) ∈ A]
(
A ∈ B(E × F )

)
defines a probability law on E × F which is called the joint law of X and Y . By
Proposition 1.2, we may write µ in the form (1.1) for some probability law ν on E
and probability kernel K from E to F . We observe that

ν(A) = P[X ∈ A]
(
A ∈ B(E)

)
,

i.e., ν is the law of X. We will often denote the law of X by P[X ∈ · ]. Moreover,
we introduce the notation

P
[
Y ∈ A

∣∣X = x
]

:= K(x,A)
(
x ∈ E, A ∈ B(F )

)
,

where K(x,A) is the probability kernel from E to F defined in terms of µ as in
(1.1). Note that K(x,A) is defined uniquely for a.e. x with respect to the law of
X. We call P[Y ∈ · |X = x

]
the conditional law of Y given X. Note that with

the notation we have just introduced, formula (1.1) takes the form

E[f(X, Y )] =

∫
E

P[X ∈ dx]

∫
F

P
[
Y ∈ dy

∣∣X = x
]
f(x, y). (1.2)

Closely related to this, one also defines

P
[
Y ∈ A

∣∣X] := K(X,A)
(
A ∈ B(F )

)
.
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Note that this is the random variable (defined on the underlying probability space
(Ω,F ,P)) obtained by plugging X into the function x 7→ K(x,A).

If f : F → R is a measurable function such that E[|f(Y )|] <∞, then we let

E
[
f(Y )

∣∣X = x
]

:=

∫
F

P
[
Y ∈ dy

∣∣X = x
]
f(y)

denote the conditional expectation of f(Y ) given X. Note that for fixed f and Y ,
the map x 7→ E

[
f(Y )

∣∣X = x
]

is a measurable real function on E. Plugging X
into this function yields a random variable which we denote by E[f(Y )|X]. We
observe that for each g ∈ B(E), one has

E
[
g(X)E[f(Y )|X]

]
=

∫
E

P[X ∈ dx]g(x)E[f(Y )|X = x]

=

∫
E

P[X ∈ dx]g(x)

∫
F

P[Y ∈ dy|X = x]f(y)

=

∫
E

P[X ∈ dx]

∫
F

P[Y ∈ dy|X = x]g(x)f(y)

=

∫
E×F

P[(X, Y ) ∈ d(x, y)]g(x)f(y) = E[g(X)f(Y )].

Moreover, since E[f(Y )|X] can be written as a function of X, it is easy to check
that E[f(Y )|X] is measurable with respect to the σ-field generated by X. One may
take these properties as an alternative definition of E[f(Y )|X]. More generally, if
R is a real-valued random variable with E[|R|] < ∞, defined on some probability
space (Ω,F ,P), and G ⊂ F is a sub-σ-field, then there exists an a.s. (with respect
to the underlying probability measure P) unique random variable E[R|G] such that
E[R|G] is G-measurable and

E
[
GE[R|G]

]
= E[GR] ∀ bounded G-measurable G.

In the special case that R = f(Y ) and G is the σ-field generated by X one recovers
E[f(Y )|X] = E[R|G].

1.2 Markov chains

Let E be a Polish space. By definition, a Markov chain with state space E is a
discrete-time stochastic process (Xk)k≥0 such that for all 0 ≤ l ≤ m ≤ n

P
[
(Xl, . . . , Xm) ∈ A, (Xm, . . . , Xn) ∈ B

∣∣Xm]

= P
[
(Xl, . . . , Xm) ∈ A|Xm] P(Xm, . . . , Xn) ∈ B

∣∣Xm] a.s.
(1.3)
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for each A ∈ B(Em−l+1) and B ∈ B(En−m+1). In words, formula (1.3) says that
the past and the future are conditionally independent given the present. A similar
definition applies to Markov chains (Xk)k∈I where I ⊂ Z is some interval (possibly
unbounded on either side). It can be shown that (1.3) is equivalent to the statement
that

P
[
Xk ∈ A

∣∣ (X0, . . . , Xk−1)
]

= P
[
Xk ∈ A

∣∣Xk−1

]
a.s. (1.4)

for each k ≥ 1 and A ∈ B(E). For any sequence (Xk)k≥0 of E-valued random
variables, repeated application of (1.2) gives

E
[
f(X0, . . . , Xn)

]
=

∫
P
[
(X0, . . . , Xn−1) ∈ d(x0, . . . , xn−1)

]
×
∫

P
[
Xn ∈ dxn

∣∣ (X0, . . . , Xn−1) = (x0, . . . , xn−1)
]
f(x0, . . . , xn)

=

∫
P
[
(X0, . . . , Xn−2) ∈ d(x0, . . . , xn−2)

]
×
∫

P
[
Xn−1 ∈ dxn−1

∣∣ (X0, . . . , Xn−2) = (x0, . . . , xn−2)
]

×
∫

P
[
Xn ∈ dxn

∣∣ (X0, . . . , Xn−1) = (x0, . . . , xn−1)
]
f(x0, . . . , xn)

=

∫
P
[
X0 ∈ dx0

] ∫
P
[
X1 ∈ dx1

∣∣X0 = x0

] ∫
P
[
X2 ∈ dx2

∣∣ (X0, X1) = (x0, x1)
]

× · · · ×
∫

P
[
Xn ∈ dxn

∣∣ (X0, . . . , Xn−1) = (x0, . . . , xn−1)
]
f(x0, . . . , xn).

If (Xk)k≥0 is a Markov chain, then by (1.4) this simplifies to

E
[
f(X0, . . . , Xn)

]
=

∫
P
[
X0 ∈ dx0

] ∫
P
[
X1 ∈ dx1

∣∣X0 = x0

]
× · · · ×

∫
P
[
Xn ∈ dxn

∣∣Xn−1 = xn−1

]
f(x0, . . . , xn).

As this formula shows, the law of a Markov chain (Xk)k≥0 is uniquely determined by
its initial law P[X0 ∈ · ] and its transition probabilities P

[
Xn ∈ dxn

∣∣Xn−1 = xn−1

]
(k ≥ 1). By definition, a Markov chain is time-homogeneous if its transitition prob-
abilities are the same in each time step, more precisely, if there exists a probability
kernel P (x, dy) on E such that

P
[
Xn ∈ ·

∣∣Xn−1 = x
]

= P (x, · ) for a.e. x w.r.t. P[Xn−1 ∈ · ],

which is equivalent to

P
[
Xn ∈ ·

∣∣Xn−1

]
= P (Xn−1, · ) a.s. (1.5)
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We will usually be interested in time-homogeneous Markov chains only. In fact,
we will often fix a probability kernel P (x, dy) on E and then be interested in all
possible Markov chains with this transition kernel (and arbitrary initial law). Note
that we can combine (1.4) and (1.5) in a single condition: a sequence (Xk)k≥0 of
E-valued random variables is a Markov chain with transition kernel P (x, dy) (and
arbitrary initial law) if and only if

P
[
Xk ∈ ·

∣∣ (X0, . . . , Xk−1)
]

= P (Xk−1, · ) a.s. (k ≥ 1), (1.6)

which is equivalent to

E
[
f(Xk)

∣∣ (X0, . . . , Xk−1)
]

= Pf(Xk−1) a.s.
(
k ≥ 1, f ∈ B(E)

)
, (1.7)

where P denotes the linear operator from B(E) to B(E) associated with the kernel
P (x, dy)

If (Xk)k≥0 is a Markov chain with transition kernel P (x, dy), and we let P n de-
note the n-fold composition of the kernel / linear operator P with itself, where
P 0(x, dy) := δx(dy) (the delta measure in x), then we may generalize (1.6) to

P
[
Xk+n ∈ ·

∣∣ (X0, . . . , Xk)
]

= P n(Xk, · ) a.s. (k, n ≥ 0), (1.8)

which is equivalent to

E
[
f(Xk+n)

∣∣ (X0, . . . , Xk)
]

= P nf(Xk) a.s.
(
k, n ≥ 0, f ∈ B(E)

)
. (1.9)

1.3 Feller processes

Let E be a compact metrizable space. Such spaces are always separable and com-
plete in any metric that generates the topology; in particular, they are therefore
Polish. Let C(E) denote the space of continuous real functions on E, equipped
with the supremumnorm

‖f‖ := sup
x∈E
|f(x)| (f ∈ C(E)).

We let M1(E) denote the space of probability measures on E (equipped with the
topology of weak convergence). We note that C(E) is a separable Banach space
and that M1(E) is a compact metrizable space.

By definition, a continuous transition probability on E is a collection (Pt(x, dy))t≥0

of probability kernels on E such that

(i) (x, t) 7→ Pt(x, · ) is a continuous map from E × [0,∞) into M1(E),

(ii)

∫
E

Ps(x, dy)Pt(y, dz) = Ps+t(x, dz) and P0(x, · ) = δx (x ∈ E, s, t ≥ 0).
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Each continuous transition probability defines a semigroup (Pt)t≥0 by

Ptf(x) :=

∫
E

Pt(x, dy)f(y)
(
f ∈ B(E)

)
. (1.10)

It follows from the continuity of the transition probability that the operators Pt
map the space C(E) into itself. Moreover, the collection of linear operators (Pt)t≥0

associated with a continuous transition probability satisfies

(i) limt→0 ‖Ptf − f‖ = 0 (f ∈ C(E)),

(ii) PsPtf = Ps+tf and P0f = f,

(iii) f ≥ 0 implies Ptf ≥ 0,

(iv) Pt1 = 1,

and conversely, each collection of linear operators Pt : C(E) → C(E) with these
properties corresponds to a unique continuous transition probability on E. Such
a collection of linear operators Pt : C(E)→ C(E) is called a Feller semigroup.

By definition, the generator of a Feller semigroup is the operator

Gf := lim
t→0

t−1
(
Ptf − f),

which is defined only for functions f ∈ D(G), where

D(G) :=
{
f ∈ C(E) : the limit lim

t→0
t−1
(
Ptf − f) exists

}
.

Here, when we say that the limit exists, we mean the limit in the topology on
C(E), which is defined by the supremumnorm ‖ · ‖.
We say that an operator A on C(E) with domain D(A) satisfies the maximum
principle if, whenever a function f ∈ D(A) assumes its maximum over E in a
point x ∈ E, we have Af(x) ≤ 0. We say that a linear operator A with domain
D(A) acting on a Banach space V (in our example the space C(E) equipped with
the supremunorm) is closed if and only if its graph {(f, Af) : f ∈ D(A)} is a closed
subset of V × V . If the domain D(A) of a linear operator A is the whole Banach
space V , then A is closed if and only if A is bounded i.e., there exists a constant
C < ∞ such that ‖Af‖ ≤ C‖f‖. Note that as a consequence, the domain of a
closed unbounded operator can never be the whole space V . By definition, a linear
operator A with domain D(A) on a Banach space V is closable if the closure of its
graph (as a subset of V×V) is the graph of a linear operator A with domain D(A),
called the closure of A. The following proposition collects some important facts
about Feller semigroups. Proofs of these facts can be found in [EK86, Sections 1.1,
1.2 and 4.2].
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Proposition 1.3 (Feller semigroups) A linear operator G on C(E) is the gen-
erator of a Feller semigroup (Pt)t≥0 if and only if

(i) 1 ∈ D(G) and G1 = 0.

(ii) G satisfies the maximum principle.

(iii) D(G) is dense in C(E).

(iv) For every f ∈ D(G) there exists a continuously differentiable function t 7→ ut
from [0,∞) into C(E) such that u0 = f , ut ∈ D(G), and ∂

∂t
ut = Gut for each

t ≥ 0.

(v) G is closed.

Here, in point (iv), the differentiation with respect to t is in the Banach space C(E).
If G is the generator of a Feller semigroup (Pt)t≥0 , then for each f ∈ D(G), the
solution u to the equation u0 = f , ut ∈ D(G), and ∂

∂t
ut = Gut (t ≥ 0) is in fact

unique and given by ut = Ptf . Moreover, for each t ≥ 0, the operator Pt is the
closure of {(f, Ptf) : f ∈ D(G)}.

If in addition to the properties from Proposition 1.3, the operator G is bounded
(or equivalently, D(G) = C(E)), then one has

Pt = eGt :=
∞∑
n=0

1

n!
Gntn (t ≥ 0),

where the infinite sum converges absolutely in the operator norm, defined as
‖A‖ := sup{‖Af‖ : ‖f‖ ≤ 1}. In many interesting cases, however, G will not
be bounded and hence not everywhere defined. In these cases, it us usually not
feasible to explicitly write down the full domain of the generator of a Feller semi-
group. Instead, one often first defines a ‘pregenerator’ which is defined for a smaller
class of functions, and then constructs the ‘full generator’ by taking the closure of
the pregenerator.

The next result, which is a version of the Hille-Yosida theorem, is often useful. For
a proof, we refer to Sections 1.1, 1.2 and 4.2, and in particular Theorem 4.2.2 of
[EK86].

Theorem 1.4 (Hille-Yosida) A linear operator G on C(E) with domain D(G)
is closable and its closure G is the generator of a Feller semigroup if and only if

(i) (1, 0) ∈ {(f,Gf) : f ∈ D(G)} (i.e., (1, 0) is in the closure of the graph of G).
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(ii) G satisfies the maximum principle.

(iii) D(G) is dense in C(E).

(iv) There exists an r ∈ (0,∞) and a dense subspace D ⊂ C(E) with the property
that for every f ∈ D there exists a pr ∈ D(G) such that (r −G)pr = f .

If G is the generator of a Feller semigroup (Pt)t≥0, then for each r ∈ (0,∞), the
space {(r−G)p : p ∈ D(G)} is a dense linear subspace of C(E). For each f ∈ C(E),
there is a unique pr ∈ D(G) such that (r −G)pr = f and this function is given by
pr =

∫∞
0
e−rtPtf dt.

By definition, we let DE[0,∞) denote the space of all functions from [0,∞) to E
that are right-continuous with left limits, i.e., DE[0,∞) is the space of functions
w : [0,∞)→ S such that

(i) lim
t↓s

wt = ws (s ≥ 0),

(ii) lim
t↑s

wt =: ws− exists (s > 0).

We call DE[0,∞) the space of cadlag functions from [0,∞) to E. (After the
French continue à droit, limite à gauche.) It is possible to equip this space with
a (rather natural) topology, called the Skorohod topology, such that DE[0,∞) is
a Polish space and the Borel-σ-field on DE[0,∞) is generated by the coordinate
projections w 7→ wt (t ≥ 0); we will skip the details.
By definition, we say that an E-valued stochastic process (Xt)t≥0 defined on some
underlying probability space (Ω,F ,P) has cadlag sample paths if for every ω ∈ Ω,
the function t 7→ Xt(ω) is cadlag. We may view such a stochastic process as a
single random variable, taking values in the Polish space DE[0,∞). Now

P
[
(Xt)t≥0 ∈ A

] (
A ∈ B(DS[0,∞))

)
is a probability law on DE[0,∞) called the law of the process (Xt)t≥0. Since the
Borel-σ-field on DE[0,∞) is generated by the coordinate projections, this law is
uniquely determined by the finite dimensional distributions

P
[
(Xt1 , . . . , Xtn) ∈ A

]
(A ⊂ En).

We recall that a filtration is a collection (Ft)t≥0 of σ-fields such that s ≤ t implies
Fs ⊂ Ft. If (Xt)t≥0 is a stochastic process, then the filtration generated by (Xt)t≥0

is defined as
Ft := σ

(
Xs : 0 ≤ s ≤ t

)
(t ≥ 0),
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i.e., Ft is the σ-field generated by the random variables (Xs)0≤s≤t.
By definition, a Feller process associated to a given Feller semigroup (Pt)t≥0 is a
stochastic process (Xt)t≥0 with values in E and cadlag sample paths, such that
(compare (1.9))

E
[
f(Xt)

∣∣Fs] = Pt−sf(Xs) a.s.
(
s ≤ t, f ∈ C(E)

)
, (1.11)

where (Ft)t≥0 is the filtration generated by (Xt)t≥0. It can be shown that if (Pt)t≥0

is a Feller semigroup, then for each probability law µ on E there exists a unique
(in law) Feller process associated to (Pt)t≥0 with initial law P[X0 ∈ · ] = µ. Feller
processes have many nice properties, such as the strong Markov property.

1.4 Poisson point processes

Let E be a Polish space. Recall that a sequence of finite measures µn converges
weakly to a limit µ, denoted as µn ⇒ µ, if and only if∫

fdµn −→
n→∞

∫
fdµ

(
f ∈ Cb(E)

)
,

where Cb(E) denotes the space of bounded continuous real functions on E. We
let M(E) denote the space of finite measures on E, equipped with the topology
of weak convergence. It can be shown that M(E) is Polish and the Borel-σ-field
B(M(E)) on M(E) coincides with the σ-field generated by the random variables
µ 7→ µ(A) with A ∈ B(E). We let

N (E) :=
{
ν ∈M(E) : ∃n ≥ 0, x1, . . . , xn ∈ E s.t. ν =

n∑
i=1

δxi

}
denote the space of all counting measures on E, i.e., all measures that can be
written as a finite sum of delta-measures. Being a closed subset of M(E), the
space N (E) is again Polish.

For any counting measure ν ∈ N (E) and f ∈ B(E) we introduce the notation

f ν :=
n∏
i=1

f(xi) where ν =
n∑
i=1

δxi
,

with f 0 := 1 (where 0 denotes the counting measure that is identically zero). It
is easy to see that f νf ν

′
= f ν+ν′ . Let ν =

∑n
i=1 δxi

be a counting measure, let
φ ∈ B(E) satisfy 0 ≤ φ ≤ 1, and let χ1, . . . , χn be independent Bernoulli random
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variables (i.e., random variables with values in {0, 1}) with P[χi = 1] = φ(xi).
Then the random counting measure

ν ′ :=
n∑
i=1

χiδxi

is called a φ-thinning of the counting measure ν. Note that

P[ν ′ = 0] =
n∏
i=1

P[χi = 0] = (1− φ)ν .

More generally, one has

E
[
(1− f)ν

′]
= (1− fφ)ν

(
f ∈ B(E), 0 ≤ f ≤ 1

)
. (1.12)

(Setting f = 1 here yields the previous formula.) To see this, note that if χ′1, . . . , χ
′
n

are Bernoulli random variables with P[χ′i = 1] = f(xi), independent of each other
and of the χi’s, and

ν ′′ :=
n∑
i=1

χ′iχiδxi
,

then, since conditional on ν ′, the measure ν ′′ is distributed as an f -thinning of ν ′,
one has

P
[
ν ′′ = 0

]
= E

[
(1− f)ν

′]
,

while on the other hand, since ν ′′ is an fφ-thinning of ν, one has P[ν ′′ = 0] =
(1−fφ)ν . One can prove that (1.12) characterizes the law of the random counting
measure ν ′ uniquely, and in fact suffices to check (1.12) for continuous f : E →
[0, 1].

Proposition 1.5 (Poisson counting measure) Let E be a Polish space and let
µ be a finite measure on E. Then there exists a random counting measure ν on E
whose law is uniquely characterized by

E
[
(1− f)ν

]
= e−

R
fdµ

(
f ∈ B(E), 0 ≤ f ≤ 1

)
. (1.13)

If A1, . . . , An are disjoint measurable subsets of E, then ν(A1), . . . , ν(An) are
independent Poisson distributed random variables with mean E[ν(Ai)] = µ(Ai)
(i = 1, . . . , n).
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Proof (sketch) Let N be a Poisson distributed random variable with mean µ(E)
and let X1, X2, . . . be i.i.d. random variables with law P[Xi ∈ · ] = µ(E)−1µ( · ),
independent of N . Then one can check that the random counting measure

ν :=
N∑
i=1

δXi

has all the desired properties.

The random measure ν whose law is defined in Proposition 1.5 is called a Poisson
counting measure with intensity µ. In fact, to prove that a given random counting
measure ν is a Poisson point measure with intensity µ, it suffices to check (1.13)
for continuous f : E → [0, 1].

Proposition 1.6 (Poisson as limit of thinning) For n ≥ 1, let εn be a non-
negative constants and let νn :=

∑Nn

i=1 δxn,i
be counting measures on some Polish

space E. Assume that εn → 0 and

µn := εn

Nn∑
i=1

δxn,i
=⇒
n→∞

µ

for some finite measure µ. Let ν ′n be a thinning of νn with the constant function εn.
Then the N (E)-valued random variables ν ′n converge weakly in law to a Poisson
point measure with intensity µ.

Proof (sketch) For any f ∈ C(E) satisfying c ≤ f ≤ 1 for some c > 0, by (1.12),
one has

E
[
(1− f)ν

′
n
]

= (1− εnf)νn = e
R

log(1−εnf)dνn = e
R
ε−1
n log(1−εnf)dµn −→

n→∞
e−

R
fdµ,

which (with some care) follows from the facts that ε−1
n log(1 − εnf) → −f and

µn ⇒ µ. By approximation, one obtains (1.13) for all continuous funtions f : E →
[0, 1], which suffices to prove that the ν ′n converge weakly in law to a Poisson point
measure with intensity µ.

Lemma 1.7 (Sum of independent Poisson counting measures) Let E be a
Polish space and let ν1, ν2 be independent Poisson counting measures on E with
intensities µ1, µ2, respectively. Then ν1 + ν2 is a Poisson counting measure with
intensity µ1 + µ2.
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Proof (sketch) One can straightforwardly check this from (1.13). Note that
thinnings have a similar property, so the statement is also rather obvious from our
approximation of Poisson counting measures with thinnings.

Set

N1(E) :=
{
ν ∈ N (E) : ν({x}) ∈ {0, 1} ∀x ∈ E

}
.

Since N1(E) is an open subset of N (E), it is a Polish space. We can identify
elements of N1(E) with finite subsets of E; indeed, ν ∈ N1(E) if and only if
ν =

∑
x∈∆ δx for some finite ∆ ⊂ E. We skip the proof of the following lemma.

Lemma 1.8 (Poisson point set) Let µ be a finite measure on a Polish space E
and let ν be a Poisson counting measure with intensity µ. Then P[ν ∈ N1(E)] = 1
if and only if µ is nonatomic, i.e., µ({x}) = 0 for all x ∈ E.

If µ is a nonatomic measure on some Polish space, ν is a Poisson counting measure
with intensity µ, and ∆ is the random finite set associated with ν, then we call ∆
a Poisson point set with intensity µ.

If E is a locally compact space and µ is a locally finite measure on E (i.e., a
measure such that µ(K) < ∞ for each compact K ⊂ E), then Poisson counting
measures and Poisson point sets with intensity µ are defined analogously to the
finite measure case, where in (1.13), we now only allow functions f with compact
support. We will in particular be interested in the case that E = [0,∞) and µ is
a multiple of Lebesgue measure.

Lemma 1.9 (Exponential times) Let r > 0 be a constant and let (σk)k≥1 be
i.i.d. exponentially distributed random variables with mean E[σk] = 1/r (k ≥ 1).
Set τn :=

∑n
k=1 σk (n ≥ 1). Then {τn : n ≥ 1} is a Poisson point set on [0,∞)

with density r dt, where dt denotes Lebesgue measure.

Proof (sketch) Fix ε > 0 and set ν :=
∑∞

i=1 δεi. Let ν ′ be a thinning of ν with
the constant function rε. Then it is not hard to see that the distances between
consecutive points in ν ′ are independent and geometrically distributed. Letting
ε → 0, we observe that ν ′ converges to a Poisson point set with density r dt and
that the distances between consecutive points become exponentially distributed.

Exercise 1.10 Let µ be a finite measure on a Polish space E and let ν be a
Poisson counting measure with intensity µ. Let A1, . . . , An be disjoint, measurable
subsets of E and define νi(B) := ν(B ∩ Ai) (B ∈ B(E)). Show that ν1, . . . νn are
independent.
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1.5 Poisson construction of Markov processes

The interacting particle systems that we will consider in these lecture notes will
be Feller processes with state space {0, 1}Zd

, which in the product topology is
a compact metrizable space. We will construct these Feller processes using a
graphical representation based on Poisson point sets. To prepare for this, in the
present section, we will show how Feller processes with finite state spaces can be
constructed using Poisson point sets.
Let S be a finite set. If µ is a probability measure on S and x ∈ S, then we write
µ(x) := µ({x}) and likewise, if K(x,A) is a probability kernel on S, then we write
K(x, y) := K(x, {y}). Now probability kernels correspond to matrices and the
composition of two kernels corresponds to the usual matrix product.
Let (Pt)t≥0 be a continuous transition probability on S, or equivalently, a Feller
semigroup on C(S). Since S is finite, any function f : S → R is in fact continuous
and there is no difference between B(S) and C(S). Likewise, any probability kernel
on S is continuous. Thus, in this more simple context, a continuous transition
probability on S is just a collection (Pt(x, y))t≥0 of probability kernels on S such
that

(i) lim
t↓0

Pt(x, y) = P0(x, y) = δx(y) (x, y ∈ S),

(ii)
∑
y

Ps(x, y)Pt(y, z) = Ps+t(x, z) (s, t ≥ 0, x, z ∈ S).

We will also call the associated Feller semigroup of linear operators (Pt)t≥0 a
Markov semigroup. (Usually, this is a more general, and less precisely defined
term than Feller semigroup, since it does not entail any continuity assumptions,
but in the present set-up of finite state spaces, continuity (in space) is not an
issue.)
More generally, any collection (At)t≥0 of linear operators on some finite-dimensio-
nal linear space such that AsAt = As+t and limt↓0At = A0 = 1 (where 1 denotes
the identity operator) is called a linear semigroup. One can show that each such
linear semigroup is of the form

At = eGt :=
∞∑
n=0

1

n!
Gntn (t ≥ 0),

where
Gf := lim

t↓0
t−1
(
Atf − f

)
is the generator of (At)t≥0.
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Proposition 1.11 (Markov generators) Let S be a finite set and let G be a
linear operator on B(S). Then G is the generator of a Markov semigroup if and
only if there exist nonnegative constants r(x, y) (x, y ∈ S, x 6= y) such that

Gf(x) =
∑
y∈S

r(x, y)
(
f(y)− f(x)

) (
x ∈ S, f ∈ B(S)

)
. (1.14)

Proof (sketch) Let G(x, y) be the matrix associated with G. Then

Ptf(x) = f(x) + t
∑
y

G(x, y)f(y) +O(t2) as t→ 0
(
x ∈ S, f ∈ B(S)

)
.

Now the condition that Ptf ≥ 0 for all f ≥ 0 implies that Gf(x) ≥ 0 whenever
f(x) = 0, hence G(x, y) ≥ 0 for each x 6= y. Moreover, the condition that Pt1 = 1
implies that

1 = 1 + t
∑
y

G(x, y) +O(t2) as t→ 0 (x ∈ S),

which shows that
∑

y G(x, y) = 0 for each x. Setting r(x, y) := G(x, y) for x 6= y
and using the fact that G(x, x) = −

∑
y 6=x r(x, y), we see that G can be cast in

the form (1.14). The fact that conversely, each generator of this form defines
a Markov semigroup will follow from our explicit construction of the associated
Markov process below.

We call r(x, y) the rate of jumps from x to y. By applying (1.14) and (1.15) to
functions of the form f(x) := 1{x=y}, we see that if (Xx

t )t≥0 denotes the Markov
process started in the initial law Xx

0 := 1, then

P[Xx
t = y] = r(x, y)t+O(t2) as t→ 0 (x, y ∈ S, x 6= y).

This says that if we start the process in the state x, then for small t, the probability
that we jump from x to y somewhere in the interval (0, t) is tr(x, y) plus a term
of order t2.
Let S be a finite set, let (Xt)t≥0 be a stochastic process with values in S and let
(Pt)t≥0 be a Markov semigroup on B(S). Then, specializing from our definition
of Feller processes, we say that (Xt)t≥0 is a (time-homogeneous, continuous-time)
Markov process with semigroup (Pt)t≥0 if (Xt)t≥0 has cadlag sample paths and

E
[
f(Xt)

∣∣Fs] = Pt−sf(Xs) a.s.
(
0 ≤ s ≤ t, f ∈ B(S)

)
, (1.15)

where (Ft)t≥0 is the filtration generated by (Xt)t≥0. One can prove that for a
given Markov semigroup (Pt)t≥0 and probability law µ on S there exists a unique
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(in distribution) Markov process (Xt)t≥0 with initial law P[X0 ∈ · ] = µ such that
(1.15) holds.

We are now ready to state the first important theorem of this chapter, which tells
us how to construct finite-state Markov processes based on a collection of Poisson
point processes. Let S be a finite set and let M be a finite or countably infinite
set whose elements are maps m : S → S. Let (rm)m∈M be nonnegative constants
and let ∆ be a Poisson point set on M× R = {(m, t) : m ∈ M, t ∈ R} with
intensity rmdt, where dt denotes Lebesgue measure. Assume that∑

m∈M

rm <∞.

For s ≤ t, set ∆s,t := ∆ ∩ (M× (s, t]) and define random maps Ψ∆,s,t : S → S by

Ψ∆,s,t(x) := mn ◦ · · · ◦m1(x)

where ∆s,t := {(m1, t1), . . . , (mn, tn)}, t1 < · · · < tn,

with the convention that Ψ∆,s,t(x) = x if ∆s,t = ∅. Note that since {t : (m, t) ∈ ∆}
is a Poisson point set on R with finite intensity

∑
m∈M rm, the sets ∆s,t are a.s.

finite for each s ≤ t. It is easy to check that Ψ∆,t,u ◦Ψ∆,s,t = Ψ∆,s,u (s ≤ t ≤ u).

Theorem 1.12 (Poisson construction of Markov process) Let X0 be an S-
valued random variable, independent of ∆. Then

Xt := Ψ∆,0,t(X0) (t ≥ 0) (1.16)

defines a Markov process (Xt)t≥0 with generator

Gf(x) =
∑
m∈M

rm
(
f(m(x))− f(x)

) (
x ∈ S, f ∈ B(S)

)
. (1.17)

It is not hard to see that each operator of the form (1.14) can be cast in the form
(1.17) for some suitable finite collection M of maps m : S → S and nonnegative
rates (rm)m∈M. Thus, Theorem 1.12 can be used to prove that each collection of
nonnegative rates (r(x, y))x 6=y defines a Markov semigroup and associated Markov
process with generator given by (1.14). We note that while the rates (rm)m∈M
determine the rates (r(x, y))x 6=y uniquely, the inverse problem is far from unique,
i.e., there are usually many different ways of writing the generator G of a Markov
process in the form (1.17). Once we have chosen a particular way of writing
G in the form (1.17), Theorem 1.12 provides us with a natural way of coupling
processes started in different initial states. Indeed, using the same Poisson point
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set ∆, setting Xx
t := Ψ∆,0,t(x) defines for each x ∈ S a Markov process (Xx

t )t≥0

with generator G started in the initial state Xx
0 = x, and all these processes (for

different x) are in a natural way defined on one and the same underlying probability
space (i.e., they are coupled). Such couplings are very important in the theory of
interacting particle systems.

Proof of Theorem 1.12 Since {t : (m, t) ∈ ∆} is a Poisson point process on R
with finite intensity

∑
m∈M rm, and since X is constant between times in this set

and right-continuous at times in this set, it follows X has cadlag sample paths.
(Note that not necessarily each time in {t : (m, t) ∈ ∆} is a time when X jumps,
since it may happen that the associated map m maps Xt− onto itself.)
Next, we set

Pt(x, y) := P[Ψ∆,0,t(x) = y] (x, y ∈ S, t ≥ 0).

Let Gt be the σ-field generated by the random variables X0 and ∆0,t. Since
(Xs)0≤s≤t is a function of X0 and ∆0,t, it follows that Ft ⊂ Gt. Now fix 0 ≤ s ≤ t
and look at the conditional law

P[Xt ∈ · | Gs] = P[Xt ∈ · |X0,∆0,s].

Since X0 is independent of ∆ and since ∆ is a Poisson point process, we see that X0,
∆0,s and ∆s,t are independent. Since ∆s,t is up to a time shift equally distributed
with ∆0,t−s, it follows that

P[Xt ∈ · | Gs] = P
[
Ψ∆,s,t(Xs) ∈ · |X0,∆0,s] = Pt−s(Xs, · ).

Since Fs ⊂ Gs, it follows that for any f ∈ B(S),

E[f(Xt) | Fs] = E
[
E[f(Xt) | Gs]

∣∣Fs] = E[Pt−sf(Xs) | Fs] = Pt−sf(Xs).

To finish the proof, we must show that (Pt)t≥0 is a Markov semigroup with gen-
erator G given by (1.17). The fact that limt↓0 Pt(x, y) = P0(x, y) = δx(y) follows
from the fact that P[∆0,t = ∅] → 1 as t ↓ 0. To see that PsPt = Ps+t, let Xx be
the process started in X0 = x. By what we have already proved,

Ps+tf(x) = E[f(Xx
s+t)] = E

[
E[f(Xx

s+t) | Fs]
]

= E[Ptf(Xx
s )] = PsPtf(Xx

0 ) = PsPtf(x).

To see that the generator G of (Pt)t≥0 is given by (1.17), we observe that

Ptf(x) = E[f(Xx
t )] = f(x) + t

∑
m∈M

rm
(
f(m(x))− f(x)

)
+O(t2) as t ↓ 0,
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which follows from the fact that P[|∆0,t| ≥ 2] = O(t2) while

P[∆0,t = {(m, s)} for some s ∈ (0, t)] = trm +O(t2).

1.6 Poisson construction of particle systems

Let S and Λ be a finite and countably infinite set, respectively. In what follows, we
will mainly be interested in the case that S = {0, 1} and Λ = Zd, the d-dimensional
integer lattice. We let SΛ denote the space of all x = (x(i))i∈Λ with x(i) ∈ S for
all i ∈ Λ, i.e., SΛ is the carthesian product of countably many copies of S, one
for each point i ∈ Λ. Note that we can view an element x ∈ SΛ as a function
that assigns to each lattice point i ∈ Λ a value x(i) ∈ S. Recall that a sequence
xn ∈ SΛ converges to a limit x in the product topology on SΛ if and only if xn → x
pointwise, i.e., xn(i)→ x(i) for all i ∈ Λ. Since S is finite and therefore compact,
Tychonoff’s theorem tells us that SΛ, equipped with the product topology, is a
compact metrizable space.
For any map m : SΛ → SΛ and x, y ∈ Λ, let

D(m) :=
{
i ∈ Λ : ∃x ∈ SΛ s.t. m(x)(i) 6= x(i)

}
denote the set of lattice points whose values can possibly be changed by m. Let
us say that a point j ∈ Λ is m-relevant for some i ∈ Λ if

∃x, y ∈ SΛ s.t. m(x)(i) 6= m(y)(i) and x(k) = y(k) ∀k 6= j,

i.e., changing the value of x in j may change the value of m(x) in i. We say that
a map m : SΛ → SΛ is local if both D(m) and the sets (Ri(m))i∈D(m) defined by

Ri(m) :=
{
j ∈ Λ : j is m-relevant for i

}
are all finite sets. Note that it is possible that D(m) is nonempty but Ri(m) = ∅
for all i ∈ D(m).
Let M be a countable set whose elements are local maps m : SΛ → SΛ, let
(rm)m∈M be nonnegative constants, and let ∆ be a Poisson point set on M× R
with intensity rmdt. In analogy with Theorem 1.12, we wish to give a Poisson
construction of the SΛ-valued Markov process (Xt)t≥0 with formal generator

Gf(x) :=
∑
m∈M

rm
(
f(m(x))− f(x)

)
. (1.18)
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The difficulty is that we will typically have that
∑

m∈M rm = ∞. As a result,
{t : (t,m) ∈ ∆} will be a dense subset of R, so it will no longer possible to order
the elements of ∆0,t according to their times. Nevertheless, since our maps m are
local, we can hope that under suitable assumptions on the rates, only finitely many
points of ∆0,t are needed to determine the value Xt(i) of our process at a given
lattice point i ∈ Λ and time t ≥ 0.

To make this rigorous, we start by observing that for each i ∈ Λ, the set{
t ∈ R : ∃m ∈M s.t. i ∈ D(m), (m, t) ∈ ∆

}
is a Poisson point set with intensity

∑
m∈M, D(m)3i rm. Therefore, provided that

K0 := sup
i

∑
m∈M
D(m)3i

rm <∞, (1.19)

each finite time interval contains only finitely many events that have the potential
to change the state of a given lattice point i. This does not automatically imply,
however, that our process is well-defined, since events that happen at i might
depend on events that happen at other sites at earlier times, and in this way
a large and possibly infinite number of events and lattice points can potentially
influence the state of a single lattice point at a given time.

With this in mind, we make the following definitions. By definition, by a path in Λ
we will mean a pair of functions (γt−, γt) defined on some time interval [s, u] with
s ≤ u and taking values in Λ, such that

limt↓t0 γt− = γt0
(
t0 ∈ [s, u)

)
,

limt↑t0 γt = γt0−
(
t0 ∈ (s, u]

)
.

(1.20)

Note that this definition allows for the case that γs− 6= γs; in this case, and
only in this case, knowing only the function t 7→ γt is not enough to deduce the
function t 7→ γt−. We may identify a path, as we have just defined it, with the set
γ ⊂ Λ× [0,∞) defined by

γ :=
{

(γt−, t) : t ∈ [s, u]
}
∪
{

(γt, t) : t ∈ [s, u]
}
.

Note that both the functions γt and γt−, as well as the starting time s and final
time u can be read off from the set γ.
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For any i, j ∈ Λ and 0 ≤ s ≤ u, let us say that a path γ with starting time s and
final time u is a path of influence from (i, s) to (j, u) if γs− = i, γu = j, and

(i) if γt− 6= γt for some t ∈ [s, u], then there exists some m ∈M
such that (m, t) ∈ ∆, γt ∈ D(m) and γt− ∈ Rγt(m),

(ii) for each (m, t) ∈ ∆ with t ∈ [s, u] and γt ∈ D(m),
one has γt− ∈ Rγt(m).

(1.21)

For any finite set A ⊂ Λ and 0 ≤ s ≤ u, we set

ζA,us :=
{
i ∈ Λ : (i, s) A× {u}

}
, (1.22)

where (i, s)  A × {u} denotes the presence of a path of influence from (i, s) to
some (j, u) ∈ A × {u}. Note that ζA,tt is the set of lattice points whose values at
time zero are relevant for the state of the process in A at time t. The following
lemma will be the cornerstone of our Poisson construction of interacting particle
systems.

Lemma 1.13 (Exponential bound) Assume that the rates (rm)m∈M satisfy
(1.19) and that

K := sup
i∈Λ

∑
m∈M
D(m)3i

rm
(
|Ri(m)| − 1

)
<∞. (1.23)

Then, for each finite A ⊂ Λ, one has

E
[
|ζA,us |

]
≤ |A|eK(u−s) (0 ≤ s ≤ u). (1.24)

Proof To simplify notation, we fix A and u and write ζs := ζA,us . Let Λn ⊂ Λ be
finite sets such that Λn ↑ Λ. For n large enough such that A ⊂ Λn, let us write

ζns :=
{
i ∈ Λ : (i, s) n A× {u}

}
,

where (i, s) n A× {u} denotes the presence of a path of influence from (i, s) to
A× {u} that stays in Λn. We observe that since Λn ↑ Λ, we have

ζns ↑ ζs (0 ≤ s ≤ u).

Let Mn := {m ∈M : D(m) ∩ Λn 6= ∅}. For any A ⊂ Λn and m ∈Mn, set

Am := (A\D(m)) ∪
⋃

i∈A∩D(m)

Ri(m).
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It follows from (1.19) that
∑

m∈Mn
rm <∞, hence Theorem 1.12 implies that the

process (ζnu−t)0≤t≤u is a Markov process taking values in the (finite) space of all
subsets of Λn, with generator

Gnf(A) :=
∑
m∈Mn

rm
(
f(Am)− f(A)

)
.

Let (P n
t )t≥0 be the associated semigroup and let f denote the function f(A) := |A|.

Then
Gnf(A) =

∑
m∈Mn

rm
(
f(Am)− f(A)

)
≤
∑
m∈Mn

rm

(
|A\D(m)|+

∑
i∈A∩D(m)

|Ri(m)| − |A|
)

=
∑
m∈Mn

rm

( ∑
i∈A∩D(m)

(
|Ri(m)| − 1

))
=
∑
i∈A

∑
m∈Mn

D(m)3i

rm
(
|Ri(m)| − 1

)
≤ K|A|.

It follows that

∂
∂t

(
e−KtP n

t f
)

= −Ke−KtP n
t f + e−KtP n

t Gf = e−KtP n
t (Gf −Kf) ≤ 0

and therefore e−KtP n
t f ≤ e−K0P n

0 f = f , which means that

E
[
|ζnu−t|

]
≤ |A|eKt (0 ≤ t ≤ u). (1.25)

Letting n ↑ ∞ we arrive at (2.10).

Recall that ∆s,t := ∆ ∩ (M× (s, t]). The next lemma shows that under suitable
summability conditions on the rates, only finitely many Poisson events are relevant
to determine the value of an interacting particle system at a given point in space
and time.

Lemma 1.14 (Finitely many relevant events)Assume that the rates (rm)m∈M
satisfy (1.19) and that

K1 := sup
i∈Λ

∑
m∈M
D(m)3i

rm|Ri(m)| <∞. (1.26)

Then, almost surely, for each s ≤ u and i ∈ Λ, the set{
(m, t) ∈ ∆s,u : D(m)× {t} (i, u)

}
is finite.
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Proof Set
ξA,us :=

⋃
t∈[s,u]

ζA,ut

=
{
i ∈ Λ : (i, s) ′ A× {u}

}
,

where ′ is defined in a similar ways as , except that we drop condition (ii) from
the definition of a path of influence in (1.21). Lemma 1.13 does not automatically
imply that |ξA,us | <∞ for all s ≤ u. However, applying the same method of proof
to the Markov process (ξA,uu−t)t≥0, replacing (1.23) by the slightly stronger condition
(1.26), we can derive an exponential bound for E[|ξA,us |], proving that ξA,us is a.s.
finite for each finite A and s ≤ u. Since by (1.19), there are only finitely many
events (m, t) ∈ ∆s,u such that D(m) ∩ ξA,us 6= ∅, our claim follows.

Remark Conditions (1.19) and (1.26) can be combined in the condition

sup
i∈Λ

∑
m∈M
D(m)3i

rm
(
|Ri(m)|+ 1

)
<∞. (1.27)

In view of Lemma 1.14, for any 0 ≤ s ≤ u, we define maps Ψ∆,s,u : SΛ → SΛ by

Ψ∆,s,u(x)(i) := mn ◦ · · · ◦m1(x)(i) (i ∈ Λ)

where {(m1, t1), . . . , (mn, tn)} =
{

(m, t) ∈ ∆s,u : D(m)× {t} (i, u)
}
,

t1 < · · · < tn.

We define probability kernels Pt(x, dy) on SΛ by

Pt(x, · ) := P
[
Ψ∆,0,t(x) ∈ ·

]
(x ∈ SΛ, t ≥ 0). (1.28)

Below is the main result of this chapter.

Theorem 1.15 (Poisson construction of particle systems)LetM be a count-
able set whose elements are local maps m : SΛ → SΛ, let (rm)m∈M be nonnegative
constants satisfying (1.27), and let ∆ be a Poisson point set on M× [0,∞) with
intensity rmdt. Then (1.28) defines a Feller semigroup (Pt)t≥0 on SΛ. Moreover,
if X0 is an SΛ-valued random variable, independent of ∆, then

Xt := Ψ∆,0,t(X0) (t ≥ 0) (1.29)

defines a Feller process with semigroup (Pt)t≥0.
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Proof We start by observing that the process (Xt)t≥0 defined in (1.29) has cadlag
sample paths. Indeed, since we equip SΛ with the product topology, this is equiv-
alent to the statement that t 7→ Xt(i) is cadlag for each i ∈ Λ. But this follows
directly from the way we have defined Ψ∆,0,t and the fact that the set of events
that have the potential to change the state of a given lattice point i is a locally
finite subset of [0,∞).
As in the proof of Theorem 1.12, let Ft and Gt be the σ-fields generated by
(Xs)0≤s≤t and X0,∆0,t, respectively. Then, exactly in the same way as in the
proof of Theorem 1.12, we see that

E[f(Xt) | Fs] = Pt−sf(Xs)
(
0 ≤ s ≤ t, f ∈ B(SΛ)

)
.

Also, the proof that PsPt = Ps+t carries over without a change. Thus, to see
that (Pt)t≥0 is a Feller semigroup, it suffices to show that (x, t) 7→ Pt(x, · ) is a
continuous map from SΛ× [0,∞) toM1(SΛ). In order to do this, it is convenient
to ue negative times (Note that we have defined ∆ to be a Poisson point process
on M× R, but so far we have only used points (m, t) ∈ ∆ with t > 0.) Since the
law of ∆ is invariant under translations of time, we have (compare (1.28))

Pt(x, · ) := P
[
Ψ∆,−t,0(x) ∈ ·

]
(x ∈ SΛ, t ≥ 0).

Therefore, in order to prove that Ptn(xn, · ) converges weakly to Pt(x, · ) as we let
(xn, tn)→ (x, t), it suffices to prove that

Ψ∆,−tn,0(xn) −→
n→∞

Ψ∆,−t,0(x) a.s.

as (xn, tn)→ (x, t). Since we equip SΛ with the product topology, we need to show
that

Ψ∆,−tn,0(xn)(i) −→
n→∞

Ψ∆,−t,0(x)(i) a.s.

for each i ∈ Λ. By Lemma 1.14, there exists some ε > 0 such that there are no
points in ∆−t−ε,−t+ε that are relevant for (i, 0), while by Lemma 1.13, ζ

{i},0
−t is a

finite set. Therefore, for all n large enough such that −tn ∈ (−t − ε,−t + ε) and

xn = x on ζ
{i},0
−t , one has Ψ∆,−tn,0(xn)(i) = Ψ∆,−t,0(x)(i), proving the desired a.s.

convergence.

1.7 Generator construction of particle systems

Although Theorem 1.15 gives us an explicit way how to construct the Feller semi-
group associated with an interacting particle system, it does not tell us very much
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about its generator. To fill this gap, we need a bit more theory. For any continuous
function f : SΛ → R and i ∈ Λ, we define

δf(i) := sup
{
|f(x)− f(y)| : x, y ∈ SΛ, x(j) = y(j) ∀j 6= i

}
.

Note that δf(i) measures how much f(x) can change if we change x only in the
point i. We call δf the variation of f and we define a space of functions of
‘summable variation’ by

Csum = Csum(SΛ) :=
{
f ∈ C(SΛ) :

∑
i

δf(i) <∞
}
,

Cfin = Cfin(SΛ) :=
{
f ∈ C(SΛ) : δf(i) = 0 for all but finitely many i

}
.

Exercise 1.16 Let us say that a function f : SΛ → R depends on finitely many
coordinates if there exists a finite set A ⊂ Λ and a function f ′ : SA → R such that

f
(
(x(i))i∈Λ

)
= f ′

(
(x(i))i∈F

) (
x ∈ SΛ

)
.

Show that each function that depends on finitely many coordinates is continuous,
that

Cfin(SΛ) =
{
f ∈ C(SΛ) : f depends on finitely many coordinates

}
,

and that Cfin(SΛ) is a dense linear subspace of the Banach space C(SΛ) of all
continuous real functions on SΛ, equipped with the supremumnorm.

Lemma 1.17 (Domain of pregenerator) Assume that the rates (rm)m∈M sat-
isfy (1.19). Then, for each f ∈ Csum(SΛ),∑

m∈M

rm
∣∣f(m(x))− f(x)| ≤ K0

∑
i∈Λ

δf(i),

where K0 is the constant from (1.19). In particular, for each f ∈ Csum(SΛ), the
right-hand side of (1.18) is absolutely summable and Gf is well-defined.

Proof This follows by writing∑
m∈M

rm
∣∣f(m(x))− f(x)| ≤

∑
m∈M

rm
∑

i∈D(m)

δf(i)

=
∑
i∈Λ

δf(i)
∑
m∈M
D(m)3i

rm ≤ K0

∑
i∈Λ

δf(i).

The following theorem is the main result of the present section.
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Theorem 1.18 (Generator construction of particle systems) Assume that
the rates (rm)m∈M satisfy (1.27), let (Pt)t≥0 be the Feller semigroup defined in
(1.28) and let G be the linear operator with domain D(G) := Csum defined by (1.18).
Then G is are closeable and its closure G is the generator of (Pt)t≥0. Moreover,
if G|Cfin

denotes the restriction of G to the smaller domain D(G|Cfin
) := Cfin, then

G|Cfin
is also closeable and G|Cfin

= G.

Remark Since D(G|Cfin
) ⊂ D(G) and G is closeable, it is easy to see that G|Cfin

is

also closeable, D(G|Cfin
) ⊂ D(G), and G|Cfin

f = Gf for all f ∈ D(G|Cfin
). It is not

immediately obvious, however, that D(G|Cfin
) = D(G). In general, if A is a closed

linear operator and D′ ⊂ D(A), then we say that D′ is a core for A if A|D′ = A.
Then Theorem 1.18 says that Cfin is a core for G.

To prepare for the proof of Theorem 1.18 we need a few lemmas.

Lemma 1.19 (Generator on local functions) Under the asumptions of Theo-
rem 1.18, one has limt↓0 t

−1(Ptf − f) = Gf for all f ∈ Cfin, where the limit exists
in the topology on C(SΛ).

Proof Since f ∈ Cfin, there exists some finite A ⊂ Λ such that f depends only
on the coordinates in A. Let ∆0,t(A) := {(m, s) ∈ ∆0,t : D(m) ∩ A 6= ∅}. Then
|∆0,t(A)| is Poisson distributed with mean t

∑
m∈M, D(m)∩A 6=∅, which is finite by

(1.19). Write

Ptf(x) = f(x)P
[
∆0,t(A) = ∅

]
+

∑
m∈M

D(m)∩A 6=∅

f
(
m(x)

)
P
[
∆0,t(A) = {(m, s)} for some 0 < s ≤ t

]
+E
[
f
(
Ψ∆,0,t(x)

) ∣∣ |∆0,t(A)| ≥ 2
]
P
[
|∆0,t(A)| ≥ 2

]
.

Since ∣∣E[f
(
Ψ∆,0,t(x)

) ∣∣ |∆0,t(A)| ≥ 2
]∣∣ ≤ ‖f‖,

and since m(x) = x for all m ∈M with D(m) ∩ A = ∅, we can write

Ptf(x) = f(x) + t
∑
m∈M

rm
(
f(m(x))− f(x)

)
+Rt(x),

where limt↓0 t
−1‖Rt‖ = 0.
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Lemma 1.20 (Approximation by local functions) Assume that the rates
(rm)m∈M satisfy (1.19). Then for all f ∈ Csum there exist fn ∈ Cfin such that
‖fn − f‖ → 0 and ‖Gfn −Gf‖ → 0.

Proof Choose finite Λn ↑ Λ, set Γn := Λ\Λn, fix z ∈ SΛ, and for each x ∈ SΛ

define xn → x by

xn(i) :=

{
x(i) if i ∈ Λn,
z(i) if i ∈ Γn.

Fix f ∈ Csum and define fn(x) := f(xn) (x ∈ SΛ). Then fn depends only on the
coordinates in Λn, hence fn ∈ Cfin. We claim that for any x ∈ SΛ,

|f(xn)− f(x)| ≤
∑
i∈Γn

δf(i) (x ∈ SΛ, n ≥ 1)

To see this, let Γn := {i1, i2, . . .} and define (xkn)k=0,1,2,... with x0
n = xn and xkn → x

as k →∞ by

xkn(i) :=

{
x(i) if i ∈ Λn ∪ {i1, . . . , ik},
z(i) if i ∈ Γn\{i1, . . . , ik}.

Then

|f(xn)− f(xkn)| ≤
k∑
l=1

|f(xl−1
n )− f(xln)| ≤

k∑
l=1

δf(il),

from which our claim follows by letting k → ∞, using the continuity of f . Since
f ∈ Csum, it follows that

‖fn − f‖ ≤
∑
i∈Γn

δf(i) −→
n→∞

0.

Moreover, we observe that

|Gfn(x)−Gf(x)|=
∣∣ ∑
m∈M

rm
(
fn(m(x))− fn(x)

)
−
∑
m∈M

rm
(
f(m(x))− f(x)

)∣∣
≤
∑
m∈M

rm
∣∣f(m(x)n)− f(xn)− f(m(x)) + f(x)

∣∣.
(1.30)

On the one hand, we have∣∣f(m(x)n)− f(xn)− f(m(x)) + f(x)
∣∣

≤
∣∣f(m(x)n)− f(xn)

∣∣+
∣∣f(m(x))− f(x)

∣∣ ≤ 2
∑

i∈D(m)

δf(i),
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while on the other hand, we can estimate the same quantity as

≤
∣∣f(m(x)n)− f(m(x))

∣∣+
∣∣f(xn)− f(x)

∣∣ ≤ 2
∑
i∈Γn)

δf(i).

Let ∆ ⊂ Λ be finite. Inserting either of our two estimates into (1.30), depending
on whether D(m) ∩∆ 6= ∅ or not, we find that

‖Gfn −Gf‖≤ 2
∑
m∈M

D(m)∩∆ 6=∅

rm
∑
i∈Γn)

δf(i) + 2
∑
m∈M

D(m)∩∆=∅

rm
∑

i∈D(m)

δf(i)

≤ 2K0|∆|
∑
i∈Γn)

δf(i) + 2
∑
i∈Λ

δf(i)
∑
m∈M

D(m)∩∆=∅
D(m)3i

rm.

It follows that

lim sup
n→∞

‖Gfn −Gf‖ ≤ 2
∑
i∈Λ\∆

δf(i)
∑
m∈M
D(m)3i

rm ≤ 2K0

∑
i∈Λ\∆

δf(i).

Since ∆ is arbitrary, letting ∆ ↑ Λ, we see that lim supn ‖Gfn −Gf‖ = 0.

Lemma 1.21 (Functions of summable variation) Under the asumptions of
Theorem 1.18, one has∑

i∈Λ

δPtf(i) ≤ eKt
∑
i∈Λ

δf(i)
(
t ≥ 0, f ∈ Csum(SΛ)

)
,

where K is the constant from (1.23). In particular, for each t ≥ 0, Pt maps
Csum(SΛ) into itself.

Proof For each i ∈ Λ and x, y ∈ SΛ such that x(j) = y(j) for all j 6= i, we have

|Ptf(x)− Ptf(y)| =
∣∣E[f(Ψ∆,0,t(x))]− E[f(Ψ∆,0,t(y))]

∣∣
≤ E

[
|f(Ψ∆,0,t(x))− f(Ψ∆,0,t(y))|

]
≤ E

[∑
j: Ψ∆,0,t(x)(j)6=Ψ∆,0,t(y)(j)δf(j)

]
=
∑
j

P
[
Ψ∆,0,t(x)(j) 6= Ψ∆,0,t(y)(j)

]
δf(j)

≤
∑
j

P
[
(i, 0) (j, t)

]
δf(j).
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By Lemma 1.13, it follows that∑
i

δPtf(i) ≤
∑
ij

P
[
(i, 0) (j, t)

]
δf(j) =

∑
j

E
[
|ζ{j},t0 |

]
δf(j) ≤ eKt

∑
j

δf(j).

Proof of Theorem 1.18 Let H be the full generator of (Pt)t≥0 and let D(H)
denote it domain. Then Lemma 1.19 shows that Cfin ⊂ D(H) and Gf = Hf for
all f ∈ Cfin. By Lemma 1.20, it follows that Csum ⊂ D(H) and Gf = Hf for all
f ∈ Csum.
To see that G is closeable and its closure is the generator of a Feller semigroup,
we check conditions (i)–(iv) of Theorem 1.4. It is easy to see that 1 ∈ Csum(SΛ)
and G1 = 0. If f assumes its maximum in a point x ∈ SΛ, then each term on the
right-hand side of (1.18) is nonpositive, hence Gf(x) ≤ 0. The fact that Csum(SΛ)
is dense follows from Exercise 1.16 and the fact that Cfin(SΛ) ⊂ Csum(SΛ). To
check condition (iv), we will show that for each r > K, where K is the constant
from (1.23), and for each f ∈ Cfin(SΛ), there exists a pr ∈ Csum(SΛ) such that
(r −G)pr = f . Indeed, we will show that such a function is given by

pr :=

∫ ∞
0

e−rtPtf dt.

Indeed, it follows from Theorem 1.4 that pr ∈ D(H) and (r −H)pr = f . Thus, it
suffices to show that pr ∈ Csum. To see this, note that if x(j) = y(j) for all j 6= i,
then

|pr(x)− pr(y)| =
∣∣∣ ∫ ∞

0

e−rtPtf(x) dt−
∫ ∞

0

e−rtPtf(y)dt
∣∣∣

≤
∫ ∞

0

e−rt
∣∣Ptf(x)− Ptf(y)

∣∣ dt ≤ ∫ ∞
0

e−rtδPtf(i) dt,

and therefore, by Lemma 1.21,∑
i

δp(i) ≤
∫ ∞

0

e−rt
∑
i

δPtf(i) dt ≤
(∑

i

δf(i)
) ∫ ∞

0

e−rteKt dt <∞,

which proves that pr ∈ Csum. This completes the proof that G = H. By
Lemma 1.20, we see that D(G|Cfin

) ⊃ Csum and therefore also G|Cfin
= H.

We conclude this section with the following lemma, which is sometimes useful.

Lemma 1.22 (Differentiation of semigroup) Assume that the rates (rm)m∈M
satisfy (1.27), let (Pt)t≥0 be the Feller semigroup defined in (1.28) and let G be
the linear operator with domain D(G) := Csum(SΛ) defined by (1.18). Then, for
each f ∈ Csum(SΛ), t 7→ Ptf is a continuously differentiable function from [0,∞)
to C(SΛ) satisfying P0f = f , Ptf ∈ Csum(SΛ), and ∂

∂t
Ptf = GPtf for each t ≥ 0.
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Proof This is a direct consequence of Proposition 1.3, Lemma 1.21, and Theo-
rem 1.18. A direct proof based on our definition of (Pt)t≥0 (not using Hille-Yosida
theory) is also possible, but quite long and technical.

Remarks Theorem 1.18 is similar to Liggett’s [Lig85, Theorem I.3.9], but there are
also some differences. Liggett does not construct his interacting particle systems
using Poisson point sets, but rather gives a direct proof that the closure of G
generates a Feller semigroup (Pt)t≥0, and then uses general theory to conclude
that there exists a Feller process asociated with (Pt)t≥0. Also, Liggett allows for
the case that S is a (not necessarily finite) compact metrizable space and he does
not write his generator in terms of local maps but in terms of ‘local transition
measures’ which satisfy conditions similar to (1.27).
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Chapter 2

The contact process

In this chapter, we study the contact process. The contact process is one of the
most basic and most intensively studied interacting particle systems. It was intro-
duced in the mathematical literature by Harris in 1974 [Har74] and a few years later
independently in the high-energy physics literature as the ‘reggeon spin model’.
Many important questions about the behavior of the nearest-neighbour contact
process on Zd were solved by Bezuidenhout and Grimmett in 1990–1991 (building,
of course, on the work of many others) [BG90, BG91]. Physicists, not hindered by
the burden of rigorous proof, proceeded much faster. In fact, the only statements
about the contact process that physicists consider nontrivial -concerning its crit-
ical behavior in low dimensions- remain largely unproved by mathematicians up
to date. The contact process continues to be the subject of intense study in the
mathematical literature. Questions about its critical behavior in high dimensions
were recently answered in [HS05]. In addition, all kind of variations on the origi-
nal process such as contact processes in a random environment [Lig92, Rem08] or
contact processes on more general lattices (see [Lig99] as a general reference) have
recieved a lot of attention.

2.1 Definition of the model

Recall that

Zd :=
{
i = (i1, . . . , id) : ik ∈ Z ∀k = 1, . . . , d

}
is the d-dimensional integer lattice. Points i ∈ Zd are often called sites. The
(standard, nearest-neighbor) contact process on Zd with infection rate λ ≥ 0 is the
Feller process in {0, 1}Zd

whose generator is the closure of the operator G with

37
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domain D(G) := Csum({0, 1}Zd
) defined by

Gf(x) :=λ
∑
i

1{x(i)=0}
∑

j: |i−j|=1

x(j)
(
f(x{i})− f(x)

)
+
∑
i

1{x(i)=1}
(
f(x{i})− f(x)

)
,

(2.1)

where for any x ∈ {0, 1}Zd
and i ∈ Zd, we define x{i} ∈ {0, 1}Zd

by

x{i}(j) :=

{
1− x(j) if i = j,
x(j) otherwise.

(2.2)

Note that (2.1) says that if at some time t the state of the process is x = (x(i))i∈Zd ∈
{0, 1}Zd

, then
x(i) jumps:

0 7→ 1 with rate λ
∑

j: |i−j|=1 x(j),

1 7→ 0 with rate 1.

Here, as in (2.1), the sum over j runs over all nearest neighbours of the site i, i.e.,
all j ∈ Zd such that |i− j| = 1, where | · | denotes the usual euclidean distance.
A common way of interpreting a contact process X = (Xt)t≥0 is to say that at
each site i ∈ Zd is situated an organism (for example, in d = 1 or d = 2 we can
think of trees along an infinite road or in an infinite orchard) that can be in two
states. If Xt(i) = 0, then we say that at time t the organism at site i is healthy,
while if Xt(i) = 1, we say that it is infected (with some disease, or bug). Then the
generator in (2.1) says that healthy organisms become infected with a rate that is
lambda times their number of infected neighbours, and infected trees get healthy
with constant recovery rate 1.
We wish to construct the process based on Poisson point sets as in Theorem 1.15.
As a first step, we must write G in terms of local maps. Let

E :=
{

(i, j) : i, j ∈ Zd, |i− j| = 1
}

denote the set of all ordered nearest-neighbour pairs, and for each (i, j) ∈ E , let
us define a map mij : {0, 1}Zd → {0, 1}Zd

by

(mijx)(k) :=

{
1 if k = j, x(i) = 1,

x(k) otherwise,

(
i, j, k ∈ Zd, x ∈ {0, 1}Zd)

.

Note that mij describes a potential infection from i to j, i.e., if the site i is infected
in the configuration x, then the site j will be infected in the configuration mij(x),
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regardless of whether it was infected in x or not. Likewise, for each i ∈ Zd, let us
define pi : {0, 1}Zd → {0, 1}Zd

by

(pix)(j) :=

{
0 if j = i,

x(j) if j 6= i,

(
i, j ∈ Zd, x ∈ {0, 1}Zd)

.

Then pi describes a potential recovery of the site i, i.e., in the configuration pi(x),
the site i is healthy, regardless of its state in the configuration x.
In terms of these local maps, we may rewrite the generator G in (2.1) in the form

Gf(x) = λ
∑

(i,j)∈E

(
f(mij(x))− f(x)

)
+
∑
i∈Zd

(
f(pi(x))− f(x)

)
. (2.3)

(x ∈ {0, 1}Zd
). We can now apply Theorem 1.15 to give a Poisson construction of

our contact process. To make this concrete, let ∆i and ∆r be independent Poisson
point sets on E × R and Zd × R with intensities λ dt and 1 dt, respectively. We
interpret a point (i, j, t) ∈ ∆i as a potential infection from i to j and a point
(i, t) ∈ ∆r as a potential recovery of the site i.
In Figure 2.1 we have drawn a finite piece of the sets ∆i and ∆r for the process on Z.
We have drawn space horizontally and time vertically. Infections (i, j, t) ∈ ∆i have
been indicated by drawing an arrow from (i, t) to (j, t) while recoveries (i, t) ∈ ∆r

have been indicated with a black box.
Recall the definition of path γ from Section 1.6 and of a path of influence in (1.21).
In our present set-up, we see that D(mij) = {j}, Rj(mij) = {i, j}, D(pi) = {i}
and Ri(pi) = ∅. Therefore, a path γ is a path of influence if and only if

(γt−, γt, t) ∈ ∆i for all t ∈ [s, u] s.t. γt− 6= γt,

γ ∩∆r = ∅.

In words, this says that an open path must walk upwards in time, may use infection
arrows, but must avoid recovery symbols. In the context of the contact process,
such paths are usually called open.
We write (i, s)  (j, u), to denote the event that there exists an open path γ
with starting time s and final time u such that γs− = i and γu = j. Then, by
Theorems 1.15 and 1.18, setting

Xx
t (i) :=

{
1 if ∃j s.t. x(j) = 1, (j, 0) (i, t),

0 otherwise,
(2.4)

(t ≥ 0, i ∈ Zd, x ∈ {0, 1}Zd
) defines a Feller process in {0, 1}Zd

whose generator is
the closure of the operator G in (2.1) (or, equivalently, (2.3)). This construction
is known as the graphical representation of the contact process.
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t

Λ

A

ηA
t

infection rate λ

recovery rate 1

Figure 2.1: Graphical representation of the contact process.

In view of what follows, it will be useful to introduce some more notation. By
identifying a set with its indicator function, we observe that the space {0, 1}Zd

is
in a natural way isomorphic to the space P(Zd) := {A : A ⊂ Zd} of all subsets of
Zd. With this in mind, for any A ⊂ Zd and s ∈ R, we define

ηA,st :=
{
i : A× {s} (i, s+ t)

}
,

η†A,st :=
{
i : (i, s− t) A× {s}

}
,

(2.5)

(A ⊂ Zd, s ∈ R, t ≥ 0), where A× {0}  (i, t) indicates the event that (j, 0)  
(i, t) for some j ∈ A. We observe that if Xx is defined as in (2.4), then

x = 1A implies Xx
t = 1ηA,0

t
(t ≥ 0).

Moreover, we observe that for A ⊂ Zd and s ∈ R, the processes(
ηA,0t

)
t≥0
,
(
ηA,st

)
t≥0
, and

(
η†A,st

)
t≥0

are all equal in law. The first equality (in law) follows from the fact that the
law of our Poisson point processes is invariant under translations in time. To see
that also (η†A,st )t≥0 is (in law) a contact process with initial state A, we turn the
graphical representation in Figure 2.1 upside down and reverse the direction of all
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arrows. The resulting picture is again Poisson, with the same rates as before, and
what used to be an open path from (s, i) to (j, u) is now an open path from (j,−u)
to (i,−s).
To simplify notation, we write

ηAt := ηA,0t and η†At := η†A,0t (t ≥ 0).

We observe that for any t ≥ 0 and A,B ⊂ Zd,

P
[
ηA,0t ∩B 6= ∅

]
= P

[
A× {0} B × {t}

]
= P

[
A ∩ η†B,tt 6= ∅

]
.

This formula remains true if A and B are random sets, independent of the Poisson
point processes of our graphical representation. This means that we have proved
the following result.

Lemma 2.1 (Duality) Let (ηt)t≥0 and (η†t )t≥0 be independent contact processes
on Zd with infection rate λ. Then

P
[
ηt ∩ η†0 6= ∅

]
= P

[
η0 ∩ η†t 6= ∅

]
(t ≥ 0).

This result is especially useful in view of the following fact.

Lemma 2.2 (Distribution determining functions) Let µ, ν be probability laws
on P(Zd) such that ∫

µ(dA)1{A∩B 6=∅} =

∫
ν(dA)1{A∩B 6=∅}

for all finite nonempty B ⊂ Zd. Then µ = ν.

Proof We start by recalling the Stone-Weierstrass theorem. Let E be a compact
metrizable set. By definition, a subset F of C(E) is an algebra if F is a linear
space, F contains the constant function 1, and f, g ∈ F implies fg ∈ F . We say
that F separates points if for every x, y ∈ E with x 6= y there exists an f ∈ F with
f(x) 6= f(y). The Stone-Weierstrass theorem says that if subset F of C(E) is an
algebra that separates points, then F is dense in C(E).
Let F be the linear span of all functions of the form A 7→ 1{A∩B=∅} with B a finite
subset of Zd. Since 1{A∩∅=∅} = 1 and 1{A∩B=∅}1{A∩B′=∅} = 1{A∩(B∪B′)=∅} we see
that F is an algebra. Since for all A 6= A′ there is a finite B such that 1{A∩B=∅} 6=
1{A′∩B=∅} we see that F separates points, hence by the Stone-Weierstrass theorem
F is dense in C(P(Zd)).
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It follows from our assumptions that∫
µ(dA)1{A∩B=∅} =

∫
ν(dA)1{A∩B=∅}

for each finite B ⊂ Zd, hence
∫
µ(dA)f(A) =

∫
ν(dA)f(A) for all f ∈ F and

therefore, since F is dense,
∫
µ(dA)f(A) =

∫
ν(dA)f(A) for all f ∈ C(P(Zd)),

which implies µ = ν.

Exercise 2.3 For each unordered pair {i, j} of nearest neighbors (i.e., i, j ∈ Zd

such that |i− j| = 1), let us define a local map m̃ij : {0, 1}Zd → {0, 1}Zd
by

(m̃ijx)(k) :=

{
1 if k ∈ {i, j}, max{x(i), x(j)} = 1,

x(k) otherwise,

(i, j, k ∈ Zd, x ∈ {0, 1}Zd
). Note that this says that if (x(i), x(j)) = (0, 1) or

(1, 0), then m̃ij changes this into (1, 1); otherwise nothing happens. Show that the
generator of the contact process can be written in the form (compare (2.3))

Gf(x) = λ
∑
{i,j}

(
f(m̃ij(x))− f(x)

)
+
∑
i∈Zd

(
f(pi(x))− f(x)

)
, (2.6)

(x ∈ {0, 1}Zd
), where the sum now runs over all unordered nearest-neighbor pairs.

What kind of graphical representation results from writing the generator in the
form (2.6)?

Exercise 2.4 Invent graphical representations for the interacting particle systems
on Z with generators (compare (2.1))

G′f(x) =λ
∑
i∈Z

1{x(i)=0}1{x(i−1)+x(i+1)>0}
(
f(x{i})− f(x)

)
+
∑
i∈Z

1{x(i)=1}
(
f(x{i})− f(x)

)
and

G′′f(x) =λ
∑
i∈Z

1{x(i)=0}
(
x(i− 1) + x(i+ 1)

)2(
f(x{i})− f(x)

)
+
∑
i∈Z

1{x(i)=1}
(
f(x{i})− f(x)

)
.
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1

θ(λ)

λc
λ

Figure 2.2: Survival probability.

2.2 The survival probability

By definition, we say that the nearest-neighbor contact process on Zd with infection
rate λ survives if

θ(λ, d) = θ(λ) := P
[
η
{0}
t 6= ∅ ∀t ≥ 0

]
> 0.

If this probability is zero, then we say that the contact process dies out or gets
extinct.
By a combination of rigorous mathematics, nonrigourous methods, and computer
simulations, theoretical physicists have discovered the following properties of the
function θ. There exists a critical value λc = λc(d) with 0 < λc < ∞ such that
θ(λ) = 0 for λ ≤ λc and θ(λ) > 0 for λ > λc. The function θ is continuous, strictly
increasing and concave on [λc,∞) and satisfies limλ→∞ θ(λ) = 1. One has

λc(1) = 1.6489± 0.0002.

Moreover, λc(d) is decreasing in d and satisfies

λc(d) ≈ 1

2d
as d→∞, (2.7)

where the notation f(z) ≈ g(z) as z → z0 means that

lim
z→z0

f(z)

g(z)
= 1 as z → z0.
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The behavior of θ near the critical point is very interesting. One has

θ(λ) ∼ (λ− λc)
β as λ ↓ λc, (2.8)

where we write f(z) ∼ g(z) as z → z0 if

lim
z→z0

log(f(z))

log(g(z))
= 1.

The constant β = β(d) is a critical exponent, approximately given by

β(1)∼= 0.276487,
β(2)∼= 0.584,
β(3)∼= 0.81,
β(d) = 1 (d ≥ 4).

In dimensions d 6= 4, it is believed that (2.8) can be strengthened to θ(λ) ≈
c(λ− λc)

β for some 0 < c <∞.
Below, we will prove some of the easier properties of the function θ, such as mono-
tonicity, the existence of a critical parameter λc, and the fact that θ is right-
continuous everywhere and left-continuous everywhere except possibly at the crit-
ical point λc. Proving that θ is left-continuous at λc, which by our previous remarks
is equivalent to the statement that θ(λc) = 0, kept probabilists occupied for some
15 years, untill Bezuidenhout and Grimmett proved this in their celebrated paper
[BG90]. Quite recently, it has been proved that (2.8) holds with β = 1 if the dimen-
sion d is sufficiently large. The critical behavior in dimensions d = 1, 2, 3 remains
very much an unsolved problem. Physicists come to their prediction (2.8) using
(nonrigorous) renormalization group arguments, where critical exponents can be
related to eigenvectors of linearized renormalization transformations near a fixed
point. Mathematically, there are big problems even defining these renormalization
transformations rigorously, let alone studying them.
In dimension d = 1 it is known rigorously that 1.539 < λc < 1.943 [ZG88, Lig95].
For bounds in higher dimensions (including a proof of (2.7)), see [Lig85]. As far
as I know, nobody has any idea how to prove that θ is concave on [λc,∞).

Lemma 2.5 (Survival versus extinction) If the contact process survives, then

P
[
ηAt 6= ∅ ∀t ≥ 0

]
> 0 (2.9)

for each finite nonempty A ⊂ Zd. If the contact process dies out, then this proba-
bility is zero for each finite nonempty A ⊂ Zd.
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Proof Let A be finite and nonempty. For obvious reasons we also denote the
probability in (2.9) by

P
[
(A× {0}) ∞

]
.

Now choose any i ∈ A. Then

P
[
(0, 0) ∞

]
= P

[
(i, 0) ∞

]
≤ P

[
(A× {0}) ∞

]
= P

[
∃j ∈ A s.t. (j, 0) ∞

]
≤
∑
j∈A

P
[
(j, 0) ∞

]
= |A|P

[
(0, 0) ∞

]
,

where we have used translation invariance and |A| denotes the number of elements
in A.

In this and the next section, we will prove the following result.

Theorem 2.6 (Critical infection rate) For each d ≥ 1 there exists a λc = λc(d)
with 0 < λc < ∞ such that the nearest-neighbour contact process on Zd with
infection rate λ survives for λ > λc and dies out for λ < λc.

Note that this theorem says nothing about survival or extinction if λ = λc(d).

As a first step towards Theorem 2.6, we prove the following fact.

Lemma 2.7 (Monotone coupling) Let (ηt)t≥0 and (η′t)t≥0 be contact processes
on Zd with infection rates 0 ≤ λ ≤ λ′ and deterministic initial states η0 = A and
η′0 = A′ satisfying A ⊂ A′. Then (ηt)t≥0 and (η′t)t≥0 can be coupled such that

ηt ⊂ η′t (t ≥ 0).

In particular, survival of the contact process with infection rate λ implies survival
of the contact process with infection rate λ′.

Proof Let 0 ≤ λ ≤ λ′. Let ∆i and ∆̃i be independent Poisson point sets on E ×R
with intensities λ dt and (λ′ − λ) dt, respectively, and let ∆̃r be a Poisson point
set on Zd × R with intensity 1 dt, independent of ∆i and ∆̃i. Then ∆i ∪ ∆̃i is a
Poisson point set on E × R with intensity λ′ dt. We interpret points in ∆i and ∆̃i

as infection arrows and points in ∆̃r as recovery symbols. We let  indicate the
presence of an open path that may use infection arrows from ∆i only and we write
 ′ to indicate the presence of an open path that may use infection arrows from
∆i ∪ ∆̃i. Then

ηt = {i : A× {0} (i, t)} ⊂ {i : A′ × {0} ′ (i, t)} = η′t (t ≥ 0)

since A ⊂ A′ and the process (η′t)t≥0 has more arrows at its disposal.
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2.3 Extinction

It follows from Lemma 2.7 that the function λ 7→ θ(λ) is nondecreasing and hence,
for each d ≥ 1, there exists a 0 ≤ λc(d) ≤ ∞ such that the nearest-neighbour
contact process on Zd with infection rate λ survives for λ > λc and dies out for
λ < λc. To prove Theorem 2.6, we must show that 0 < λc(d) < ∞. We start by
proving a the lower bound on λc, which is easiest.

Lemma 2.8 (Exponential bound) For each finite A ⊂ Zd, one has

E
[
|ηAt |

]
≤ |A|e(2dλ−1)t (t ≥ 0). (2.10)

Proof For the contact process, the constant K from (1.23) is given by K = 2dλ−1.
Therefore, the statement is a direct consequence of Lemma 1.13.

Lemma 2.8 has the following consequence.

Corollary 2.9 (Lower bound on critical infection rate) The critical infec-
tion rate of the nearest-neighbour contact process on Zd satisfies 1

2d
≤ λc.

Proof By (2.10), for each λ < 1
2d

,

P
[
ηAt 6= ∅

]
≤ E

[
|ηAt |

]
−→
t→∞

0

for each finite A ⊂ Zd.

In order to finish the proof of Theorem 2.6 we need to show that λc < ∞. As a
preparation for this, in the next section, we will start by studying a closely related
problem. Before we do this, we apply the techniques developed so far to prove that
the function θ(λ, d) is nondecreasing and right-continuity. Left-continuity, except
(possibly) in the critical point λc, will be proved in Proposition 2.22 below.

Proposition 2.10 (Monotonicty and right-continuity) The survival proba-
bility θ(λ, d) is nondecreasing and right-continuous in λ, and nondecreasing in d.

Proof The fact that θ(λ, d) is nondecreasing in λ follows from Lemma 2.7. The
fact that θ(λ, d) is nondecreasing in d can be proved in a similar way, since if
d ≤ d′, then we may view Zd as a subset of Zd′ and observe that if there is an open
path that stays in Zd, then certainly there is an open path in Zd′ .
To prove right continuity of θ(λ, d) in λ, we will improve the coupling used in the
proof of Lemma 2.7 in such a way that we can define contact processes for any
value of the infection rate on the same probability space. To this aim, consider
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the space E ×R× [0,∞) whose elements are triples ((i, j), t, κ) with (i, j) ∈ E and

t ∈ R, κ ≥ 0, and let ∆
i

be a Poisson point set on this set with indensity dtdκ.
Then, for each λ ≥ 0,

∆i
λ :=

((
(i, j), t

)
: ∃
(
(i, j), t, κ

)
∈ ∆

i
with κ ≤ λ

}
.

is a Poisson point sets on E × R with intensity λdt. Let ∆r be an independent
Poisson point set on Zd×R with intensity dt and write λ to indicate the presence
of an open path in the graphical representations defined by (∆i

λ,∆
r). Another way

of saying this is that a point ((i, j), t, κ) ∈ ∆
i

indicates the presence of an arrow
which has a value κ attached to it, and  λ indicates the presence of a path that
may use only arrows with values κ ≤ λ. Let λn ↓ λ∗. Then we claim that

lim
λn↓λ∗

θ(λn) = lim
λ↓λ∗

P[(0, 0) λ ∞] = P[(0, 0) λ ∞ ∀λ > λ∗]

!
= P[(0, 0) λ∗ ∞] = θ(λ∗).

The equality
!

= needs some explanation. It is obvious that (0, 0)  λ∗ ∞ implies
(0, 0) λ ∞ ∀λ > λ∗. On the other hand, if (0, 0) 6 λ∗ ∞ then by Lemma 2.8

I :=
{

(i, t) ∈ Zd × R : (0, 0) λ∗ (i, t)
}

is a compact subset of Zd ×R, such that each each infection ends somewhere in a
recovery sign, and all infection arrows starting in I and ending somewhere outside
I have a value strictly larger than λ∗. Since there are only finitely many arrows
with values κ ∈ (λ∗, 2λ∗) starting in I and ending somewhere outside I, we know
that there is some λ′ > λ∗ such that all arrows starting in I and ending somewhere
outside I have a value larger than λ′, i.e., we know that (0, 0) 6 λ′ ∞ for some
λ′ > λ∗.

2.4 Oriented percolation

In order to prepare for the proof that the critical infection rate of the contact
process is finite, in the present section, we will study oriented (or directed) bond
percolation on Zd. For i, j ∈ Zd, we write i ≤ j if i = (i1, . . . , id) and j =
(j1, . . . , jd) satisfy ik ≤ jk for all k = 1, . . . , d. Let

A :=
{

(i, j) : i, j ∈ Zd, i ≤ j, |i− j| = 1
}
.

We view Zd as an infinite directed graph, where elements (i, j) ∈ A represent
arrows (or directed bonds) between neighbouring sites. Note that all arrows point
‘upwards’ in the sense of the natural order on Zd.



48 CHAPTER 2. THE CONTACT PROCESS

Now fix some percolation parameter p ∈ [0, 1] and let (ω(i,j))(i,j)∈A be a collection
of i.i.d. Bernoulli random variables with P[ω(i,j) = 1] = p. We say that there is
an open path from a site i ∈ Zd to j ∈ Zd if there exist n ≥ 0 and a function
γ : {0, . . . , n} → Zd such that

(γ(k − 1), γ(k)) ∈ A and ω(γ(k−1),γ(k)) = 1 (k = 1, . . . , n).

We denote the presence of an open path by  . Note that open paths must walk
upwards in the sense of the order on Zd. We write 0 ∞ to indicate the existence
of an infinite open path starting at the origin 0 ∈ Zd.

Theorem 2.11 (Critical percolation parameter) For oriented percolation in
dimensions d ≥ 2 there exists a critical parameter pc = pc(d) with 0 < pc < 1 such
that P[0 ∞] = 0 for p < pc and P[0 ∞] > 0 for p > pc.

Proof The existence of a critical parameter pc ∈ [0, 1] follows from a monotone
coupling argument like the one we used in the proof of Lemma 2.7. To prove that
0 < pc, let Nn denote the number of open paths of length n starting in 0. Since
there are dn different upward paths of length n starting at the origin, and each
path has probability pn to be open, we see that

E
[ ∞∑
n=1

Nn

]
=
∞∑
n=1

dnpn <∞ (p < 1/d)

This shows that
∑∞

n=1Nn <∞ a.s., hence P[0 ∞] = 0 if p < 1/d, and therefore

1

d
≤ pc(d).

To prove that pc(d) < 1 for d ≥ 2 it suffices to consider the case d = 2, for we may
view Z2 as a subset of Zd (d ≥ 3) and then, if there is an open path that stays in
Z2, then certainly there is an open path in Zd. (Note, by the way, that in d = 1
one has P[0 ∞] = 0 for all p < 1 hence pc(1) = 1.)

We claim that

pc(2) ≤ 8

9
. (2.11)

To prove this, we use a Peierls argument, named after R. Peierls who used a similar
argument in 1936 for the Ising model [Pei36]. In Figure 2.3, we have drawn a piece
of Z2. Open arrows are drawn in black; closed arrows are not drawn. Sites i ∈ Z2

such that 0  i are indicated in black. These sites are called wet. Consider the
dual lattice

Ẑ2 := {(n+ 1
2
,m+ 1

2
) : (n,m) ∈ Z2}.
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Figure 2.3: Peierls argument for oriented percolation.
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If there are only finitely many wet sites, then the set of all non-wet sites contains
one infinite connected component. (Here ‘connected’ is to be interpreted in terms
of the unoriented graph N2 with nearest-neighbor edges.) Let γ be the boundary
of this infinite component. Then γ is a nearest-neighbor path in Ẑ2, starting in
some point (n+ 1

2
,−1

2
) and ending in some point (−1

2
,m+ 1

2
) with n,m ≥ 0, such

that all sites immediately to the left of γ are wet, and no open arrows starting at
these sites cross γ. In Figure 2.3, we have indicated γ with dashed arrows.

From these considerations, we see that the following statement is true: one has
0 6 ∞ if and only if there exists a path in Ẑ2, starting in some point (n+ 1

2
,−1

2
)

(n ≥ 0), ending in some point (−1
2
,m+ 1

2
) (m ≥ 0), and passing to the northeast

of the origin, such that all arrows of γ in the north and west directions (indicated
in bold in the figure) are not be crossed by an open arrow. Let Mn be the number
of paths of length n with these properties. Since there are n dual sites from where
such a path of length n can start, and since in each step, there are three directions
where it can go, there are at most n3n paths of length n with these properties.
Since each path must make at least half of its steps in the north and east directions,
the expected number of these paths satisfies

E
[ ∞∑
n=2

Mn

]
≤

∞∑
n=2

n3n(1− p)n/2 <∞ (p > 8
9
)

and therefore

P[0 6 ∞] ≤ P
[ ∞∑
n=2

Mn ≥ 1
]
≤ E

[ ∞∑
n=2

Mn

]
<∞.

This does not quite prove what we want yet, since we need the right-hand side of
this equation to be less than one. To fix this, set Dm := {0, . . . ,m}2. Then, by
the same arguments as before

P[Dm 6 ∞] ≤ P
[ ∞∑
n=2m

Mn ≥ 1
]
≤ E

[ ∞∑
n=2m

Mn

]
≤

∞∑
n=2m

n3n(1− p)n/2,

which in case p > 8
9

can be made arbitrarily small by choosing m suffiently large.
It follows that P[Dm  ∞] > 0 for some m, hence P[i ∞] > 0 for some i ∈ Dm,
and therefore, by translation invariance, also P[0 ∞] > 0.

2.5 Survival

In the present section, we will complete the proof of Theorem 2.6 by showing that
λc < ∞. The method we will use is comparison with oriented percolation. This
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ψ(−1, 1) ψ(0, 0) ψ(1,−1)

ψ(0, 1) ψ(1, 0)

ψ(0, 2) ψ(1, 1) ψ(2, 0)

τ+
(0,0)

τ−(0,0) 
T

Figure 2.4: Comparison with oriented percolation. In this example, the good event
G+

(0,0) occurs because of the arrow at time τ+
(0,0) and because of the fact that there

are no recovery symbols on the thick line segments. On the other hand, the good
event G−(0,0) does not occur since τ−(0,0) > σ(0,1). Note that also G−(0,1) does not occur

even though there is an open path ψ(0, 1) ψ(0, 2).

neither leads to a particularly short proof nor does it yield a very good upper
bound on λc, but it has the advantage that it is a very robust method that can
be applied to many other interacting particle systems. (Alternatively, it is also
possible to adapt the proof of Theorem 2.11 to the continuous-time setting of the
graphical representation of the one-dimensional contact process. This leads to a
better bound on λc but the method is much less flexible.)

Let λc(d) be the critical infection rate of the nearest-neighbour contact process on
Zd. If d ≤ d′, then we may view Zd as a subset of Zd′ , so by an obvious monotone
coupling we see that

λc(d) ≥ λc(d
′) (d ≤ d′).

In view of this, in order to finish the proof of Theorem 2.6, it suffices to show that
λc(1) <∞.

We use the graphical representation, i.e., we let ∆i and ∆r be Poisson point subsets
of E ×R and Zd×R, respectively. We fix T > 0 and define a map ψ : Z2 → Z×R
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by
ψ(i) =

(
κi, σi

)
:=
(
i1 − i2, T (i1 + i2)

) (
i = (i1, i2) ∈ Z2

)
.

Recall from the previous section the definition of the set A of arrows on Zd. We
wish to define a collection (ω(i,j))(i,j)∈A of Bernoulli random variables such that

ω(i,j) = 1 implies (κi, σi) (κj, σj)
(
(i, j) ∈ A

)
.

For each i ∈ Z2 we let

τ−i := inf
{
t ≥ σi : (κi, κi − 1, t) ∈ ∆i},

τ+
i := inf

{
t ≥ σi : (κi, κi + 1, t) ∈ ∆i},

denote the times of the first arrows out of i to the left and right, and we define
the ‘good events’

G−i :=
{
τ−i < σi + T,

(
{κi} × (σi, τ

−
i )
)
∩∆r = ∅,(

{κi − 1} × (τ−i , σi + T )
)
∩∆r = ∅

}
,

G+
i :=

{
τ+
i < σi + T,

(
{κi} × (σi, τ

+
i )
)
∩∆r = ∅,(

{κi + 1} × (τ+
i , σi + T )

)
∩∆r = ∅

}
.

We observe that the event G±i implies that (κi, σi) (κi ± 1, σi + T ) via an open
path that stays in {κi, κi ± 1}. In view of this, we set

ω((i1, i2), (i1 + 1, i2)) := 1G+
i
,

ω((i1, i2), (i1, i2 + 1)) := 1G−i
.

Then ω(i,j) = 1 implies the existence of an open path in the graphical representation
for the contact process from (κi, σi) to (κj, σj) (with (i, j) ∈ A), hence if we use
the random variables (ω(i,j))(i,j)∈A to define oriented percolation on Z2 in the usual
way, then:

i j in the oriented percolation on Z2 defined by the random variables
(ω(i,j))(i,j)∈A implies (κi, σi)  (κi, σi) in the graphical representation
for the contact process.

We observe that

p := P[ω(i,j) = 1] = P(G±i ) = (1− e−λT )e−T
(
(i, j) ∈ A

)
. (2.12)

For λ sufficiently large, by a suitable choice of T , we can make p as close to one
as we wish. We would like to conclude from this that P[(0, 0)  ∞] > 0 for the
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oriented percolation defined by the ω(i,j)’s, and therefore also P[(0, 0)  ∞] > 0
for the contact process. Unfortunately, the random variables (ω(i,j))(i,j)∈A are not
independent, and therefore Theorem 2.11 is not applicable. To fix this problem,
we need a bit more theory. In the next section, we will introduce the concept of
k-dependence. As will be clear from the definition there, the (ω(i,j))(i,j)∈A are k-
dependent for some suitable k, so by applying Theorem 2.12 from the next section
we can estimate them from below by an independent collection of Bernoulli random
variables (ω̃(i,j))(i,j)∈A whose succes probability p̃ can be made arbitrarily close to
one, so we are done.

2.6 K-dependence

By definition, for k ≥ 0, one says that a collection (Xi)i∈Zd of random variables,
indexed by the integer square lattice, is k-dependent if for any A,B ⊂ Zd with

inf{|i− j| : i ∈ A, j ∈ B} > k,

the collections of random variables (Xi)i∈A and (Xj)j∈B are independent of each
other. Note that in particular, 0-dependence means independence.

The most important property associated with k-dependence is that a collection of
k-dependent Bernoulli random variables with success probability p can be stochas-
tically estimated from below by a collection of independent Bernoulli random vari-
ables with a success probability p̃ that has the property that p̃→ 1 as p→ 1. It is
a bit unfortunate that the term ‘k-dependence’ as it is standardly used explicity
(and only) refers to random variables on Zd, while in fact, as the next theorem
shows, for the property just mentioned the precise spatial structure is not very
important. The next theorem is taken from [Lig99, Thm B26], who in turn cites
[LSS97].

Theorem 2.12 (K-dependence) Let Λ be a countable set and let p ∈ (0, 1),
K < ∞. Assume that (χi)i∈Λ are Bernoulli random variables with P [χi = 1] ≥ p
(i ∈ Λ), such that for each i ∈ Λ there exists a ∆i ⊂ Λ with i ∈ ∆i and |∆i| ≤ K,
such that

χi is independent of (χj)j∈Λ\∆i
.

Then it is possible to couple (χi)i∈Λ to a collection of independent Bernoulli random
variables (χ̃i)i∈Λ with

P [χ̃i = 1] = p̃ :=
(
1− (1− p)1/K

)2
, (2.13)

in such a way that χ̃i ≤ χi for all i ∈ Λ.
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Proof of Theorem 2.12 Since we can always choose some arbitrary denumeration
of Λ, we may assume that Λ = N. Our strategy will be as follows. We will choose
{0, 1}-valued random variables (ψi)i∈Λ with P [ψi = 1] = r, independent of each
other and of the (χi)i∈N, and put

χ′i := ψiχi (i ∈ N). (2.14)

Note that the (χ′i)i∈N are a ‘thinned out’ version of the (χi)i∈N. In particular,
χ′i ≤ χi (i ∈ N). We will show that for an appropriate choice of r,

P [χ′n = 1 |χ′0, . . . , χ′n−1] ≥ p̃ (2.15)

for all n ≥ 0, and we will show that this implies that the (χ′i)i∈N can be coupled
to independent (χ̃i)i∈Λ as in (2.13) in such a way that χ̃i ≤ χ′i ≤ χi (i ∈ N).
We start with the latter claim. Imagine that (2.15) holds. Set

p′n(ε0, . . . , εn−1) := P [χ′n = 1 |χ′0 = ε0, . . . , χ
′
n−1 = εn−1] (2.16)

whenever P [χ′0 = ε0, . . . , χ
′
n−1 = εn−1] > 0. Let (Un)n∈N be independent, uniformly

distributed [0, 1]-valued random variables. Set

χ̃n := 1{Un < p̃} (n ∈ N) (2.17)

and define inductively

χ′n := 1{Un < p′n(χ′0, . . . , χ
′
n−1)} (i ∈ N). (2.18)

Then
P [χ′n = εn, . . . , χ

′
0 = ε0] = pn(ε0, . . . , εn−1) · · · p0. (2.19)

This shows that these new χ′n’s have the same distribution as the old ones, and
they are coupled to χ̃i’s as in (2.13) in such a way that χ̃i ≤ χ′i.
What makes life complicated is that (2.15) does not always hold for the original
(χi)i∈N, which is why we have to work with the thinned variables (χ′i)i∈N.1 We
observe that

P [χ′n = 1 |χ′0 = ε0, . . . , χ
′
n−1 = εn−1] = rP [χn = 1 |χ′0 = ε0, . . . , χ

′
n−1 = εn−1].

(2.20)

1Indeed, let (φn)n≥0 be independent {0, 1}-valued random variables with P [φn = 1] =
√
p for

some p < 1, and put χn := φnφn+1. Then the (χn)n≥0 are 1-dependent with P [χn = 1] = p, but
P [χn = 1|χn−1 = 0, χn−2 = 1] = 0.
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We will prove by induction that for an appropriate choice of r,

P [χn = 0 |χ′0 = ε0, . . . , χ
′
n−1 = εn−1] ≤ 1− r. (2.21)

Note that this is true for n = 0 provided that r ≤ p. Let us put

E0 := {i ∈ ∆n : 0 ≤ i ≤ n− 1, εi = 0},
E1 := {i ∈ ∆n : 0 ≤ i ≤ n− 1, εi = 1},
F := {i 6∈ ∆n : 0 ≤ i ≤ n− 1}.

(2.22)

Then

P [χn = 0 |χ′0 = ε0, . . . , χ
′
n−1 = εn−1]

= P
[
χn = 0

∣∣χ′i = 0 ∀i ∈ E0, χi = 1 = ψi ∀i ∈ E1, χ
′
i = εi ∀i ∈ F

]
= P

[
χn = 0

∣∣χ′i = 0 ∀i ∈ E0, χi = 1 ∀i ∈ E1, χ
′
i = εi ∀i ∈ F

]
=
P
[
χn = 0, χ′i = 0 ∀i ∈ E0, χi = 1 ∀i ∈ E1, χ

′
i = εi ∀i ∈ F

]
P
[
χ′i = 0 ∀i ∈ E0, χi = 1 ∀i ∈ E1, χ′i = εi ∀i ∈ F

]
≤

P
[
χn = 0, χ′i = εi ∀i ∈ F

]
P
[
ψi = 0 ∀i ∈ E0, χi = 1 ∀i ∈ E1, χ′i = εi ∀i ∈ F

]
=

P
[
χn = 0

∣∣χ′i = εi ∀i ∈ F
]

P
[
ψi = 0 ∀i ∈ E0, χi = 1 ∀i ∈ E1

∣∣χ′i = εi ∀i ∈ F
]

≤ 1− p
(1− r)|E0|P

[
χi = 1 ∀i ∈ E1

∣∣χ′i = εi ∀i ∈ F
] ≤ 1− p

(1− r)|E0| r|E1|
,

(2.23)

where in the last step we have used K-dependence and the (nontrivial) fact that

P
[
χi = 1 ∀i ∈ E1

∣∣χ′i = εi ∀i ∈ F
]
≥ r|E1|. (2.24)

We claim that (2.24) is a consequence of the induction hypothesis (2.21). Indeed,
we may assume that the induction hypothesis (2.21) holds regardless of the or-
dering of the first n elements, so without loss of generality we may assume that
E1 = {n−1, . . . ,m} and F = {m−1, . . . , 0}, for some m. Then the left-hand side
of (2.24) may be written as

n−1∏
k=m

P
[
χk = 1

∣∣χi = 1 ∀m ≤ i < k, χ′i = εi ∀0 ≤ i < m
]

=
n−1∏
k=m

P
[
χk = 1

∣∣χ′i = 1 ∀m ≤ i < k, χ′i = εi ∀0 ≤ i < m
]
≥ rn−m.

(2.25)
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If we assume moreover that r ≥ 1
2
, then r|E1| ≥ (1 − r)|E1| and therefore the

right-hand side of (2.23) can be further estimated as

1− p
(1− r)|E0| r|E1|

≤ 1− p
(1− r)|∆n∩{0,...,n−1}| ≤

1− p
(1− r)K−1

. (2.26)

We see that in order for our proof to work, we need 1
2
≤ r ≤ p and

1− p
(1− r)K−1

≤ 1− r. (2.27)

In particular, choosing r = 1− (1− p)1/K yields equality in (2.27). Having proved
(2.21), we see by (2.20) that (2.15) holds provided that we put p̃ := r2.

Exercise 2.13 Combine formulas (2.11), (2.12) and (2.13) to derive an explicit
upper bound on the critical infection rate λc of the one-dimensional contact pro-
cess.

2.7 The upper invariant law

For any Feller semigroup (Pt)t≥0 on C(E), where E is some compact metrizable
space, we say that a probability measure µ on E is an invariant law if∫

µ(dx)Pt(x, · ) = µ (t ≥ 0).

Note that this says that for the associated Feller process, P[X0 ∈ · ] = µ implies
P[Xt ∈ · ] = µ for each t ≥ 0. If µ is an invariant law, then it is possible to
construct a stationary process (Xt)t∈R that is also defined for negative times, such
that P[Xt ∈ · ] = µ for all t ∈ R and (Xt)t∈R is a Feller process associated with
(Pt)t≥0, where we generalize (1.11) in the obvious way to negative times.

Using our graphical representation of the contact process, we define

ηt :=
{
i ∈ Zd : −∞ (i, t)

}
(t ∈ R).

where −∞ (i, t) indicates the presence of an open path γ : (−∞, t]→ Zd. (Note
that so far, we have only defined paths with finite starting and ending times but
the definition of an (open) path can easily be extended to allow for infinite paths.)
Using the independence of restrictions of Poisson point processes to disjoint parts
of space, we see that

P
[
ηu ∈ ·

∣∣ (ηs)s≤t] = Pu−t(ηt, · ) a.s. (t ≤ u),
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hence (ηt)t∈R is a stationary contact process and its law at any given time

ν := P
[
ηt ∈ ·

]
(t ∈ R)

is an invariant law of the contact process. We call ν the upper invariant law of
the contact process (with given infection rate). As we will see in a moment, in a
certain sense, it is the ‘largest’ invariant law of our process.

By definition, we say that a function f : {0, 1}Zd
is monotone if f(x) ≤ f(y) for

all x ≤ y.

Proposition 2.14 (Stochastic order) Let µ, ν be probability laws on {0, 1}Zd
.

Then the following statements are equivalent:

(i)
∫
µ(dx)f(x) ≤

∫
ν(dx)f(x) ∀ monotone f ∈ C({0, 1}Zd

),

(ii)
∫
µ(dx)f(x) ≤

∫
ν(dx)f(x) ∀ monotone f ∈ B({0, 1}Zd

),

(iii) It is possible to couple random variables X, Y with laws µ = P [X ∈ · ]
and ν = P [Y ∈ · ] in such a way that X ≤ Y .

Proof The implications (iii)⇒(ii)⇒(i) are trivial. For the nontrivial implication
(i)⇒(iii) (which we will never actually need to use), see [Lig85, Theorem II.2.4].

Remark The statements of Proposition 2.14 are not restricted to probability laws
on {0, 1}Zd

. Analogue statements hold for probability laws on R (equipped with
the usual order) or more generally Rn, as well as for other metric spaces on which
an order is defined that is somehow ‘compatible’ with the topology; see [Lig85,
Theorem II.2.4].

If probability laws µ, ν on {0, 1}Zd
satisfy the equivalent conditions (i)–(iii) from

Proposition 2.14, then we say that µ and ν are stochastically ordered and we write2

µ ≤ ν.

Lemma 2.15 (Upper invariant law) Let ν be the upper invariant law of the
contact process and let ν be any other invariant law. Then ν ≤ ν in the stochastic
order.

2This notation may look a bit confusing at first sight, since, if µ, ν are probability measures
on any measurable space (Ω,F), then one might interpret µ ≤ ν in a pointwise sense, i.e., in
the sense that µ(A) ≤ ν(A) for all A ∈ F . In practice, this does not lead to confusion, since
pointwise inequality for probability measures is a very uninteresting property. Indeed, it is easy
to check that probability measures µ, ν satisfy µ ≤ ν in a pointwise sense if and only if µ = ν.



58 CHAPTER 2. THE CONTACT PROCESS

Proof Let A be a random variable, taking values in P(Zd), with law P[A ∈ · ] = ν,
and assume that A is independent of the Poisson point processes used in our
graphical representation. Then, since ν is an invariant law, we have ν = P[ηAt ∈ · ]
for all t ≥ 0. Since the random variables

(ηAt , ηt),

take values in the compact space P(Zd)2, their laws are automatically tight, hence
we can select a subsequence tn → ∞ such that the (ηAtn , ηtn) converge weakly in
law to some limiting random variable (η1, η2), say, where η1 has the law ν, η2 has
the law ν, and moreover

P[i ∈ η1, i /∈ η2] = lim
n→∞

P[i ∈ ηAtn , i 6∈ ηtn ] = lim
n→∞

P[i ∈ ηA,−tn0 , i 6∈ η0]

≤ lim
n→∞

P[Zd × {−tn} (i, 0), −∞ 6 (i, 0)] = 0 (i ∈ Zd),

where we have used that the events Zd × {−tn}  (i, 0) decrease monotonically
to the event −∞  (i, 0), hence the events Zd × {−tn}  (i, 0), −∞ 6 (i, 0)
decrease monotonically to the empty set. We conclude that η1 ⊂ η2 a.s., hence
ν ≤ ν in the stochastic order.

By definition, we say that a probability law µ on P(Zd) is nontrivial if

µ({∅}) = 0,

i.e., if µ gives zero probability to the configuration in which all sites are healthy.

Lemma 2.16 (Survival and the upper invariant law) For the contact process
on Zd with infection rate λ ≥ 0, the following statements are equivalent:

(i) The contact process survives, i.e., θ(λ, d) > 0.

(ii) The upper invariant law ν is nontrivial.

(iii) There exists a nontrivial invariant law.

Moreover, if the contact process dies out, then ν = δ∅.

Proof The implication (ii)⇒(iii) is trivial and (iii)⇒(ii) follows from Lemma 2.15.
To see that (i) and (ii) are equivalent, we start by observing that by duality, for
each finite B ⊂ Zd∫

ν(dA)1{A∩B 6=∅} = P[η0 ∩B 6= ∅]

= P[η†B,0t 6= ∅ ∀t ≥ 0] = P[ηBt 6= ∅ ∀t ≥ 0].
(2.28)
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Note that by Lemma 2.2, this formula determines the law ν uniquely. In particular,
we see that ν = δ∅ if the contact process dies out. On the other hand, if the
contact process survives, then ν 6= δ∅. This is not quite the same as saying that ν
is nontrivial, but at least it tells us that P[η0 6= ∅] > 0. We observe that

P
[
ηt 6= ∅

]
= P

[
ηt 6= ∅

∣∣ η0 6= ∅
]
P
[
η0 6= ∅

]
,

which by the stationarity of η implies that

P
[
ηt 6= ∅

∣∣ η0 6= ∅
]

= 1 (t ≥ 0).

It follows that the conditioned law

ν( · |{A : A 6= ∅})

is a nontrivial invariant law for the contact process, hence by the equivalence of
(ii) and (iii), we must have that ν is nontrivial.

2.8 Ergodic behavior

We define translation operators Ti : P(Zd)→ P(Zd) by

Ti(A) := {j + i : j ∈ A} (i ∈ Zd).

Below, we will sometimes also use the notation

Ti(A) = i+ A.

We say that a probability law µ on P(Zd) is homogeneous or translation invariant
if µ ◦ T−1

i = µ for all i ∈ Zd. A lot of work in the theory of interacting particle
systems is concerned with classifying all invariant laws of a given system, and
proving that the system started from certain initial laws converges in law to a
certain invariant law. In the context of interacting particle systems, invariant laws
are sometimes also called equilibria or equilibrium laws. If an interacting particle
system has a unique invariant law, which is the limit law of the process started in
any initial state, then it is often said that the system is ergodic.3

3This is not very good terminology since it may lead to confusion with another, more usual
concept of ergodicity. If (Xt)t∈R is a stationary process, for example an interacting particle system
in equilibrium, then by definition (Xt)t∈R is ergodic if the law of (Xt)t∈R gives probability zero
or one to all events that are invariant under time shifts. In fact, if a Markov process is ergodic
as defined in the text above, then the corresponding stationary process is ergodic in the sense
defined here, but the converse does not hold in general.
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The main aim of the present section is to prove the following result. It seems this
result is due to Harris [Har76], who in particular seems to have invented the use
of Hölder’s inequality in the proof of Lemma 2.19. I believe an earlier version of
Theorem 2.17, for a somewhat more limited class of initial laws, was proved by a
Russian mathematician, but I forgot who.

Theorem 2.17 (Convergence to upper invariant law) Let (ηt)t≥0 be a con-
tact process started in a homogeneus nontrivial initial law P[η0 ∈ · ]. Then

P[ηt ∈ · ] =⇒
t→∞

ν,

where ν is the upper invariant law.

We start with two preparatory lemmas.

Lemma 2.18 (Extinction versus unbounded growth) For each finite A ⊂
Zd, one has

ηAt = ∅ for some t ≥ 0 or |ηAt | −→
t→∞
∞ a.s. (2.29)

Proof Define

ρ(A) := P
[
ηAt 6= ∅ ∀t ≥ 0

]
(A ⊂ Z2, |A| <∞).

It is not hard to see that for each N ≥ 0 there exists an ε > 0 such that

|A| ≤ N implies ρ(A) ≤ 1− ε. (2.30)

We first argue why it is plausible that this implies (2.29) and then give a rigorous
proof. Imagine that |ηAt | 6→ ∞. Then, in view of (2.30), the process infinitely often
gets a chance of at least ε to die out, hence eventually it should die out.
To make this rigorous, let

AA := {ηAt 6= ∅ ∀t ≥ 0} (A ⊂ Z2, |A| <∞).

denote the event that the process (ηAt )t≥0 survives and let Ft be the σ-field gener-
ated by the Poisson point processes used in our graphical representation till time t.
Then

ρ(ηAt ) = P
[
AA
∣∣Ft] −→

t→∞
1AA

a.s., (2.31)

where we have used an elementary result from probability theory which says that if
Fn is an increasing sequence of σ-fields and F∞ = σ(

⋃
nFn), then limn P[A|Fn] =

P[A|F∞] a.s. for each measurable event A. (See [Loe63, § 29, Complement 10 (b)].)
In view of (2.30), formula (2.31) implies (2.29).
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Lemma 2.19 (Nonzero intersection) Let (ηt)t≥0 be a contact process started
in a homogeneus nontrivial initial law P[η0 ∈ · ]. Then for each s, ε > 0 there
exists an N ≥ 1 such that for any subset A ⊂ Zd

|A| ≥ N implies P
[
A ∩ ηs 6= ∅

]
≥ 1− ε.

Proof By duality (Lemma 2.1)

P
[
A ∩ ηs 6= ∅

]
= P

[
ηAs ∩ η0 6= ∅

]
where η0 is independent of the graphical representation used to define ηAs . Set
ΛM := {−M, . . . ,M}d. It is not hard to see that each set A ⊂ Zd with |A| ≥ N
contains a subset A′ ⊂ A with |A′| ≥ N/|ΛM | such that the sets{

i+ ΛM : i ∈ A′
}

are disjoint, where as before we define i + ΛM := {i + j : j ∈ ΛM}. Write  i+ΛM

to indicate the presence of an open path that stays in i+ ΛM and set

η{i} (M)
s :=

{
j ∈ Zd : (i, 0) i+ΛM

(j, s)
}
.

Then, using Hölder’s inequality4 in the inequality marked with an exclamation
mark, we have

P
[
ηAs ∩ η0 = ∅

]
=

∫
P[η0 ∈ dB]P

[
ηAs ∩B = ∅

]
≤
∫

P[η0 ∈ dB]P
[ ⋃
i∈A′

η{i} (M)
s ∩B = ∅

]
=

∫
P[η0 ∈ dB]

∏
i∈A′

P
[
η{i} (M)
s ∩B = ∅

]
!

≤
∏
i∈A′

(∫
P[η0 ∈ dB]P

[
η{i} (M)
s ∩B = ∅

]|A′|)1/|A′|

=
∏
i∈A′

(∫
P[η0 ∈ dB]P

[
η{0} (M)
s ∩B = ∅

]|A′|)1/|A′|

=

∫
P[η0 ∈ dB]P

[
η{0} (M)
s ∩B = ∅

]|A′|
,

where we have used the homogeneity of P[η0 ∈ · ] in the one but last equality. Our
arguments so far show that |A| ≥ N implies that

P
[
A ∩ ηs = ∅

]
≤
∫

P[η0 ∈ dB]P
[
η{0} (M)
s ∩B = ∅

]N/|ΛM | =: f(N,M).

4Recall that Hölder’s inequality says that 1/p + 1/q = 1 implies ‖fg‖1 ≤ ‖f‖p‖g‖q, where
‖f‖p := (

∫
|f |pdµ)1/p. By induction, this gives ‖

∏n
i=1 fi‖1 ≤

∏n
i=1 ‖fi‖n.
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Here, using the fact that

P
[
η{0} (M)
s ∩B = ∅

]
< 1 if B ∩ ΛM 6= ∅,

we see that

lim
N↑∞

f(N,M) =

∫
P[η0 ∈ dB]1{B∩ΛM =∅} = P[η0 ∩ ΛM = ∅].

Since P[η0 ∈ · ] is nontrivial, we have moreover

lim
M↑∞

P[η0 ∩ ΛM = ∅] = P[η0 = ∅] = 0.

Thus, we have shown that

lim
M→∞

lim
N→∞

f(N,M) = 0.

By a diagonal argument, for each ε > 0 we can choose N and MN such that
f(N,MN) ≤ ε, proving our claim.

Exercise 2.20 Show by counterexample that the statement of Lemma 2.19 is false
for s = 0.

Proof of Theorem 2.17 Since the space P(Zd) is compact, the laws of the ηt
with t ≥ 0 are tight, hence by Lemma 1.1 it suffices to prove that ν is the only
weak cluster point. By Lemma 2.2 and formula (2.28), it suffices to show that

lim
t→∞

P
[
A ∩ ηt 6= ∅

]
= P

[
A ∩ η0 6= ∅

]
= P

[
ηAu 6= ∅ ∀u ≥ 0

]
=: ρ(A)

for all finite A ⊂ Zd. By duality (Lemma 2.1), this is equivalent to showing that

lim
t→∞

P
[
ηAt−s ∩ ηs 6= ∅

]
= ρ(A)

(
A ⊂ Zd, |A| <∞

)
,

where (ηAt )t≥0 and (ηt)t≥0 are independent and s > 0 is some fixed constant. For
each ε > 0, we can choose N as in Lemma 2.19, and write

P
[
ηAt ∩ ηs 6= ∅

]
= P
[
ηAt ∩ ηs 6= ∅

∣∣ |ηAt | = 0
]
P
[
|ηAt | = 0

]
+P
[
ηAt ∩ ηs 6= ∅

∣∣ 0 < |ηAt | < N
]
P
[
0 < |ηAt | < N

]
+P
[
ηAt ∩ ηs 6= ∅

∣∣ |ηAt | ≥ N
]
P
[
|ηAt | ≥ N

]
.
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Here, by Lemma 2.18 and our choice of N ,

(i) P
[
ηAt ∩ ηs 6= ∅

∣∣ |ηAt | = 0
]

= 0,

(ii) lim
t→∞

P
[
0 < |ηAt | < N

]
= 0,

(iii) lim inf
t→∞

P
[
ηAt ∩ ηs 6= ∅

∣∣ |ηAt | ≥ N
]
≥ 1− ε,

(iv) lim
t→∞

P
[
|ηAt | ≥ N

]
= ρ(A),

from which we conclude that

(1− ε)ρ(A) ≤ lim inf
t→∞

P
[
ηAt ∩ ηs 6= ∅

]
≤ lim sup

t→∞
P
[
ηAt ∩ ηs 6= ∅

]
≤ ρ(A).

Since ε > 0 is arbitrary, our proof is complete.

Theorem 2.17 has a simple corollary.

Corollary 2.21 (Homogeneous invariant laws) All homogeneous invariant
laws of a contact process are convex combinations of δ∅ and ν.

Proof If the contact process dies out, then ν = δ∅ is the largest invariant law
with respect to the stochastic order, hence δ∅ is the only invariant law and the
statement is trivially true. On the other hand, if the contact process survives,
then ν is nontrivial (recall Lemma 2.16). Moreover, by Theorem 2.17, if µ is a
nontrivial homogeneous invariant law and (ηt)t≥0 is a contact process started in
the initial law µ, then

µ = P[ηt ∈ · ] =⇒
t→∞

ν.

In particular, this should hold if µ is an invariant law, hence ν is the only nontrivial
homogeneous invariant law. We recall from the proof of Lemma 2.16 that if µ is
any homogeneous invariant law, then we may write

µ = µ({∅})δ∅ +
(
1− µ({∅})

)
µ( · |{A : A 6= ∅})

where µ( · |{A : A 6= ∅}) is a nontrivial homogeneous invariant law. From this we
see that all homogeneous invariant laws are convex combinations of δ∅ and ν.

Recall from Proposition 2.10 that the function λ 7→ θ(λ) is right-continuous ev-
erywhere. As an application of Theorem 2.17, we prove the following result.

Proposition 2.22 (Left-continuity) The function λ 7→ θ(λ) is left-continuous
on (λc,∞).
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We first prove two preparatory lemmas. Let Cfin(P(Zd)) denote the space of real
functions on P(Zd) that depend on finitely many coordinates, as defined in Sec-
tion 1.7.

Lemma 2.23 (Convergence of semigroups) Let (P λ
t )t≥0 be the Markov semi-

group of the contact process on Zd with infection rate λ. Then

‖P λn
t f − P λ

t f‖ −→
λn→λ

0
(
t, λ ≥ 0, f ∈ Cfin({0, 1}Zd

)
)
.

where ‖ · ‖ denotes the supremumnorm.

Proof We use the coupling from the proof of Proposition 2.10 and set

ηA,λt :=
{
i : A× {0} λ (i, t)

}
.

Let f be a function that depends only on the coordinates in a finite set Λ ⊂ Zd.
Let 0 ≤ λn → λ and choose some λ′ such that λn ≤ λ′ for all n. Let Γ be the

collection of all infection arrows ((i, j), t, κ) ∈ ∆
i

that are used in some infection
path along arrows with values κ ≤ λ′ starting at time zero and ending somewhere
in the finite set Λ. Then Γ contains all arrows that are relevant for deciding which
points belong to the set Λ∩ ηA,λt . Let Γλ denote the set of arrows in Γ that have a
value κ ≤ λ. Since Γ is a.s. finite (by Lemma 2.8), there a.s. exists some random
m such that Γλn = Γλ for all n ≥ m. It follows that

|P λn
t f(A)− P λ

t f(A)| =
∣∣E[f ′(Λ ∩ ηA,λn

t )− f ′(Λ ∩ ηA,λt )
]∣∣

≤ 2‖f‖P[Γλn 6= Γλ] −→
n→∞

0,

and this convergence is uniform in A, as claimed.

Lemma 2.24 (Convergence of invariant laws) Let νn, ν be probability laws on
P(Zd) such that νn ⇒ ν and let 0 ≤ λn → λ. Assume that νn is an invariant law
for the contact process with infection rate λn, for each n. Then ν is an invariant
law for the contact process with infection rate λ.

Proof We introduce the notation

µf :=

∫
µ(dx)f(x).

With this notation, if (Xt)t≥0 is a Markov process with Markov semigroup (Pt)t≥0,
started in the initial law P[X0 ∈ · ] = µ, then

µPtf =

∫
P[X0 ∈ dx]

∫
Pt(x, dy)f(y) = E[f(Xt)].
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We write

|νP λ
t f − νf | ≤ |νP λ

t f − νnP λ
t f |+ |νnP λ

t f − νnP λn
t f |+ |νnP λn

t f − νnf |+ |νnf − νf |

where of course |νnP λn
t f − νnf | = 0 since νn is an invariant law for the process

with infection rate λn. It follows from the Feller property of the contact process
(which is a consequence of Theorem 1.15) that Pλt maps continuous functions into
continuous functions, hence by our assumption that νn ⇒ ν we have

|νnP λ
t f − νP λ

t f | −→
n→∞

0 and |νnf − νf | −→
n→∞

0

for each f ∈ C(P(Zd)) and t ≥ 0. Assuming that moreover f ∈ Cfin(P(Zd)), we
have by Lemma 2.23 that

|νnP λ
t f − νnP λn

t f | ≤ ‖P λ
t f − P λn

t f‖ −→
n→∞

0.

It follows that
νP λ

t f = νf
(
t ≥ 0, f ∈ Cfin(P(Zd))

)
,

hence ν is an invariant law for the contact process with infection rate λ.

Proof of Proposition 2.22 Let νλ denote the upper invariant law of the contact
process with infection rate λ. Choose λc < λn ↑ λ. Since the space {0, 1}Zd

is
compact, the measures νλn are tight. By Lemma 2.24, each weak cluster point of
the νλn is a homogeneous invariant law of the contact process with infection rate
λ. Since each νλn is the law of a process ηt as defined in Section 2.7, we see in
the same way as in the proof of Lemma 2.7 that the laws νλn are increasing in
the stochastic order, hence each weak cluster point of the νλn is nontrivial. By
Corollary 2.21, it follows that each weak cluster point must equal νλ, hence we
conclude that

νλn =⇒
n→∞

νλ.

Since by (2.28),

θ(λ) =

∫
νλ(dA)1{0∈A},

this implies that θ(λn)→ θ(λ).

2.9 Other topics

Corollary 2.21 tells us that all homogeneous invariant laws of a contact process are
convex combinations of δ∅ and the upper invariant law. One may wonder if there
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exist inhomogeneous invariant laws. The answer to this question is known to be
negative. This follows from the following theorem, that strengthens Theorem 2.17
quite a bit:

Theorem 2.25 (Complete convergence) The contact process started in any
initial state satisfies

P[ηAt ∈ · ] =⇒
t→∞

ρ(A)ν + (1− ρ(A))δ∅,

where ρ(A) := P
[
ηAt 6= ∅ ∀t ≥ 0

]
.

Complete convergence was proved first only for λ sufficiently large. In [BG90],
this was extended to arbitrary λ ≥ 0. In fact, more is known: it is known that if
the process survives, then the infected area grows approximately linear and has a
deterministic limiting shape. This result is known as the shape theorem.
The proof of complete convergence is quite a bit more involved than the proof
of Theorem 2.17. To understand why this is so, it is useful to generalize a bit
and consider contact processes on more general lattices, e.g., infinite graphs. As
long as the graph has some sort of translation invariant structure, Theorem 2.17
still holds (and the proof basically carries through without a change). However,
complete convergence does not hold in this generality. In particular, for processes
on trees, it is known that there exist two critical values λc < λ′c such that in the
intermediate regime complete convergence does not hold and there exist inhomo-
geneous invariant laws. The study of contact processes on more general lattices is
quite a lively modern subject with several nice open problems.



Chapter 3

The Ising model

3.1 Introduction

In this chapter, we study the Ising model. The Ising model model has been intro-
duced by E. Ising in 1925 [Isi25] as a simple model for a ferromagnetic material,
based on the theory of Gibbs measures, which dated from the late nineteenth cen-
tury when people like Boltzmann tried to find a microscopic basis for the laws
of thermodynamics that had been discovered earlier in that century. In his Phd
thesis, Ising showed that the one-dimensional model that now bears his name does
not exhibit a phase transition, and based on this he incorrectly concluded that
the same is true in any dimension. In 1936, Peierls [Pei36] used his famous ar-
gument (a variation on which we have already seen in Chapter 2) to prove this
conjecture wrong in dimensions two and more. In 1944, Onsager showed that the
two-dimensional model can, in a certain sense, be solved explicitly [Ons44]. (No
explicit solutions are known or believed to exist in dimensions three and more.)

The Ising model as such, it should be pointed out, is not an interating particle
system. Rather, it is a certain probability law (Gibbs measure) on spin con-
figurations, depending on a certain parameter related to the temperature of the
system. It is possible, however, and physically meaningful, to construct interact-
ing particle systems that have these Gibbs measures as invariant measures. Such
interacting particle systems are called stochastic Ising models. The first one to
contruct stochastic Ising models was Glauber [Gla63]. The subject was taken up
again and studied more profoundly by Dobrushin in a series of papers starting with
[Dob71]. Using the ‘interacting particle systems approach’, it is possible to give
nice short proofs of certain properties of the Ising model. Conversely, the Ising
model gives in a natural way rise to a number of interesting interacting particle
systems which have sufficiently many pleasant properties to make it possible to

67
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prove things about them, while on the other hand they are sufficiently ‘difficult’
to be interesting.

3.2 Definition, construction, and ergodicity

For definiteness, we will introduce one stochastic Ising model, i.e., an interacting
particle system that has the Gibbs measures of the Ising model as its invariant
law(s), that we will mostly focus on. As we will see later, there exist several ways
to invent a dynamics for the Ising model, and many things that we will prove for
our specific model are valid more generally.
The model that we will mostly focus our attention on is the interacting particle
system with the following description. At each site i ∈ Zd, there is an atom which
has a property called spin which makes it act like a small magnet that can either
point up, in which case we say the site i is in the state +1, or down, in which
case we say the site i is in the state −1. Our stochastic Ising model is therefore a
Markov process (Xt)t≥0 with state space {−1, 1}Zd

. We will consider the following
dynamics: if the process is in a state x = (x(i))i∈Zd ∈ {−1, 1}Zd

, then

x(i) jumps:

−1 7→ 1 with rate e−β
P

j: |i−j|=1 1{x(j)=−1} ,

1 7→ −1 with rate e−β
P

j: |i−j|=1 1{x(j)=1} .

Here β > 0 is a parameter (loosely) called the inverse temperature. Indeed, in the
physical interpretation of the model, β = J/kT where T is the temperature, J is
the energy difference between aligned and unaligned neighboring spins, and k is
Boltzmann’s constant. The motivation for our dynamics is roughly as follows: due
to the constant motion of atoms, spins tend to flip in a random way between the +1
and −1 state. However, because of the magnetic interaction between neighboring
atoms, neighboring spins like to be aligned (i.e., point in the same direction). This
is expressed by making a spin less likely to flip when it has a lot of neighbors that
point in the same direction. This effect is stronger when β is large (i.e., when the
temperature is low). Note that (contrary to what we saw for the contact process)
our dynamics treat the two values −1,+1 for the spins symmetrically.

In order to construct our process rigorously, we use a graphical representation. We
first write down the formal generator of our process, which is

Gf(x) :=
∑
i∈Zd

e−β
P

j∈Ni
1{x(j)=x(i)}

(
f(x{i})− f(x)

)
(x ∈ {−1, 1}Zd

), (3.1)
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where in analogy with (2.2), we define x{i} by

x{i}(j) :=

{
−x(j) if i = j,
x(j) otherwise,

and
Ni := {j ∈ Zd : |i− j| = 1} (i ∈ Zd)

denotes the set of neighbors of a site i. To invent a graphical representation, we
need to rewrite our generator in terms of local maps. For each i ∈ Zd and subset
L ⊂ Ni, let us define the maps m−i,L,m

+
i,L by

(m−i,Lx)(k) :=

{
−1 if k = i, x(j) = −1 ∀j ∈ L,
x(k) otherwise,

(m+
i,Lx)(k) :=

{
+1 if k = i, x(j) = +1 ∀j ∈ L,
x(k) otherwise,

Then we may write our generator in the form

Gf(x) :=
∑
i∈Zd

∑
L⊂Ni

p|L|(1− p)2d−|L|(f(m−i,Lx)− f(x)
)

+
∑
i∈Zd

∑
L⊂Ni

p|L|(1− p)2d−|L|(f(m+
i,Lx)− f(x)

)
,

where
p := 1− e−β.

To see why this is correct, note that according to our new formulation of the
generator, the spin at site i flips from −1 to +1 at rate∑

L⊂Ni

p|L|(1− p)2d−|L|1{x(j)=+1 ∀j∈L}. (3.2)

Let L be a random subset of Ni such that independently for each neighbor j of i,
one has P[j ∈ L] = p. Then the rate in (3.2) may be rewritten as

P[x(j) = +1 ∀j ∈ L] =
∏

j∈Ni:x(j)=−1P[j /∈ L]

= (1− p)
P

j∈Ni
1{x(j)=−1} = e−β

P
j∈Ni

1{x(j)=−1} ,

as required. By symmetry, a similar argument holds for flips from +1 to −1.

Using these observations, we can define a graphical representation for our process
as follows. Let H be the space of all triples of the form

(σ, i, L) with σ ∈ {−,+}, i ∈ Zd, L ⊂ Ni,
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Figure 3.1: Graphical representation of our stochastic Ising model.

and let ∆ be a Poisson point process on H × R with intensity p|L|(1 − p)2d−|L|dt.
We interpret a point (σ, i, L, t) as saying that at time t, the state of of system
changes according to the local map mσ

i,L. To draw this in a picture, for each point
(σ, i, L, t) ∈ ∆, we draw a circle at the point (i, t) ∈ Zd × R with the sign s in it,
and we draw arrows starting at each point j ∈ L and ending in i (see Figure 3.1).
(Note that L may contain anything between zero and 2d elements.)

By Theorems 1.15 and 1.18, this graphical representation defines a Feller process
with values in {−1,+1}Zd

whose generator is the closure of the operator in (3.1).
Recall the definition of path γ from Section 1.6 and of a path of influence in (1.21).
We observe that D(m±i,L) = {i} and

Ri(m
±
i,L) =

{
L ∪ {i} if L 6= ∅,
∅ if L = ∅.

Therefore, a path γ is a path of influence if and only if

(i) ∀t ∈ [s, u] with γt− 6= γt ∃(σ, i, L, t) ∈ ∆ s.t. γt− ∈ L, γt = i,

(ii) 6 ∃(σ, i, L, t) ∈ ∆ s.t. |L| = ∅, t ∈ [s, u], γt = i.

In our picture, this says that a path may use arrows but must avoid points (i, t),
marked with an 	 or ⊕ where no arrows come in. Note that at such points, the
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spin at site i flips to the state −1 or +1, regardless of the state of the system prior
to time t. The constant K from (1.23) is given by

K = 2
∑
L⊂Ni

p|L|(1− p)2d−|L|(|L| − 1{L=∅})

= 2
(
E
[
|L|
]
− P[L = ∅]

)
= 2(2dp− (1− p)2d),

where as before L denotes a random subset of Ni such that P[j ∈ L] = p indepen-
dently for all j ∈ Ni.
Since K < 0 for β sufficiently small, we can draw an interesting conclusion.

Proposition 3.1 (Ergodicity for high temperature) Let β′ := sup{β > 0 :
2d(1− e−β)− e−2dβ < 0}. Then, for each β < β′, our stochastic Ising model has a
unique invariant measure ν and the process started from any initial law satisfies

P[Xt ∈ · ] =⇒
t→∞

ν. (3.3)

Proof We observe that for each β < β′, the constant K from (1.23) is strictly
negative. Write

P[Xt ∈ · ] = P
[
Ψ∆,−t,0(X0) ∈ ·

]
,

where Ψ∆,s,t is defined as in Section 1.6. Define ζ
{i},t
s as in (1.22) and set

σ(i,t) := sup{s ≤ t : ζ{i},ts = ∅}.

By Lemma 1.13 and the fact that K < ∞, we observe that −∞ < σ(i,t) for each

(i, t) ∈ Zd × R. Fix some arbitrary x ∈ {−1,+1}Zd
and define a process (Yt)t∈R

with values in {−1,+1}Zd
by

Yt(i) := Ψ∆,σ(i,t)−1,t(x)(i) (t ∈ R, i ∈ Zd).

Note that this definition does not depend on the choice of x since no path of
influence ending at (i, t) starts before time σ(i,t). Moreover, (Yt)t∈R is a stationary
stochastic Ising model. Since

Ψ∆,−t,0(X0)(i) = Y0(i) ∀ − t < σ(i, 0),

we see that Ψ∆,−t,0(X0) converges pointwise to Y0 as t→∞ and therefore the law
of Xt converges weakly to the law of Y0.

Alternative proof of Proposition 3.1 (sketch) Since K < 0 for all β < β′, it
follows from Lemma 1.21 that

sup
x
Ptf(x)− inf

x
Ptf(x) =

∑
i

δPtf(i) −→
t→∞

0
(
f ∈ Csum({−1,+1}Zd

)
)
.
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Figure 3.2: Alternative graphical representation of our stochastic Ising model.

Since supx Ptf(x) (resp. infx Ptf(x)) is a nonincreasing (resp. nondecreasing) func-
tion of t, it follows that for each f ∈ Csum({−1,+1}Zd

), there exists a constant cf
such that

Ptf(x) −→
t→∞

cf
(
x ∈ {−1,+1}Zd)

.

Since the space {−1,+1}Zd
is compact, for each tn →∞, by going to a subsequence

if necessary, we may assume that∫
P[X0 ∈ dx]Ptn(x, · ) =⇒

n→∞
ν

for some probability law ν. By what we have just proved,∫
ν(dx)f(x) = cf

(
f ∈ Csum({−1,+1}Zd

)
)
.

Since Csum({−1,+1}Zd
) is dense in C({−1,+1}Zd

), it follows that all subsequential
limits of the measures

∫
P[X0 ∈ dx]Pt(x, · ) are equal, and independent of the law

of X0.

Exercise 3.2 (Alternative graphical representation) For each i ∈ Zd let us
define the maps

(m−i x)(k) :=

{
−1 if k = i,
x(k) otherwise,

(m+
i x)(k) :=

{
+1 if k = i,
x(k) otherwise,
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Moreover, for each i ∈ Zd and nonempty subset L ⊂ Ni, let us define

(mi,Lx)(k) :=

{
−x(i) if k = i, x(j) 6= x(i) ∀j ∈ L,
x(k) otherwise.

Then we may rewrite our generator in the form

Gf(x) := (1− p)2d
∑
i∈Zd

(
f(m−i x) + f(m+

i x)− 2f(x)
)

+
∑
i∈Zd

∑
∅6=L⊂Ni

p|L|(1− p)2d−|L|(f(mi,Lx)− f(x)
)
.

Based on this, we may introduce an alternative graphical representation for our
stochastic Ising model (see Figure 3.2). Use this to improve Proposition 3.1 by
proving ergodicity for a larger range of the parameter.

3.3 Gibbs measures and finite systems

Let Λ be some finite set and let H : {−1,+1}Λ → R be some function. By
definition, the Gibbs measure belonging to the Hamiltonian (or energy function)
H and inverse temperature β is the probability measure on {−1,+1}Λ given by

µ({x}) =
1

Z
e−βH(x) (

x ∈ {−1,+1}Λ
)
, (3.4)

where
Z :=

∑
x∈{−1,+1}Λ

e−βH(x) (3.5)

is a normalization constant, also called the partition sum. Note that if H,H ′ are
two energy functions that differ only by a constant, then the associated Gibbs
measures are the same. Indeed, if H(x) = H ′(x) + c and µ, µ′ are the associated
Gibbs measures, then all probabilities in µ′ get an extra factor e−βc, but this
disappears in the normalization. Indeed, we make the following simple observation.

Lemma 3.3 (Relative probabilities)
(a) If Λ is a finite set and µ is the Gibbs measure on {−1,+1}Λ with Hamiltonian
H and inverse temperature β, then

µ({x′})
µ({x})

= e−β(H(x′)−H(x)) (
x, x′ ∈ {−1,+1}Λ

)
. (3.6)
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(b) Conversely, if µ is a measure on {−1,+1}Λ and

µ({x{i}})
µ({x})

= e−β(H(x{i})−H(x)) (
i ∈ Λ, x ∈ {−1,+1}Λ

)
, (3.7)

then µ must be the Gibbs measure on {−1,+1}Λ associated with H and β.

Proof Part (a) is trivial. To prove part (b), we note that for each x, x′ ∈
{−1,+1}Zd

we can find x0, . . . , xn such that x = x0, x′ = xn, and xk differs only in
one point from xk−1 (k = 1, . . . , n). In view of this, (3.7) implies (3.6). Choosing
some arbitrary reference state x′, we see that (3.6) determines all probabilities up
to an overall multiplicative constant, which follows from the normalization.

We need to introduce some notation. If S,R are disjoint sets, x ∈ {−1,+1}S, and
y ∈ {−1,+1}R, then we define x&y ∈ {−1,+1}S∪R as (x&y)(i) := x(i) if i ∈ S
and (x&y)(i) := y(i) if i ∈ R. Now let Λ be a finite set, let H : {−1,+1}Λ → R
be a function, and let µΛ,β be the Gibbs measure on {−1,+1}Λ with Hamiltonian
H and inverse temperature β. For each ∆ ⊂ Λ and y ∈ {−1,+1}Λ\∆, let H∆

y :
{−1,+1}∆ → R be a function such that

H∆
y (x) = H(x&y) + c∆

y

(
x ∈ {−1,+1}∆

)
,

where c∆
y is a constant that may depend on ∆ and y but not on x. Let µ∆,β

y be the
Gibbs measure on {−1,+1}∆ associated with H∆

y and β. (Note that this Gibbs
measure is uniquely defined even though H∆

y is defined only up to a constant.) We
make the following observations:

Lemma 3.4 (Conditional distributions)
(a) If (X(i))i∈Λ is a random variable with law µΛ,β, then for each ∆ ⊂ Λ, the
conditional law of X inside ∆ given its values outside ∆ is given by

P
[
(X(i))i∈∆ ∈ ·

∣∣ (X(i))i∈Λ\∆ = y
]

= µ∆,β
y . (3.8)

(b) Conversely, if (X(i))i∈Λ is a random variable with values in {−1,+1}Λ and
(3.8) holds for each ∆ ⊂ Λ such that |∆| = 1, then the law of X must be equal to
µΛ,β.

Proof We observe that

P
[
(X(i))i∈∆ = x′

∣∣ (X(i))i∈Λ\∆ = y
]

P
[
(X(i))i∈∆ = x

∣∣ (X(i))i∈Λ\∆ = y
]

=
P
[
(X(i))i∈∆ = x′, (X(i))i∈Λ\∆ = y

]
P
[
(X(i))i∈∆ = x, (X(i))i∈Λ\∆ = y

] =
e−βH(x′&y)

e−βH(x&y)
= e−β(Hy(x′)−Hy(x)).
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In view of this, the statements follow from Lemma 3.3.

The fact that we would like to prove is that Gibbs measures associated with the
Hamiltonian 1

H(x) :=
∑
{i,j}∈B

1{x(i)6=x(j)} (3.9)

are reversible invariant measures for the stochastic Ising model constructed in the
previous section. A “slight” problem with this statement is that the sum in this
definition runs over the set

B :=
{
{i, j} : i, j ∈ Zd, |i− j|

}
of all (unordered) nearest neighbor pairs in Zd. As a consequence, for most x, the
sum in (3.9) is actually infinite. In addition, the set {−1,+1}Zd

is uncountable, so
it is clear that we cannot define Gibbs measures on {−1,+1}Zd

in the same way
as we have done for finite lattices.

The solution to this problem is suggested by Lemma 3.4. Instead of looking at
the absolute probability of one particular configuration x (which will typically be
zero), we will look at conditional probabilities of finding certain configurations
inside a finite set Λ ⊂ Zd, given what is outside.

To this aim, for each Λ ⊂ Zd, we define

∂Λ := {i ∈ Zd\Λ : ∃j ∈ Λ s.t. |i− j| = 1}

and let

BΛ :=
{
{i, j} : i, j ∈ Λ, |i− j|

}
and ∂BΛ :=

{
(i, j) : i ∈ Λ, j ∈ ∂Λ, |i− j|

}
denote the set of nearest-neighbor edges inside Λ and pointing out of Λ, respec-
tively. For each finite Λ ⊂ Zd, x ∈ {−1,+1}Λ and y ∈ {−1,+1}Zd\Λ, we define

HΛ
y (x) :=

∑
{i,j}∈BΛ

1{x(i)6=x(j)} +
∑

(i,j)∈∂BΛ

1{x(i)6=y(j)}.

We let µΛ,β
y denote the finite-volume Gibbs measure associated with Hy and β. We

call this the finite-volume Gibbs measure with boundary condition y.

1Here I deviate from the usual definition of the Hamiltonian for the Ising model, which is

H ′(x) := −
∑
{i,j}∈B

x(i)x(j) =
∑
{i,j}∈B

(21{x(i)6=x(j)} − 1).

We observe that H ′(x) = 2H(x) + c, where c := |B| is an irrelevant additive constant. In view
of this, what is β in these lecture notes, is 2β in most of the literature on the Ising model.
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Definition 3.5 (Infinite-volume Gibbs measures) We say that the law µ of
an {−1,+1}Zd

-valued random variable (X(i))i∈Zd is a Gibbs measure associated
with the formal Hamiltonian (3.9) and inverse temperature β, if for each finite
Λ ⊂ Zd, one has

P
[
(X(i))i∈Λ ∈ ·

∣∣ (X(i))i∈Zd\Λ = y
]

= µΛ,β
y

for a.e. y w.r.t. µ.

We need to show that such infinite-volume Gibbs measures exist and are reversible
invariant laws for the stochastic Ising model constructed in the previous section.

We first need some basic facts about Markov processes with finite state spaces. Let
(Xt)t≥0 be a Markov process with finite state space S, Markov semigroup (Pt)t≥0,
generator G and jump rates {r(x, y) : x, y ∈ S, x 6= y}. By definition, a Markov
process with given jump rates {r(x, y) : x, y ∈ S, x 6= y} is irreducible if

∀S ′ ⊂ S with S ′ 6= ∅, S ∃x ∈ S ′, y /∈ S ′ such that r(x, y) > 0.

Proposition 3.6 (Ergodicity) Consider a Markov process on a finite state space
S with jump rates {r(x, y) : x, y ∈ S, x 6= y}. If the jump rates are irreducible,
then the Markov process has a unique invariant law µ and the process (Xt)t≥0

started in any initial law satisfies

P[Xt = x] −→
t→∞

µ(x) (x ∈ S). (3.10)

We recall from (1.3) that the Markov property is symmetric with respect to time
reversal. Thus, if (X1, . . . , Xn) is a (finite) Markov chain, then so is (Xn, . . . , X1);
similar statements hold for continuous-time processes. However, if a Markov pro-
cess is time-homogeneous, then the same need not be true for the time-reversed
process. An exception are stationary Markov processes: reversing the time in a
stationary Markov process yields a stationary, hence time-homogeneous Markov
process. The transition probabilities of this time-reversed process need not be
the same as those of the original process, however. This leads to the following
definition.

Definition 3.7 (Reversibility) Let S be a finite set and let (Pt)t≥0 be a Markov
semigroup on S. Then, by definition, we say that an invariant law µ of (Pt)t≥0 is
reversible if the stationary process in with law P[Xt ∈ · ] = µ satisfies

P
[
(X−t)t∈R ∈ ·

]
= P

[
(Xt−)t∈R ∈ ·

]
. (3.11)
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Note that (X−t)t∈R has left-continuous sample paths, which is why we compare
this in (3.11) with (Xt−)t∈R, the left-continuous modification of (Xt)t∈R. We state
the following fact without proof.

Proposition 3.8 (Detailed balance) A probability law µ on a finite set S is a
reversible invariant law for a Markov process in S with jump rates {r(x, y) : x, y ∈
S, x 6= y} if and only if

µ(x)r(x, y) = µ(y)r(y, x) (x, y ∈ S). (3.12)

Condition (3.12) is called detailed balance. Note that this says that in equilibrium,
jumps from x to y happen with the same frequency as jumps from y to x.

We now apply these facts to study finite-volume Gibbs measures µΛ,β
y with fixed

boundary conditions y. Our first result says that such finite-volume Gibbs mea-
sures are reversible invariant laws for a suitable finite-volume version of our stochas-
tic Ising model.

Proposition 3.9 (Gibbs reversible law) Let Λ ⊂ Zd be a finite set, let y ∈
{−1,+1}Zd\Λ, and let (Xt)t≥0 be the finite state Markov process in {−1,+1}Λ that
jumps as

x 7→ x{i} with rate e−β(
∑

j∈Ni∩Λ 1{x(i)=x(j)} +
∑

j∈Ni∩∂Λ 1{x(i)=y(j)}).

Then the Gibbs measure µΛ,β
y is a reversible invariant law for (Xt)t≥0. Moreover,

the process (Xt)t≥0 started from any initial law satisfies P [Xt ∈ · ] =⇒
t→∞

µΛ,β
y .

Proof We must check detailed balance (3.12). Fix i ∈ Λ and x ∈ {−1,+1}Λ\{i},
and define x−, x+ ∈ {−1,+1}Λ by

x−(j) :=

{
−1 if j = i,
x(j) otherwise,

and x+(j) :=

{
+1 if j = i,
x(j) otherwise.

We must check that

µΛ,β
y ({x−})r(x−, x+) = µΛ,β

y ({x+})r(x+, x−), (3.13)

where r(x−, r+) and r(x+, x−) are the rates with which our process jumps from
x− to x+ and back, respectively. Let

n+ :=
∑

j∈Ni∩Λ

1{x(j)=+1} +
∑

j∈Ni∩∂Λ

1{y(j)=+1},

n− :=
∑

j∈Ni∩Λ

1{x(j)=−1} +
∑

j∈Ni∩∂Λ

1{y(j)=−1}.
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Then
µΛ,β
y ({x+})
µΛ,β
y ({x−})

=
e−βn−

e−βn+
=
r(x−, x+)

r(x+, x−)
,

which implies (3.13). To check that the process (Xt)t≥0 is ergodic, it suffices to
check irreducibility and apply Proposition 3.6.

3.4 The upper and lower invariant laws

We still need to show the existence of infinite-volume Gibbs measures, as well as
the fact that these are reversible invariant laws for our infinite-volume stochastic
Ising model. We will concentrate on two special infinite-volume Gibbs measures,
which are the upper and lower invariant laws of our stochastic Ising model.

Proposition 3.10 (Upper and lower invariant laws) Let (Xt)t≥0 be the
stochastic Ising model from Section 3.2, started in the initial state X0(i) = +1
for all i ∈ Zd. Then

P
[
Xt ∈ ·

]
=⇒
t→∞

ν,

where ν is an invariant law of the process with the property that if ν is any other
invariant law, then ν ≤ ν in the stochastic order. Likewise, if (Xt)t≥0 is started in
X0(i) = −1 for all i ∈ Zd, then

P
[
Xt ∈ ·

]
=⇒
t→∞

ν,

where ν is an invariant law of the process with the property that if ν is any other
invariant law, then ν ≤ ν in the stochastic order.

Proof Our graphical representation shows that the Ising model is monotone, i.e.,
if Xx and Xx′ are processes started in initial states such that x ≤ x′, then we can
couple Xx and Xx′ such that Xx

t ≤ Xx′
t for all t ≥ 0. In terms of the semigroup

(Pt)t≥0 of our process, this says that if µ, µ′ are laws on {−1,+1}Zd
such that

µ ≤ µ′ in the stochastic order, then µPt ≤ µ′Pt for all t ≥ 0. Applying this to
µ = δ+1Pt−s and µ′ = δ+1, where +1 denotes the all plus configuration, we see that
δ+1Ps ≥ δ+1Pt−sPs = δ+1Pt for all 0 ≤ s ≤ t. This means that for each sequence of
times tn ↑ ∞ we can couple the random variables Xtn such that the Xtn decrease
to some a.s. limit. It is not hard to see that this implies that P[Xt ∈ · ] converges
weakly to some limit law ν as t → ∞, and using this we can prove that ν is an
invariant law. (We skip the details.) The fact that ν is the largest invariant law
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in the stochastic order can be proved similar to the proof of Lemma 2.15. By
symmetry, similar arguments apply to ν.

For each finite Λ ⊂ Zd, we let HΛ
+(x) and µΛn,β

+ denote the Hamiltonian HΛ
y (x)

and finite-volume Gibbs measure, respectively, with boundary condition y given
by y(i) = +1 for all i ∈ Zd\Λ. We define HΛ

−(x) and µΛ,β
− similarly, with minus

boundary conditions.

Proposition 3.11 (Limits of finite volume Gibbs measures) Let Λn ⊂ Zd

be finite sets such that Λn ↑ Zd. For each n, let XΛn = (XΛn(i))i∈Zd be a random
variable such that X(i) = +1 for all i ∈ Zd\Λn and

P
[
(XΛn(i))i∈Λ ∈ ·

]
= µΛn,β

+ . (3.14)

Then
P
[
(XΛn(i))i∈Zd ∈ ·

]
=⇒
n→∞

ν.

A similar statement holds for minus boundary conditions, in which case the limit
is ν. Moreover, ν and ν are infinite-volume Gibbs measures in the sense of Defi-
nition 3.5.

Proof Let (Xt)t≥0 be our infinite-volume stochastic Ising model started inX0 = +1
and for each n, let (XΛn

t )t≥0 be a process such that XΛn
t (i) = +1 for all i ∈ Zd\Λn

and t ≥ 0, while inside Λ, the process evolves as in Proposition 3.9, with plus
boundary conditions and initial state XΛn

0 (i) = +1 for all i. Using the graphical
representation, we see that we can couple our processes such thatXΛn

t ≥ XΛm
t ≥ Xt

for all t ≥ 0 and n ≤ m. Taking the limit t → ∞ we see that the random
variables XΛn from (3.14) can be coupled such that they decrease to an a.s. limit;
in particular, this implies that their laws converge weakly to some limit ν. By
using techniques similar to the proof of Lemma 2.24, we can prove that ν is an
invariant law for the infinite-volume stochastic Ising model, while our coupling
shows that ν ≥ ν. Since ν is the largest invariant law, it follows that ν = ν. The
fact that ν and ν are infinite-volume Gibbs measures in the sense of Definition 3.5
is obvious, since the approximating finite-volume Gibbs measures have the right
conditional distributions.

3.5 The spontaneous magnetization

Let ν be the upper invariant law of the Ising model. By definition, the quantity
(which by translation invariance does not depend on i ∈ Zd)

m∗(β, d) = m∗(β) :=

∫
ν(dx)x(i) (β ≥ 0)
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is called the spontaneous magnetization. By symmetry, we have∫
ν(dx)x(i) = −m∗(β).

Since moreover ν ≤ ν, it follows that ν 6= ν if and only if m∗(β) > 0. Since ν and
ν are the lowest and highest invariant law in the stochastic order, this implies that
our stochastic Ising model has a unique invariant law if and only if m∗(β) = 0. In
this and the next section, we will prove the following theorem.

Theorem 3.12 (Phase transition of the Ising model) The function m∗(β, d)
is nondecreasing and right-continuous in β and nondecreasing in d. In dimension
d = 1 one has m∗(β) = 0 for all β ≥ 0. On the other hand, for all dimensions
d ≥ 2, there exists a critical value 0 < βc < ∞ such that m∗(β) = 0 for β < βc

and m∗(β) > 0 for β > βc.

In the present section, we will prove that β 7→ m∗(β, d) is nondecreasing and right-
continuous and d 7→ m∗(β, d) is nondecreasing. In the next section, we will prove
that βc =∞ in dimension d = 1 and βc <∞ in dimensions d ≥ 2.

At first, one might think that monotonicity of the spontaneous magnetization in
β and d can be proved by the same sort of monotonicity arguments that we have
used so far, by coupling Markov processes (in our case, stochastic Ising models)
with different values of β in such a way that one process ‘stays above’ the other.
It seems, however, that this idea does not work. Indeed, increasing β means that
spins ‘like more to be aligned’. Since our dynamics treat pluses and minuses in
a symmetric way, this means that pluses are more favored near other pluses and
minuses are more favored near minuses, an effect that can work both ways. In
view of this, we have to take a different approach. Our proof will be based on
Griffiths’ inequalities. An alternative proof (not given here) uses a representation
of our Gibbs measures in terms of the so-called random cluster model. It can be
shown that the latter is monotone in β and d in the usual sense, leading to the
desired monotonicities for m∗(β, d).

Let Λ be a finite set, let P(Λ) denote the set of all subsets of Λ, and let P(Λ) 3
A 7→ JA ∈ R be any function. For any A ∈ P(Λ) and x ∈ {−1,+1}Λ, we write

xA :=
∏
i∈A

x(i),

where x∅ := +1. We will be interested in Gibbs measures on {−1,+1}Λ of the
form

µJ({x}) :=
1

ZJ
e
∑

A⊂Λ JAxA ,
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where ZJ is the normalization constant (also known as partition sum)

ZJ :=
∑
x

e
∑

A JAxA .

We start by observing that

(i) ∂
∂JA

logZJ =

∫
µJ(dx)xA,

(ii) ∂2

∂JA∂JB
logZJ =

∫
µJ(dx)xAxB −

∫
µJ(dx)xA

∫
µJ(dx)xB.

(3.15)

To see this, just write

∂
∂JA

logZJ =
∂
∂JA

ZJ

ZJ

and

∂2

∂JA∂JB
logZJ = ∂

∂JB

∂
∂JA

ZJ

ZJ
=
ZJ

∂2

∂JA∂JB
ZJ − ( ∂

∂JA
ZJ)( ∂

∂JB
ZJ)

Z2
J

,

where
∂
∂JA

ZJ = ∂
∂JA

∑
x

e
∑

C JCxC =
∑
x

xAe
∑

C JCxC

and
∂2

∂JA∂JB
ZJ = ∂

∂JB

∑
x

xAe
∑

C JCxC =
∑
x

xAxBe
∑

C JCxC .

Proposition 3.13 (Griffiths’ inequalities) Assume that JA ≥ 0 for all A ⊂ Λ.
Then

(i) ∂
∂JA

logZJ ≥ 0,

(ii) ∂2

∂JA∂JB
logZJ ≥ 0

for all A,B ⊂ Λ.

Proof We observe that

ZJ =
∑
x

e
∑

A JAxA

=
∑
x

∞∑
n=0

1

n!

(∑
A

JAxA
)n

=
∞∑
n=0

1

n!

∑
A1

· · ·
∑
An

( n∏
k=1

JAk

)∑
x

n∏
k=1

xAk
.
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Since
xAxB = xAMB,

where AMB denotes the symmetric difference of A and B, we see that

∑
x

n∏
k=1

xAk
=
∑
x

xA1M···MAn =

{
2|Λ| if A1M · · ·MAn = ∅,
0 otherwise.

Thus

ZJ = 2|Λ|
∞∑
n=0

1

n!

∑
A1

· · ·
∑
An

1{A1M···MAn=∅}

n∏
k=1

JAk
.

Likewise

∂
∂JA

logZJ =
1

ZJ

∑
x

xAe
∑

C JCxC

=
∞∑
n=0

1

n!

∑
A1

· · ·
∑
An

( n∏
k=1

JAk

)
xA
∑
x

n∏
k=1

xAk

=
1

ZJ
2|Λ|

∞∑
n=0

1

n!

∑
A1

· · ·
∑
An

1{AMA1M···MAn=∅}

n∏
k=1

JAk
,

which is clearly nonnegative provided the JA ≥ 0 for all A. To prove also Griffiths’
second inequality, we write, using (3.15),

∂2

∂JA∂JB
logZJ =

1

Z2
J

(∑
x

xAxBe
∑

C JCxC
)(∑

y

e
∑

C JCyC
)

− 1

Z2
J

(∑
x

xAe
∑

C JCxC
)(∑

y

yAe
∑

C JCyC
)

=
1

Z2
J

∑
x,y

(
xAxB − xAyB

)
e
∑

C JC(xC + yC).

Using the facts that yB = (xB)2yB = xB(xy)B and xAxB = xAMB, we may rewrite
our formula as

∂2

∂JA∂JB
logZJ =

1

Z2
J

∑
x,y

xAMB

(
1 + (xy)B

)
e
∑

C JCxC
(
1 + (xy)C

)
=

1

Z2
J

∑
x,z

xAMB

(
1 + zB

)
e
∑

C JCxC
(
1 + zC

)
=

1

Z2
J

∑
z

(
1 + zB

)∑
x

xAMBe
∑

C J
z
CxC ,
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where we have defined JzC :=
(
1 + zC

)
JC . Since |zC | = 1, we have JzC ≥ 0 for all

z, hence by Griffiths’ first inequality∑
x

xAMBe
∑

C J
z
CxC ≥ 0

for each z ∈ {−1,+1}Λ. Summing over x we obtain Griffiths’ second inequality.

The monotonicity of the spontaneous magnetization in β follows from Proposi-
tion 3.11 and the following simple consequence of Proposition 3.13.

Lemma 3.14 (Monotonicity of magnetization) For any finite set Λ ⊂ Zd

and i ∈ Λ, one has

∂
∂β

∫
µΛ,β

+ (dx)x(i) ≥ 0.

Proof We claim that µΛ,β
+ = µJ for a suitable function J . Indeed, up to an

irrelevant additive constant, we may rewrite our Hamiltonian as

HΛ
+(x) = −1

2

∑
{i,j}∈BΛ

x(i)x(j)− 1
2

∑
(i,j)∈∂BΛ

x(i).

In view of this, our finite volume Gibbs measures are generated by the function J
defined by

J{i,j} := 1
2
β

if i, j ∈ Λ, |i− j| = 1,

J{i} := 1
2
β|{j ∈ Zd\Λ : |i− j| = 1}

and JA := 0 in all other cases. It is now clear that increasing β means increasing
the function J and hence, by Proposition 3.13, increasing

∫
µJ(dx)x(i).

The monotonicity of m∗(β, d) in d is proved in a similar way. Indeed, if d ≤ d′,
then we may view Zd as a subset of Zd′ . With positive boundary conditions, if
we switch on the interaction between sites inside Zd and sites in Zd′\Zd, then by
Proposition 3.13 this will lead to a higher magnetization in any point in Zd.

We conclude this section with the following result.

Lemma 3.15 (Right-continuity) The spontaneous magnetization m∗(β) is a
right-continuous function of β.
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Proof Let νβ denote the upper invariant law at inverse temperature β and let
βn ↓ β. Using the compactness of our state space, going to a subsequence if
necessary, we may assume that νβn ⇒ ν for some probability law ν. Just as in
Lemma 2.24, we can show that ν is an invariant law for the stochastic Ising model
with inverse temperature β. Moreover, since β 7→ m∗(β) is nondecreasing, we must
have

lim
βn↓β

m∗(βn) =

∫
ν(dx)x(0) ≥ m∗(β).

Since νβ is the largest invariant law w.r.t. the stochastic order, we must have∫
ν(dx)x(0) ≤

∫
νβ(dx)x(0) = m∗(β),

proving our claim.

3.6 Existence of a phase transition

We conclude this chapter with two of the oldest results in the field, namely, the
result by Ising on the nonexistence of a phase transition for his model in dimension
d = 1, and the result by Peierls on the existence of a phase transition in dimensions
d ≥ 2. We start with Ising’s result.

Lemma 3.16 (No phase transition in one dimension) In dimension d = 1,
for each β ≥ 0, there exists a unique infinite-volume Gibbs measure µ associated
with the formal Hamiltonian (3.9) and inverse temperature β. If X = (X(i))i∈Z is
a random variable with law µ, then X is a stationary Markov chain with transition
probabilities

P
[
X(i+ 1) 6= X(i)

∣∣X(i)
]

=
e−β

e−β + 1
. (3.16)

Proof Let ν be the upper invariant law of the one-dimensional Ising model with
inverse temperature β and let X = (X(i))i∈Z is a random variable with law ν. We
claim that X is a Markov chain. By Proposition 3.11 it suffices to prove that for
any finite interval Λn = {−n, . . . , n}, the finite-volume Gibbs measures µΛn,β

+ are

the laws of a finite Markov chain. Let XΛn be a random variable with law µΛn,β
+ .

We need to show that for any −n ≤ k ≤ n, the random variables

(XΛn(i))−n≤i<k and (XΛn(i))k<i≤n

are conditionally independent given XΛn(k). But this follows from Lemma 3.4

and the structure of the finite-volume Gibbs measures µ
Λn\{k},β
y with y(i) = +1 for

i 6∈ Λn and y(k) = −1 or +1.
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Since (by Proposition 3.10) the upper invariant law is invariant under translations
and mirror images, the Markov chain X = (X(i))i∈Z is stationary and reversible.
Set

p := P
[
X(i+ 1) = +1

∣∣X(i) = −1
]

and q := P
[
X(i+ 1) = −1

∣∣X(i) = +1
]
.

Then
P[X(i) = +1] =

p

p+ q
.

From the fact that X is an infinite volume Gibbs measure for the Ising model, by
Lemma 3.3, we know that

P[X(i) = +1 |X(i− 1) = −1 = X(i+ 1)]

P[X(i) = −1 |X(i− 1) = −1 = X(i+ 1)]
=
e−2β

1
.

Since

P[X(i− 1) = −1, X(i) = +1, X(i+ 1) = −1] =
p

p+ q
pq,

P[X(i− 1) = −1, X(i) = −1, X(i+ 1) = −1] =
p

p+ q
(1− p)2,

this leads to the equation
pq

(1− p)2
= e−2β.

Likewise, since

P[X(i) = +1 |X(i− 1) = −1, X(i+ 1) = +1]

P[X(i) = −1 |X(i− 1) = −1, X(i+ 1) = +1]
=
e−β

e−β

and
P[X(i− 1) = −1, X(i) = +1, X(i+ 1) = +1] =

p

p+ q
p(1− q),

P[X(i− 1) = −1, X(i) = −1, X(i+ 1) = +1] =
p

p+ q
(1− p)p,

we see that
1− q
1− p

=
e−β

e−β
,

hence p = q. By our previous equation this implies( p

1− p
)2

= e−2β,

which in turn implies (3.16). It follows that E[X(i)] = p/(p + q) = 1/2, hence
m∗(β, 1) = 0 for all β ≥ 0.

Since m∗(β, d) is nondecreasing in d, in order to prove the existence of a phase
transition in dimensions d ≥ 2, it suffices to treat the case d = 2.
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Figure 3.3: Peierls argument for Ising model.

Proposition 3.17 (Estimate on critical temperature) One has m∗(β, 2) > 0
for all β > log 3.

Proof We will use the original Peierls argument from [Pei36]. Let

Λn := {−n, . . . , n}2.

We may view Λn as a graph with edges between nearest neighbors. In this pic-
ture, for a given spin configuration x ∈ {−1,= 1}Λn , we may group the −1 spins
and +1 spins into connected components, each surounded by a closed curve (see
Figure 3.3).
There is a one-to-one correspondence between configurations of curves and con-
figurations of spins. In particular, the origin has a +1 spin if and only if it is
surrounded by an even number of curves. More formally, for each x ∈ {−1,+1}Λn ,
define x ∈ {−1,+1}Λn+1 by

x(i) :=

{
x(i) if i ∈ Λn,

+1 if i ∈ ∂Λn,

let En be the collection of all pairs {i, j} with |i − j| = 1, i, j ∈ Λn+1, and define
Γ(x) ⊂ En by

Γ(x) :=
{
{i, j} : x(i) 6= x(j)

}
.
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Let
Gn :=

{
Γ(x) : x ∈ {−1,+1}Λn

}
be the configuration of all ‘configurations of curves’. Then the probability of seeing
a certain configuration of curves is given by

ρ({Γ}) =
1

Z
e−β|Γ|,

where |Γ| is the total length of the curves in the configuration Γ and

Z :=
∑
Γ∈Gn

e−β|Γ|

is a normalization constant. Now let γ ⊂ E be a collection of nearest-neighbor
edges that form a closed curve (not a configuration of curves but just one single
curve) surrounding the origin. We can ask what the probability is of seeing a con-
figuration of curves in which this this particular curve is present. This probability
is, of course,

1

Z

∑
Γ∈Gn: γ⊂Γ

e−β|Γ|

=

∑
Γ: γ⊂Γ e−β|Γ|∑

Γ e−β|Γ|

≤
∑

Γ: γ⊂Γ e−β|Γ|∑
Γ: γ⊂Γ e−β|Γ| +

∑
Γ: γ∩Γ=∅ e−β|Γ|

=

∑
Γ: γ⊂Γ e−β|Γ|∑

Γ: γ⊂Γ e−β|Γ| + eβ|γ|
∑

Γ: γ⊂Γ e−β|Γ|
=

e−β|γ|

e−β|γ| + 1
≤ e−β|γ|.

Here we use that for every configuration of curves in which γ is present, there
is another configuration in which γ is completely removed, which is a factor eβ|γ|

more likely than the configuration in which γ is present. Since there are at most
k3k different curves γ of length k surrounding the origin, we find that the expected
number of curves surrounding the origin can be estimated from above by

∞∑
k=4

k3ke−kβ.

By choosing β sufficiently small, we can make this number as close to zero as we
wish; in particular, this proves that (uniformly (!) in n)

∫
µΛn,β

+ (dx)x(0) > 1
2

for
β sufficiently large.
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Unfortunately, this does not quite give the explicit bound we are after. If β > log 3,
then we see that the expected number of curves surrounding the origin is finite
(where, again, our estimate is uniform in n), but this is not enough to conclude
that

∫
µΛn,β

+ (dx)x(0) > 1
2
, hence m∗(β) > 0.

To fix this problem, we use a trick. We fix some m ≤ n and look at the proportion
of probabilities ∫

µΛn,β
+ (dx)1{x(i)=−1 ∀i∈Λm}∫
µΛn,β

+ (dx)1{x(i)=+1 ∀i∈Λm}
.

We note that the event {x(i) = −1 ∀i ∈ Λm} occurs if and only if there are
no contours inside Λm and there is an odd number of contours surroundig Λm.
Likewise, the event {x(i) = +1 ∀i ∈ Λm} occurs if and only if there are no
contours inside Λm and there is an even number of contours surroundig Λm. We
can estimate the proportion of the probabilities of these events by estimating the
expected number of contours surrounding Λm, conditional on the event that there
are no contours inside Λm. By the same arguments as above, this expectation can
be estimated by

∞∑
k=4m

k3ke−kβ,

which in case β > log 3 can be made arbitrarily small by choosing m sufficiently
large. Now, letting Λn ↑ ∞ while keeping m fixed, using Proposition 3.11, we see
that the upper invariant measure ν satisfies∫

ν(dx)1{x(i)=−1 ∀i∈Λm}∫
ν(dx)1{x(i)=+1 ∀i∈Λm}

< 1

for some m. In particular, this shows that ν is not symmetric with respect to a
simultaneous flip of all spins, hence ν 6= ν. As we have already seen, this implies
that m∗(β) > 0.

3.7 Other topics

For the Ising model on d = 2, Onsager has shown [Ons44] that

βc = log(1 +
√

2)

and

m∗(β, 2) =
(
1− sinh(β)−4

)1/8
(β ≥ βc),
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where
sinh(β) = 1

2

(
eβ − e−β

)
is the sinus hyperbolicus. Note that in light of this, the estimate βc ≤ log 3 arising
from Proposition 3.17 is not so bad! Onsager’s solution also implies that

m∗(β, 2) ∼ (β − βc)
1/8 as β ↓ βc,

which shows that the critical exponent associated with the spontaneous mag-
netrization is 1/8 in dimension d = 2. It is supposed that

m∗(β, 3) ∼ (β − βc)
0.308 as β ↓ βc,

but there is no mathematical theory to explain this. (There is -nonrigorous- renor-
malization group theory that sort of ‘explains’ this and even allows one to calculate
the critical exponent with some precision.) This critical exponent can actually be
measured and has been experimentally observed for various magnetic systems and
gasses near the critical point. Obviously, these physical systems are locally not
very similar to the (nearest-neighbor) Ising model, but it is believed (and up to
some level understood by renormalization group theory) that this critical exponent
is universal and shared by a large number of different models.
Similar to what we know for the contact process, one can prove that for the
Ising model, all spatially homogeneous infinite volume Gibbs measures are convex
combinations of ν and ν. In dimension 2, these are in fact all infinite volume Gibbs
measures, but, contrary to what we saw for the contact process, in dimensions
d ≥ 3 there exist infinite volume Gibbs measures for the Ising model that are not
translation invariant.
Generalizing from the Ising model, one may look at models where spins can take
q = 2, 3, . . . values, described by Gibbs measures with a Hamiltonian of the form
(3.9). These models are called Potts models. An interesting feature of these models
is that while the spontaneous magnetizationm∗(β) is (supposed to be) a continuous
of β for the Ising model, it is known that the same is not always true for Potts
models. Ising and Potts models can be studied in a nice uniform framework using
the random cluster model.
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Chapter 4

Voter models

4.1 The basic voter model

The standard, nearest-neighbor voter model on Zd is the Markov process with
values in {0, 1}Z defined by the generator

Gf(x) :=
∑
i

1
2d

∑
j: |i−j|=1

1{x(j)6=x(i)}
(
f(x{i})− f(x)

)
, (4.1)

where x{i} is defined as in (2.2) and the generator is first defined for functions in
Csum({0, 1}Zd

) and then by closure for a larger class of functions, as explained in
Chapter 1.

Note that there is no real parameter in (4.1) in which we could observe a phase
transition, comparable to the infection rate of the contact process or the inverse
temperature of the Ising model. The only free parameter is the dimension d.
Indeed, we will see that the behavior of the voter model depends on whether d ≤ 2
or d > 2, where d = 2 is the ‘critical dimension’.

In the classical interpretation of the voter model, sites represent individuals and
the type Xt(i) of a site represents the political opinion held by individual i at time
t. (The model was obviously invented in a country with a two-party system like,
for example, the USA.) Then (4.1) says that people behave in a conformist way,
i.e., they change their opinion at a rate proportional to the number of neighbors
that hold the other opinion. An equivalent way of describing this is to say that
at times of a rate one Poisson point process, an individual decides to update its
opinion by choosing one of its 2d neigbors at randon and adopting its opinion (with
the result that nothing happens if the newly adopted opinion is the same as the

91
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original opinion). This description suggests a natural way to write (4.1) in terms
of local maps, and hence a graphical representation. For each i, j ∈ Zd, let

mij(x)(k) :=

{
x(i) if k = j,
x(k) otherwise.

(4.2)

Then we may rewrite (4.1) as

Gf(x) :=
∑
i

1
2d

∑
j: |i−j|=1

(
f(mij(x))− f(x)

)
. (4.3)

In a graphical representation, the local map mij is usually represented by an arrow
from i to j. In a more serious interpretation, we may interpret the type Xt(i) of
a site at a given time as the genetic type of some organism living at this position.
Then (4.3) says that organisms die at rate one and after their deaths are replaced
by a descendant of one of their neighbors. Thus, the voter model can be used to
model neutral evolution where the genetic type of an organism has no influence on
its fitness. This is often a useful first step towards more complicated models where
the fitness of types matters. Also, it is believed that large parts of the DNA of
most organisms consist of ‘junk’ that has no influence on fitness but may still be
interesting in the study descendancy relations.

4.2 Coalescing ancestries

Imagine that for a given voter model, constructed with a graphical representation
as described in the previous section, we want to know the type Xt(i) of a site i at
some time t > 0. Then we may look at the last time σ1 < t when an arrow ends at
i and hence the site i possibly changed its type. If σ1 < 0, we are done; otherwise,
we know that the organism at i was at time σ1 replaced by a descendant of the
organism at the neighboring site j where the arrow starts, so it suffices to follow
this organism back in time till the last time σ2 < σ1 that an arrow ended there.
Continuing this process, following arrows backwards whenever we meet one that
ends at the site where we currently are, we see that for each (i, t) ∈ Zd × R we

can define a Zd-valued process (ξ
(i,t)
s )s≥0 such that ξ

(i,t)
s is the position where the

(unique) ancestor of (i, t) lived at time t − s. In particular, following ancestors
back till time zero, we find that

Xt(i) = X0(ξ
(i,t)
t ) (i ∈ Zd, t ≥ 0). (4.4)

It is easy to see (compare Theorem 1.12) that (ξ
(i,t)
s )s≥0 is a random walk that jumps

with rate one to a uniformly chosen neighboring site. Moreover, two ‘ancestral’
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random walks started at two different space-time points (i, t) and (i′, t′) behave
independently as long as they are apart and coalesce (i.e., go together as one) as
soon as they meet.

The coalescing random walks (ξ
(i,t)
s )s≥0 are often called lines of descent. They are

exactly the ‘paths of influence’ from Chapter 1. In view of this, it is easy to see
that the constant K from (1.23) is zero. Therefore, unlike for the contact process
and Ising model, the value of this constant tells us nothing about ergodicity of the
process. Indeed, since the constant configurations 0 and 1 are traps for the model,
the delta measures δ0 and δ1 are always invariant measures so the invariant law
is never unique. In many ways, the voter model in any dimension is a ‘critical’
model, i.e., it behaves in many ways similar to other models at their critical point.

Proposition 4.1 (Invariant laws in low dimensions) In dimensions d = 1, 2,
all invariant laws of the voter model are convex combinations of the delta measures
δ0 and δ1 on the constant configurations 0 and 1.

Proof The voter model stared in any initial law satisfies

P[Xt(i) = Xt(j)] = P[X0(ξ
(i,t)
t ) = X0(ξ

(j,t)
t )] ≥ P[ξ

(i,t)
t = ξ

(j,t)
t ]. (4.5)

We observe that
(
ξ

(i,t)
s − ξ

(j,t)
s

)
s≥0

is a Markov process that everywhere outside
the origin jumps with rate 2 to a uniformly chosen neighbor and when it reaches
the origin is trapped there. Since one-dimensional nearest-neighbor random walk
is recurrent in dimensions d = 1, 2, it follows that the right-hand side of (4.5)
tends to zero as t→∞. In particular, this means that any invariant law must be
concentrated on constant configurations. Since, on the other hand, δ0 and δ1 are
invariant laws for the voter model, this proves our claim.

4.3 Duality

Our next aim is to prove that in dimensions d > 2, there are invariant laws of the
voter model that are not convex combinations of δ0 and δ1. A convenient way to
do this is to use duality.

We have already met the self-duality of the contact process (Lemma 2.1). More
generally, two continuous-time Markov processes X and Y with generators GX

and GY and state spaces S and T are called dual to each other, with respect to a
duality function Ψ : S × T → R, if

E[Ψ(X0, Yt)] = E[Ψ(Xt, Y0)] (t ≥ 0), (4.6)
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whenever X and Y are independent (with arbitrary initial laws). Since we can
always integrate over the initial laws, in order to check (4.6), it suffices to prove
the statement for deterministic initial states, i.e., (4.6) is equivalent to

Ey[Ψ(x, Yt)] = Ex[Ψ(Xt, y)] (t ≥ 0, x ∈ S, y ∈ T ), (4.7)

where Ex (resp. Ey) denotes expectation with respect to the law of the process X
(resp. Y ) started in X0 = x (resp. Y0 = y). If the state spaces S, T are finite, then
a necessary and sufficient condition for (4.6) is that

GXΨ( · , y)(x) = GY Ψ(x, · )(y) (x ∈ S, y ∈ T ). (4.8)

This condition, plus some technical assumptions, is also often sufficient for pro-
cesses with infinite state spaces, see e.g. [AS09a]. Note that the self-duality of the
contact process fits in this general scheme, where Ψ(A,B) = 1{A∩B 6=∅}.

Below, for any x, y ∈ {0, 1}Zd
, we write |x| :=

∑
i x(i) and (xy)(i) := x(i)y(i).

Note that in this notation, the self-duality function of the contact process can be
rewritten as Ψ(x, y) = 1{|xy|6=0}. It turns out that the same duality function also
yields a useful dual for the voter model.

Lemma 4.2 (Coalescent dual of the voter model) Let X be a voter model
and let Y be the Markov process with values in {0, 1}Zd

and generator

Gcoalf(y) :=
∑
i

1
2d

∑
j: |i−j|=1

(
f(cij(y))− f(y)

)
, (4.9)

where

cij(y)(k) :=


0 if k = i,
y(i) ∨ y(i) if k = j,
y(k) otherwise.

(4.10)

Then

P
[
|XtY0| 6= 0

]
= P

[
|X0Yt| 6= 0

]
(t ≥ 0) (4.11)

whenever X and Y are independent.

Proof It suffices to prove the statement for deterministic initial states X0 = x and
Y0 = y. Set A := {i : y(i) = 1}. Then

Ys(i) := 1{∃j ∈ A : ξ
(j,t)
s = i} (s ≥ 0) (4.12)
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defines a Markov process with generator as in (4.9). It follows that

P
[
|Xty| 6= 0

]
= P[x(ξ

(i,t)
t ) = 1 for some i ∈ A] = P

[
|X0Yt| 6= 0

]
(t ≥ 0).

(4.13)

The voter model also has an annihilating dual.

Lemma 4.3 (Annihilating dual of the voter model) Let X be a voter model
and let Y be the Markov process with values in {0, 1}Zd

and generator

Gannf(y) :=
∑
i

1
2d

∑
j: |i−j|=1

(
f(aij(y))− f(y)

)
, (4.14)

where

aij(y)(k) :=


0 if k = i,
y(i) + y(j) mod(2) if k = j,
y(k) otherwise.

(4.15)

Then
P
[
|XtY0| is odd

]
= P

[
|X0Yt| is odd

]
(t ≥ 0) (4.16)

whenever X and Y are independent and either X0 or Y0 are a.s. finite.

Proof As in the previous proof, set A := {i : y(i) = 1}. Now

Ys(i) := 1{ξ(j,t)
s = i for an odd number of j ∈ A} (s ≥ 0) (4.17)

defines a Markov process with generator as in (4.14). It follows that

P
[
|Xty| is odd

]
= P[x(ξ

(j,t)
t ) = 1 for an odd number of j ∈ A]

= P
[
|X0Yt| is odd

]
(t ≥ 0).

(4.18)

Remark We may rewrite (4.11) as

E[0|XtY0|] = E[0|X0Yt|] (t ≥ 0) (4.19)

and (4.16) as
E[(−1)|XtY0|] = E[(−1)|X0Yt|] (t ≥ 0). (4.20)

More generally, for many nearest-neighbor interacting particle systems, there exist
duals with respect to a duality function of the form Ψ(x, y) = η|xy|, where η is a
real parameter; see [SL95, SL97, Sud00].
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4.4 Clustering versus stability

In this section, we study the voter model started in product initial laws. Thus, we
will assume that the (X0(i))i∈Zd are i.i.d. with intensity P[X0(i) = 1] = θ ∈ [0, 1].

Theorem 4.4 (Process started in product law) Let X be a d-dimensional
voter model started in product law with intensity 0 ≤ θ ≤ 1. Then

P[Xt ∈ · ] =⇒
t→∞

νθ, (4.21)

where νθ is an invariant law of the process. If d = 1, 2, then

νθ = (1− θ)δ0 + θδ1. (4.22)

On the other hand, in dimensions d ≥ 3, for 0 < θ < 1 the measures νθ are
concentrated on configurations that are not constant.

In dimensions d = 1, 2, this theorem says that in any finite environment of the
origin, at sufficient large times, we see with high probability locally either the
constant configuration 0 or 1. This implies that in the system, there must be large
regions constant type, called clusters, of a size that grows in time. This behavior
is called clustering.

On the other hand, in dimensions d > 2, it can be shown that the measures νθ
are concentrated on configurations in which the spatial intensity of ones (averaged
over large blocks) is θ. This type of behavior is called stable behavior.

Proof of Theorem 4.4 We use duality with coalescing random walks. For each
y ∈ {0, 1}Zd

with |y| < ∞, let Y y denote the process with generator as in (4.9).
Since |Y y

t | is a nonincreasing function of time, the limit

Ny := lim
t→∞
|Y y
t | (4.23)

exists a.s. It follows that

P
[
|Xty| = 0

]
= P

[
|X0Y

y
t | = 0

]
= E

[
(1− θ)|Y

y
t |
]
−→
t→∞

E
[
(1− θ)Ny]

. (4.24)

Since the space {0, 1}Zd
is compact, the laws P[Xt ∈ · ] are automatically tight, so

to prove convergence it suffices that all weak cluster points coincide. Therefore, by
Lemma 2.2 we see that P[Xt ∈ · ] converges weakly to a probability law νθ which
is uniquely characterized by∫

νθ(dx)1{|xy|=0} = E
[
(1− θ)Ny]

(|y| <∞). (4.25)
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It follows from general arguments (which we now skip) that any long-time limit
law of an interaction particle system must be an invariant law. In dimensions
d = 1, 2, one has Ny = 1 a.s., which implies that νθ = (1 − θ)δ0 + θδ1. On the
other hand, in dimensions d > 2, by the transience of random walk, P[Ny ≥ 2] > 0
for all |y| ≥ 2. In fact, it is not hard to see (again we skip the details) that by
choosing a configuration y in which all ones are sufficiently far from each other, for
each n ≥ 1 and ε > 0 we can find y with |y| = n and P[Ny = n] ≥ 1− ε. It follows
that νθ({0}) ≤

∫
νθ(dx)1{|xy|=0} ≤ (1− ε)(1− θ)n + ε. Since n and ε are arbitrary,

if 0 < θ this proves that νθ gives zero probability to the constant configuration 0.
By symmetry between the types, if θ < 1, then νθ gives moreover zero probability
to the constant configuration 1.

Remark Let I denote the set of all invariant laws of the voter model. It is not hard
to show that I is a compact, convex subset of the set of all probability measures
on {0, 1}Zd

. By definition, an element ν ∈ I is called extremal if it cannot be
written as a nontrivial convex combination of other elements of I, i.e., there do
not exist ν1, ν2 ∈ I with ν1 6= ν2 and 0 < p < 1 such that ν = pν1 + (1 − p)ν2.
We let Ie denote the set of all extremal elements of I. Then it is known that for
voter models in dimensions d > 2, the measures νθ from (4.21) satisfy νθ ∈ Ie for
all θ ∈ [0, 1].

4.5 Selection and mutation

In this section, we consider a generalization of the voter model with generator

Gf(x) := (1 + s)
∑
i

1
2d

∑
j: |i−j|=1

1{x(i)=0, x(j)=1}
(
f(x{i})− f(x)

)
+
∑
i

1
2d

∑
j: |i−j|=1

1{x(i)=1, x(j)=0}
(
f(x{i})− f(x)

)
+m

∑
i

1{x(i)=1}
(
f(x{i})− f(x)

)
,

(4.26)

where s,m ≥ 0 are constants. Note that this says that sites of type 0 adopt the
type 1 at a rate that is 1

2d
(1 + s) times the number of neighbors of type 1, but

sites of type 1 adopt the type 0 at a rate that is only 1
2d

times the number of
neighbors of type 0. Thus, sites of type 1 invade other sites more easily than sites
of type 0, which we can interpret as saying that type 1 has a higher fitness than
the other type. In addition, sites of type 1 spontaneously change into sites of type
0, which models mutation. For example, we can imagine that organisms of type 1
own a complex gene that gives them a selective advantage, while organisms of type
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0 own a damaged, nonfunctional version of the same gene. We ignore mutations
that spontaneously restore the functionality of a damaged gene. We call s and m
the selection and mutation rates, respectively.

In order to write the generator in (4.26) in terms of local maps, we define

sij(x)(k) :=

{
1 if k = j, x(i) = 1,
x(k) otherwise,

(4.27)

and

pi(x)(k) :=

{
0 if k = i,
x(k) otherwise.

(4.28)

Then
Gf(x) =

∑
i

1
2d

∑
j: |i−j|=1

(
f(mij(x))− f(x)

)
+s
∑
i

1
2d

∑
j: |i−j|=1

(
f(sij(x))− f(x)

)
+m

∑
i

(
f(pi(x))− f(x)

)
.

(4.29)

In the graphical representation, we represent the maps mij as before by an arrow
(black, let us say) from i to j. Likewise, we represent the maps sij by red arrows
and the maps pi by a black box. Then black arrows indicate ‘invasion’ events where
the type at the beginning of the arrow takes over the site at the tip of the arrow.
Red arrows are similar, except that they can only be used for the invasion of type
1. The black boxes indicate mutations where the type changes to 0 regardless of
what it was before.

It turns out that the coalescent dual of the voter model can be generalized to the
present more general set-up. Let cij be defined as in (4.10) and define local maps
bij by

bij(y)(k) :=

{
y(i) ∨ y(j) if k = j,
y(k) otherwise.

(4.30)

Lemma 4.5 (Branching-coalescent dual) Let X be a voter model with selec-
tion and mutation, with generator as in (4.26), and let Y be the Markov process
with values in {0, 1}Zd

and generator

Gcoalf(y) :=
∑
i

1
2d

∑
j: |i−j|=1

(
f(cij(y))− f(y)

)
+s
∑
i

1
2d

∑
j: |i−j|=1

(
f(bij(y))− f(y)

)
+m

∑
i

(
f(pi(y))− f(y)

)
.

(4.31)
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Then
P
[
|XtY0| 6= 0

]
= P

[
|X0Yt| 6= 0

]
(t ≥ 0) (4.32)

whenever X and Y are independent.

Proof When we try to follow lines of descent backwards in time as for the usual
voter model, we run into the difficulty that when we encounter the tip of a red
arrow, we do not know which site is the true ancestor of our site. We do know,
however, that if either the site at the beginning or at the tip of the arrow was
of type 1 before, then the site at the tip will be of type 1 afterwards. Thus, the
solution is to follow the ancestry of both sites backward in time. In this way,
we arrive at a dual process consisting of coalescing random walks with additional
branching events corresponding to the red arrows and deaths corresponding to
mutations.

More formally, the proof goes as follows. It suffices to prove the statement for
deterministic initial states X0 = x and Y0 = y. Let us say that a path γ : [s, u]→
Zd is open if it satisfies the following rules:

(i) If γt−1 6= γt, then there must be an arrow from (γt−, t) to (γt, t),

(ii) if at time t there is a black arrow from i to j and γt = j, then γt− = i,

(iii) there is no black box at (γt, t) for any t ∈ [s, u].
(4.33)

Write (i, s) (j, u) if there is an open path γ : [s, t]→ Zd such that γs− = i and
γu = j. Then

Ys(i) := 1{∃j s.t. y(j) = 1, (i, t− s) (j, t)} (4.34)

defines a Markov process with generator as in (4.31). Thus, (4.32) follows from
the claim that

|XtY0| 6= 0 if and only if ∃i, j s.t. x(i) = 1, y(j) = 1, (i, 0) (j, t). (4.35)

Indeed, if there is an open path from (i, 0) to (j, t) with x(i) = 1, then it is easy
to check that X must be one all along this path, hence in particular Xt(j) = 1.
Conversely, if no such path exists, then all ‘potential ancestors’ of the site j at
time t can be traced back to sites that were of type 0 at time zero or to mutation
events.

Both the voter model X with selection and mutation and its dual system Y of
random walks with coalescence, branching and deaths are very similar in their
behavior to the contact process. If the mutation rate is too high, then the processes
started in any finite initial state die out and the delta measure on the constant
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zero configuration is the only invariant law. If the mutation rate is sufficiently
low (but s > 0), then the processes started in a finite initial state survives with
positive probability and there exists a nontrivial invariant law.

Exercise 4.6 Show that the standard voter model (s = m = 0) started in a finite
initial state (i.e., |X0| < ∞ a.s.) dies out a.s. (i.e., P[∃t ≥ 0 s.t. Xt = 0] = 1).
Hint: martingale convergence.

4.6 Rebellious voter models

In the biological interpretation of the voter model, let us imagine that the types
0 and 1 represent two closely related species, which compete for space. We may
imagine that the cause of death of organisms of these species is often competition
with organisms on neighboring sites, and that organisms experience more com-
petition from other organisms of their own species than from those of the other
species. The explanation is that the species occupy slightly different ecological
niches, hence each species has some resources not available to the other species,
which reduces competition between different species. To model this effect, we
define local maps

rijk(y)(l) :=

{
y(i) if l = j and y(j) = y(k),
y(l) otherwise,

(4.36)

which says that if the organisms living at j and k are of the same type, then the
organism at j dies and is replaced by an organism of the type living at i. Then we
are interested in the Markov process with generator

Gf(x) :=
∑
i

1
2d

∑
j: |i−j|=1

(
f(mij(x))− f(x)

)
+2β

∑
i

1
(2d)2

∑
j: |i−j|=1

∑
k: |j−k|=1

(
f(rijk(x))− f(x)

)
,

(4.37)

where 2β ≥ 0 is the extra death rate due to competition with organisms of the same
species. Up to a trivial rescaling of time and renaming of parameters, this model is
a special case of a model introduced in [NP99]. This and similar models have also
been studied in [SS08, SV10]. In the traditional interpretation of voter models,
the model in (4.37) describes a population where individuals like to disagree with
their neighbors. In view of this, a one-dimensional model similar to the one in
(4.37) has been called the ‘rebellious voter model’ in [SS08].
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It turns out that the annihilating dual of the voter model can be generalized to
the present more general set-up. To see this, we start by noting that the generator
in (4.37) can be rewritten as

Gf(x) :=
∑
i

1
2d

∑
j: |i−j|=1

(
f(mij(x))− f(x)

)
+β
∑
i

1
(2d)2

∑
j: |i−j|=1

∑
k: |j−k|=1

(
f(qijk(x))− f(x)

)
,

(4.38)

where qijk is the local map

qijk(x)(l) :=

{
x(i) + x(j) + x(k) mod(2) if l = j,
x(l) otherwise,

(4.39)

which combines the effects of rijk and rkji. Let aij be defined as in (4.15) and
define local maps tijk by

tijk(y)(l) :=

{
y(l) + y(j) mod(2) if l ∈ {i, k}
y(l) otherwise.

(4.40)

Then we can prove the following result.

Lemma 4.7 (Double branching-annihilating dual) Let X be a ‘rebellious’
voter model with generator as in (4.38), and let Y be the Markov process with
values in {0, 1}Zd

and generator

Gdbranf(y) :=
∑
i

1
2d

∑
j: |i−j|=1

(
f(aij(y))− f(y)

)
+β
∑
i

1
(2d)2

∑
j: |i−j|=1

∑
k: |j−k|=1

(
f(tijk(y))− f(y)

)
.

(4.41)

P
[
|XtY0| is odd

]
= P

[
|X0Yt| is odd

]
(t ≥ 0) (4.42)

whenever X and Y are independent and either X0 or Y0 are a.s. finite.

Proof In the graphical representation, we denote the local map qijk by drawing
two red arrows, starting at i and k, respectively, and both ending at j. Drawing the
usual arrows of the voter model dynamics in black, we call a path γ : [s, u] → Zd

open if it satisfies the following rules:

(i) If γt−1 6= γt, then there must be an arrow from (γt−, t) to (γt, t),

(ii) if at time t there is a black arrow from i to j and γt = j, then γt− = i.
(4.43)
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It suffices to prove the statement of the lemma for deterministic initial states
X0 = x and Y0 = y. Set A := {i : x(i) = 1} and B := {i : y(i) = 1}, fix t > 0 and
define

Ys(i) := 1{the number of open paths from (i, t− s) to B × {t} is odd} (4.44)

(s ≥ 0). Then (Ys)s≥0 is a Markov process with generator as in (4.41). It follows
that

|Xty| is odd
⇔ the number of open paths from A× {0} to B × {t} is odd

⇔ |xYt| is odd,

(4.45)

which proves (4.42).

Note that the process Y with generator a in (4.41) describes a system of annihilat-
ing random walks, where in addition, with rate β, particles branch by producing
two new particles on their neighboring sites, which immediately annihilate with
any particles that may already be present on these sites. Note that since the num-
ber of particles always increases or decreases by a multiple of 2, the process Y is
parity preserving, i.e., if |y| is finite and odd (resp. even), then |Yt| is odd (resp.
even) at all t ≥ 0. In view of this, the process started with an odd number of
particles cannot die out. The following facts are known:

• The process X exhibits coexistence, i.e., there is an invariant law concen-
trated on configurations that are not constant 0 or 1, if and only if the
process Y , started with an even number of particles, survives with positive
probability.

• In dimension d = 1, the process Y started in an even initial state dies out
a.s. for any β ≥ 0.

• In dimensions d ≥ 2, and also for non-nearest neighbor processes in dimen-
sion d = 1, if β is sufficiently large, then the process Y started in an even
initial state survives with positive probability.

• In dimensions d ≥ 2, if β is sufficiently small, then the process Y started in
an even initial state survives with positive probability.

The last statement, which has been proved in a series of rather long and technical
papers by Cox and Perkins [CP05, CP06, CMP10], is supposed to be false for non-
nearest neighbor processes in dimension d = 1, but here is no proof of this. Also,
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perhaps surprisingly, it is not known if survival of the even process Y is monotone
in the branching rate β, hence in dimensions d ≥ 2 is is also not known if the
even process survives for intermediate values of β (although both statements are
believed to be true). In general, the study of rebellious voter models and their
duals is made difficult by the fact that they are not monotonous.
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