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Preface

Interacting particle systems, in the sense we will be using the word in these lec-
ture notes, are countable systems of locally interacting Markov processes. More
precisely, in an interacting particle system one has a lattice -the canonical choice
is the d-dimensional integer lattice Zd- such that on each site in the lattice, there
sits a continuous-time Markov process with a finite state space whose jump rates
depend on the states of the Markov processes situated at near-by sites. Interact-
ing particle systems are often used as extremely simplified ‘toy models’ for certain
stochastic phenomena that involve a spatial structure.

Yet, the apparent simplicity of these models is treacherous. Although it is usually
easy to define an interacting particle system, it is often much harder to prove
anything nontrivial about its behavior. With a few exceptions, explicit calculations
tend not to be feasible, hence one has to be satisfied with qualitative statements
and some explicit bounds. Despite intensive research over more than thirty years,
some simple statements about easy-to-formulate problems still remain open and
others that have been solved required nontrivial and lengthy proofs.

As a reward for all this, on the other hand, it turns out that despite their simple
rules, interacting particle systems are often remarkably subtle models that cap-
ture the sort of phenomena one is interested in much better than might initially
be expected. Thus, while it may seem outrageous to assume that “Plants of a
certain type occupy points in the square lattice Z2, live for an exponential time
with mean one, and place seeds on unoccupied neighboring sites with rate λ” it
turns out that making the model more realistic often does not change much in
its overall behavior. Indeed, there is a general philosophy in the field, that is still
unsufficiently understood, which says that interacting particle systems come in
‘universality classes’ with the property that all models in one class have roughly
the same behavior.

As a mathematical discipline, the subject of interacting particle systems is still
relatively young. It started around 1970 with the work of R.L. Dobrushin and
F. Spitzer, and many other authors joining in the next few years. By 1975, general
existence and uniqueness questions had been settled, four classic models had been
introduced (the exclusion process, the stochastic Ising model, the voter model and
the contact process), and elementary (and less elementary) properties of these
models had been proved. In 1985, when Liggett’s published his famous book
[Lig85], the subject had established itself as a mature field of study. Since then,
it has continued to grow rapidly, to the point where it is impossible to accurately
capture the state of the art in a single book. Indeed, it would be possible to write a
book on each of the four classic models mentioned above, while many new models
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have been introduced and studied.
While interacting particle systems, in the narrow sense indicated above, have ap-
parently not been the subject of mathematical study before 1970, the subject has
close links to some problems that are considerably older. In particular, the Ising
model (without time evolution) has been studied since 1925 while both the Ising
model and the contact process have close connections to percolation, which has
been studied since 1957. In recent years, more links between interacting particle
systems and other, older subjects of mathematical research have been established,
and the field continues to recieve new impulses not only from the applied, but also
from the more theoretical side.
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Chapter 1

Markov processes

1.1 Introduction

Interacting particle systems are countable collections of interacting continuous-
time Markov processes with finite state spaces. Such Markov processes are some-
times called ‘continuous-time Markov chains’ or even more confusing ‘Markov
chains with continuous parameter’. Of course, they are not chains, but stochastic
processes with a continuous time parameter. Nevertheless, because of their finite
state space, they are effectively equivalent to certain ‘embedded’ Markov chains
and their analysis is very similar to that of finite-state Markov chains.

In this chapter we review some elementary theory of Markov processes. We focus
mainly on continuous-time, finite-state Markov processes. One is tempted to say
that these processes are easy, but, of course, this is only true as long as their state
space is small. If one is interested in limiting properties as the size of the state
space is sent to infinity, then one may run into difficult problems, some of which
are closely related to the interacting particle systems we are interested in.

1.2 Conditional probabilities

By definition, a Polish space is a separable topological space E on which there
exists a complete metric generating the topology. Polish spaces are particularly
nice for doing probability theory on. We equip a Polish space E standardly with
the Borel-σ-field B(E) generated by the open subsets of E. We let B(E) denote
space of bounded, real, B(E)-measurable functions on E. Polish spaces have nice
reproducing properties; for example, if E is a Polish space and F is a closed or
an open subset of E, then the space F is also Polish (in the embedded topology).

7
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Also, if E1, E2, . . . is a finite or countably infinite sequence of Polish spaces, then
the product space E1×E2×· · · equipped with the product topology is again Polish,
and the Borel-σ-field on the product space coincides with the product-σ-field of
the Borel-σ-fields on the individual spaces.

Let E,F be Polish spaces. By definition, a probability kernel from E to F is a
function K : E × B(F ) → R such that

(i) K(x, · ) is a probability measure on F for each x ∈ E,

(ii) K( · , A) is a real measurable function on E for each A ∈ B(F ).

Proposition 1.1 (Decomposition of probability measures) Let E,F be Pol-
ish spaces and let µ be a probability measure on E×F . Then there exist a (unique)
probability measure ν on E and a (in general not unique) probability kernel K from
E to F such that∫

fdµ =

∫
E

ν(dx)

∫
F

K(x, dy)f(x, y)
(
f ∈ B(E × F )

)
. (1.1)

If K,K ′ are probability kernels from E to F such that (1.1) holds, then there exists
a set N ∈ B(E) with ν(N) = 0 such that K(x, · , ) = K(x, · , ) for all x ∈ E\N .
Conversely, if ν is a probability measure on E and K is a probability kernel from
E to F , then formula (1.1) defines a unique probability measure on E × F .

Note that it follows obviously from (1.1) that

ν(A) = µ(A× F )
(
A ∈ B(E)

)
,

i.e., ν is the first marginal of the probability measure µ.

If X and Y are random variables, defined on some probability space (Ω,F ,P), and
taking values in E and F , respectively, then setting

µ(A) := P[(X, Y ) ∈ A]
(
A ∈ B(E × F )

)
defines a probability law on E × F which is called the joint law of X and Y . By
Proposition 1.1, we may write µ in the form (1.1) for some probability law ν on E
and probability kernel K from E to F . We observe that

ν(A) = P[X ∈ A]
(
A ∈ B(E)

)
,
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i.e., ν is the law of X. We will often denote the law of X by P[X ∈ · ]. Moreover,
we introduce the notation

P
[
Y ∈ A

∣∣X = x
]

:= K(x,A)
(
x ∈ E, A ∈ B(F )

)
,

where K(x,A) is the probability kernel from E to F defined in terms of µ as in
(1.1). Note that K(x,A) is defined uniquely for a.e. x with respect to the law of
X. We call P[Y ∈ · |X = x

]
the conditional law of Y given X. Note that with

the notation we have just introduced, formula (1.1) takes the form

E[f(X, Y )] =

∫
E

P[X ∈ dx]

∫
F

P
[
Y ∈ dy

∣∣X = x
]
f(x, y). (1.2)

Closely related to this, one also defines

P
[
Y ∈ A

∣∣X]
:= K(X,A)

(
A ∈ B(F )

)
.

Note that this is the random variable (defined on the underlying probability space
(Ω,F ,P)) obtained by plugging X into the function x 7→ K(x,A).

If f : F → R is a measurable function such that E[|f(Y )|] <∞, then we let

E
[
f(Y )

∣∣X = x
]

:=

∫
F

P
[
Y ∈ dy

∣∣X = x
]
f(y)

denote the conditional expectation of f(Y ) given X. Note that for fixed f and Y ,
the map x 7→ E

[
f(Y )

∣∣X = x
]

is a measurable real function on E. Plugging X
into this function yields a random variable which we denote by E[f(Y )|X]. We
observe that for each g ∈ B(E), one has

E
[
g(X)E[f(Y )|X]

]
=

∫
E

P[X ∈ dx]g(x)E[f(Y )|X = x]

=

∫
E

P[X ∈ dx]g(x)

∫
F

P[Y ∈ dy|X = x]f(y)

=

∫
E

P[X ∈ dx]

∫
F

P[Y ∈ dy|X = x]g(x)f(y)

=

∫
E×F

P[(X, Y ) ∈ d(x, y)]g(x)f(y) = E[g(X)f(Y )].

Moreover, since E[f(Y )|X] can be written as a function of X, it is easy to check
that E[f(Y )|X] is measurable with respect to the σ-field generated byX. One may
take these properties as an alternative definition of E[f(Y )|X]. More generally, if
R is a real-valued random variable with E[|R|] < ∞, defined on some probability
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space (Ω,F ,P), and G ⊂ F is a sub-σ-field, then there exists an a.s. (with respect
to the underlying probability measure P) unique random variable E[R|G] such that
E[R|G] is G-measurable and

E
[
GE[R|G]

]
= E[GR] ∀ bounded G-measurable G.

In the special case that R = f(Y ) and G is the σ-field generated by X one recovers
E[f(Y )|X] = E[R|G].

1.3 Poisson point processes

Let E be a Polish space. Recall that a sequence of finite measures µn converges
weakly to a limit µ, denoted as µn ⇒ µ, if and only if∫

fdµn −→
n→∞

∫
fdµ

(
f ∈ Cb(E)

)
,

where Cb(E) denotes the space of bounded continuous real functions on E. We let
M(E) denote the space of finite measures on E, equipped with the topology of
weak convergence. It can be shown that M(E) is Polish. We let

N (E) :=
{
ν ∈M(E) : ∃n ≥ 0, x1, . . . , xn ∈ E s.t. ν =

n∑
i=1

δxi

}
denote the space of all counting measures on E, i.e., all measures that can be
written as a finite sum of delta-measures. Being a closed subset of M(E), the
space N (E) is again Polish.

For any counting measure ν ∈ N (E) and f ∈ B(E) we introduce the notation

f ν :=
n∏

i=1

f(xi) where ν =
n∑

i=1

δxi
,

with f 0 := 1 (where 0 denotes the counting measure that is identically zero). It
is easy to see that f νf ν′ = f ν+ν′ . Let ν =

∑n
i=1 δxi

be a counting measure, let
φ ∈ B(E) satisfy 0 ≤ φ ≤ 1, and let χ1, . . . , χn be independent Bernoulli random
variables (i.e., random variables with values in {0, 1}) with P[χi = 1] = φ(xi).
Then the random counting measure

ν ′ :=
n∑

i=1

χiδxi
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is called a φ-thinning of the counting measure ν. Note that

P[ν ′ = 0] =
n∏

i=1

P[χi = 0] = (1− φ)ν .

More generally, one has

E
[
(1− f)ν′

]
= (1− fφ)ν

(
f ∈ B(E), 0 ≤ f ≤ 1

)
. (1.3)

(Setting f = 0 here yields the previous formula.) To see this, note that if χ′1, . . . , χ
′
n

are Bernoulli random variables with P[χ′i = 1] = f(xi), independent of each other
and of the χi’s, and

ν ′′ :=
n∑

i=1

χ′iχiδxi
,

then, since conditional on ν ′, the measure ν ′′ is distributed as an f -thinning of ν ′,
one has

P
[
ν ′′ = 0

]
= E

[
(1− f)ν′

]
,

while on the other hand, since ν ′′ is an fφ-thinning of ν, one has P[ν ′′ = 0] =
(1 − fφ)ν . One can prove that (1.3) charcterizes the law of the random counting
measure ν ′ uniquely.

Proposition 1.2 (Poisson counting measure) Let E be a Polish space and let
µ be a finite measure on E. Then there exists a random counting measure ν on E
whose law is uniquely characterized by

E
[
(1− f)ν

]
= e−

∫
fdµ

(
f ∈ B(E), 0 ≤ f ≤ 1

)
. (1.4)

If A1, . . . , An are disjoint measurable subsets of E, then ν(A1), . . . , ν(An) are
independent Poisson distributed random variables with mean E[ν(Ai)] = µ(Ai)
(i = 1, . . . , n).

Proof (sketch) We can find counting measures νn :=
∑Nn

i=1 δxn,i
such that

µn :=
1

Nn

Nn∑
i=1

δxn,i
=⇒
n→∞

µ.

Let ν ′n be a thinning of νn with the constant function 1/Nn. Then, for any f ∈ C(E)
satisfying ε ≤ f ≤ 1 for some ε > 0, one has

E
[
(1− f)ν′n

]
= (1− 1

Nn
f)νn = e

∫
log(1− 1

Nn
f)dνn = e

∫
Nn log(1− 1

Nn
f)dµn −→

n→∞
e−

∫
fdµ,
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where we have used that Nn log(1 − 1
Nn
f) → −f and µn ⇒ µ. This can be

used to show that the random counting measures ν ′n converge weakly in law to
a limiting random counting measure ν which satisfies (1.4) for all any f ∈ C(E)
satisfying ε ≤ f ≤ 1 for some ε > 0. The generalization to general f ∈ B(E)
with 0 ≤ f ≤ 1 follows by approximation. Finally, (1.4) can be used to show that
if A1, . . . , An are disjoint measurable sets, then ν(A1), . . . , ν(An) are independent
Poisson distributed random variables with means as indicated in the theorem.

The random measure ν whose law is defined in Proposition 1.2 is called a Poisson
counting measure with intensity µ.

Lemma 1.3 (Sum of independent Poisson counting measures) Let E be a
Polish space and let ν1, ν2 be independent Poisson counting measures on E with
intensities µ1, µ2, respectively. Then ν1 + ν2 is a Poisson counting measure with
intensity µ1 + µ2.

Proof One can straightforwardly check this from (1.4). Note that thinnings have
a similar property, so the statement is also rather obvious from our approximation
of Poisson counting measures with thinnings.

Set
N1(E) :=

{
ν ∈ N (E) : ν({x}) ∈ {0, 1} ∀x ∈ E

}
.

Since N1(E) is an open subset of N (E), it is a Polish space. We can identify
elements of N1(E) with finite subsets of E; indeed, ν ∈ N1(E) if and only if
ν =

∑
x∈∆ δx for some finite ∆ ⊂ E. We skip the proof of the following lemma.

Lemma 1.4 (Poisson point set) Let µ be a finite measure on a Polish space E
and let ν be a Poisson counting measure with intensity µ. Then P[ν ∈ N1(E)] = 1
if and only if µ is nonatomic, i.e., µ({x}) = 0 for all x ∈ E.

If µ is a nonatomic measure on some Polish space, ν is a Poisson counting measure
with intensity µ, and ∆ is the random finite set associated with ν, then we call ∆
a Poisson point set with intensity µ.

If E is a locally compact space and µ is a locally compact measure on E (i.e., a
measure such that µ(K) < ∞ for each compact K < ∞), then Poisson counting
measures and Poisson point sets with intensity µ are defined analogously to the
finite measure case. We will in particular be interested in the case that E = [0,∞)
and µ is a multiple of Lebesgue measure.

Lemma 1.5 (Exponential times) Let r > 0 be a constant and let (σk)k≥1 be
i.i.d. exponentially distributed random variables with mean E[σk] = 1/r (k ≥ 1).
Set τn :=

∑n
k=1 σk (n ≥ 1). Then {τn : n ≥ 1} is a Poisson point set on [0,∞)

with indensity rdt, where dt denotes Lebesgue measure.
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Proof Discrete approximation.

1.4 Markov chains

Let E be a Polish space. By definition, a Markov chain with state space E is a
discrete-time stochastic process (Xk)k≥0 such that for all 0 ≤ l ≤ m ≤ n

P
[
(Xl, . . . , Xm) ∈ A, (Xm, . . . , Xn) ∈ B

∣∣Xm]

= P
[
(Xl, . . . , Xm) ∈ A|Xm] P(Xm, . . . , Xn) ∈ B

∣∣Xm] a.s.
(1.5)

for each A ∈ B(Em−l+1) and B ∈ B(En−m+1). In words, formula (1.5) says that
the past and the future are conditionally independent given the present. A similar
definition applies to Markov chains (Xk)k∈I where I ⊂ Z is some interval (possibly
unbounded on either side). It can be shown that (1.5) is equivalent to the statement
that

P
[
Xk ∈ A

∣∣ (X0, . . . , Xk−1)
]

= P
[
Xk ∈ A

∣∣Xk−1

]
a.s. (1.6)

for each k ≥ 1 and A ∈ B(E). For any sequence (Xk)k≥0 of E-valued random
variables, repeated application of (1.2) gives

E
[
f(X0, . . . , Xn)

]
=

∫
P
[
(X0, . . . , Xn−1) ∈ d(x0, . . . , xn−1)

]
×

∫
P
[
Xn ∈ dxn

∣∣ (X0, . . . , Xn−1) = (x0, . . . , xn−1)
]
f(x0, . . . , xn)

=

∫
P
[
(X0, . . . , Xn−2) ∈ d(x0, . . . , xn−2)

]
×

∫
P
[
Xn−1 ∈ dxn−1

∣∣ (X0, . . . , Xn−2) = (x0, . . . , xn−2)
]

×
∫

P
[
Xn ∈ dxn

∣∣ (X0, . . . , Xn−1) = (x0, . . . , xn−1)
]
f(x0, . . . , xn)

=

∫
P
[
X0 ∈ dx0

] ∫
P
[
X1 ∈ dx1

∣∣X0 = x0

] ∫
P
[
X2 ∈ dx2

∣∣ (X0, X1) = (x0, x1)
]

× · · · ×
∫

P
[
Xn ∈ dxn

∣∣ (X0, . . . , Xn−1) = (x0, . . . , xn−1)
]
f(x0, . . . , xn).

If (Xk)k≥0 is a Markov chain, then by (1.6) this simplifies to

E
[
f(X0, . . . , Xn)

]
=

∫
P
[
X0 ∈ dx0

] ∫
P
[
X1 ∈ dx1

∣∣X0 = x0

]
× · · · ×

∫
P
[
Xn ∈ dxn

∣∣Xn−1 = xn−1

]
f(x0, . . . , xn).
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As this formula shows, the law of a Markov chain (Xk)k≥0 is uniquely determined by
its initial law P[X0 ∈ · ] and its transition probabilities P

[
Xn ∈ dxn

∣∣Xn−1 = xn−1

]
(k ≥ 1). By definition, a Markov chain is time-homogeneous if its transitition prob-
abilities are the same in each time step, more precisely, if there exists a probability
kernel P (x, dy) on E such that

P
[
Xn ∈ ·

∣∣Xn−1 = x
]

= P (x, · ) for a.e. x w.r.t. P[Xn−1 ∈ · ],

which is equivalent to

P
[
Xn ∈ ·

∣∣Xn−1

]
= P (Xn−1, · ) a.s. (1.7)

We will usually be interested in time-homogeneous Markov chains only. In fact,
we will often fix a probability kernel P (x, dy) on E and use the word ‘Markov
chain’ when we in fact mean the collection of all (time-homogeneous) Markov
chains whose transition probabilities are given by P (x, dy) in each time step. Note
that we can combine (1.6) and (1.7) in a single condition: a sequence (Xk)k≥0 of
E-valued random variables is a Markov chain with transition probability P (x, dy)
(and arbitrary initial law) if and only if

P
[
Xk ∈ ·

∣∣ (X0, . . . , Xk−1)
]

= P (Xk−1, · ) a.s. (k ≥ 1), (1.8)

which is equivalent to

E
[
f(Xk)

∣∣ (X0, . . . , Xk−1)
]

= Pf(Xk−1) a.s.
(
k ≥ 1, f ∈ B(E)

)
. (1.9)

If K(x, dy) is a probability kernel on a Polish space E, then setting

Kf(x) :=

∫
E

K(x, dy)f(y)
(
x ∈ E f ∈ B(E)

)
defines a linear operator K : B(E) → B(E). We sometimes use this notation also
if f is not a bounded function, as long as the integral is well-defined for every x.
If K,L are probability kernels on E, then we define the composition of K and L
as

(KL)(x,A) :=

∫
E

K(x, dy)L(y, A)
(
x ∈ E f ∈ B(E)

)
.

It is straightforward to check that this formula defines a probability kernel on E. If
K : B(E) → B(E) and L : B(E) → B(E) are the linear operators associated with
the probability kernels K(x, dy) and L(x, dy), then the linear operator associated
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with the composed kernel (KL)(x, dy) is just KL, the composition of the linear
operators K and L.

If (Xk)k≥0 is a Markov chain with transition probability P (x, dy), then we let P
denote the linear operator from B(E) to B(E) associated with P (x, dy) and we
let P n denote the n-fold composition of the kernel / linear operator P with itself,
where P 0(x, dy) := δx(dy) (the delta measure in x). With this notation we may
generalize (1.8) to

P
[
Xk+n ∈ ·

∣∣ (X0, . . . , Xk)
]

= P n(Xk, · ) a.s. (k, n ≥ 0), (1.10)

which is equivalent to

E
[
f(Xk+n)

∣∣ (X0, . . . , Xk)
]

= P nf(Xk) a.s.
(
k, n ≥ 0, f ∈ B(E)

)
. (1.11)

1.5 Finite-state Markov processes

As opposed to Markov chains, dealing with Markov processes with continuous
time is in general technically more difficult. In the present section we will restrict
ourselves to Markov processes with continuous time but finite state space. As we
will see, these processes are very similar to Markov chains. In fact, they are in
many ways ‘effectively’ equivalent to certain ‘embedded’ Markov chains.

Let S be a finite set. If µ is a probability measure on S and i ∈ S, then we
write µ(i) := µ({i}) and likewise, if K(i, A) is a probability kernel on S, then we
write K(i, j) := K(i, {j}). Now probability kernels correspond to matrices and
the composition of two kernels corresponds to the usual matrix product. If K(i, j)
is a probability kernel on S and K is the associated linear operator on B(S), then

(i) f ≥ 0 implies Kf ≥ 0
(
f ∈ B(S)

)
,

(ii) K1 = 1,

where we write 1 to denote the constant function 1(i) := 1 (i ∈ S). Conversely,
it is easy to see that each linear operator K : B(S) → B(S) that satisfies the
properties (i) and (ii) corresponds to a probability kernel on S.

By definition, a (continuous) transition probability on S is a collection (Pt(i, j))t≥0

of probability kernels on S such that

(i) lim
t↓0

Pt(i, j) = P0(i, j) = δi(j) (i, j ∈ S),

(ii)
∑

j

Ps(i, j)Pt(j, k) = Ps+t(i, k) (s, t ≥ 0, i, k ∈ S).
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In terms of the associated linear operators, this says that

(i) lim
t↓0

Ptf = P0f = f
(
f ∈ B(S)

)
,

(ii) PsPt = Ps+t (s, t ≥ 0),

i.e., the operators (Pt)t≥0 form a (continuous) semigroup. Such a semigroup is
called a Markov semigroup.

By definition, we let DS[0,∞) denote the space of all piecewise constant right-
continuous functions from [0,∞) to S. Equivalently, this is the space of functions
w : [0,∞) → S such that

(i) lim
t↓s

wt = ws (s ≥ 0),

(ii) lim
t↑s

wt =: ws− exists (s > 0).

We call DS[0,∞) the space of cadlag functions from [0,∞) to S. (After the French
continue à droit, limite à gauche.) It is possible to equip this space with a (rather
natural) topology such that DS[0,∞) is a Polish space; we will skip the details.
By definition, we say that an S-valued stochastic process (Xt)t≥0 defined on some
underlying probability space (Ω,F ,P) has cadlag sample paths if for every ω ∈ Ω,
the function t 7→ Xt(ω) is cadlag. We may view such a stochastic process as a
single random variable, taking values in the Polish space DS[0,∞). Now

P
[
(Xt)t≥0 ∈ A

] (
A ∈ B(DS[0,∞))

)
is a probability law on DS[0,∞) called the law of the process (Xt)t≥0. It is not
difficult to prove that this law is uniquely determined by the finite dimensional
distributions

P
[
(Xt1 , . . . , Xtn) ∈ A

]
(A ⊂ Sn).

We recall that a filtration is a collection (Ft)t≥0 of σ-fields such that s ≤ t implies
Fs ⊂ Ft. If (Xt)t≥0 is a stochastic process, then the filtration generated by (Xt)t≥0

is defined as
Ft := σ

(
Xs : 0 ≤ s ≤ t

)
(t ≥ 0),

i.e., Ft is the σ-field generated by the random variables (Xs)0≤s≤t. The next
definition generalizes (1.11) to the continuous-time setting.

Definition 1.6 (Finite-state Markov process) Let S be a finite set, let (Xt)t≥0

be a stochastic process with values in S and let (Pt)t≥0 be a continuous transition
probability on S. Then, by definition, we say that (Xt)t≥0 is a (time-homogeneous,
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continuous-time) Markov process corresponding to the transition probability (Pt)t≥0

if (Xt)t≥0 has cadlag sample paths and

E
[
f(Xt)

∣∣Fs

]
= Pt−sf(Xs) a.s.

(
0 ≤ s ≤ t, f ∈ B(S)

)
, (1.12)

where (Ft)t≥0 is the filtration generated by (Xt)t≥0.

As we will see below, for a given continuous transition probability (Pt)t≥0 and
probability law µ on S there exists a unique (in distribution) Markov process
(Xt)t≥0 with initial law P[X0 ∈ · ] = µ such that (1.12) holds.

So far our approach has been very abstract, since we do not know what a general
transition semigroup (Pt)t≥0 (or, equivalently, Markov semigroup) on S looks like.

Proposition 1.7 (Markov semigroups on finite sets) Let (Pt)t≥0 be a Markov
semigroup on a finite set S. Then there exist nonnegative constants r(i, j) (i, j ∈
S, i 6= j) such that

Gf(i) := lim
t↓0

t−1
(
Ptf(i)− f(i)

)
=

∑
j∈S

r(i, j)
(
f(j)− f(i)

) (
i ∈ S, f ∈ B(S)

)
. (1.13)

Conversely, each collection of nonnegative constants {r(i, j) : i, j ∈ S, i 6= j}
defines a unique Markov semigroup on S through (1.13) and the formula

Ptf(i) = etGf :=
∞∑

n=0

tn

n!
Gnf(i)

(
t ≥ 0, i ∈ S, f ∈ B(S)

)
.

We call G the generator of the Markov semigroup (Pt)t≥0. If (Xt)t≥0 is an S-
valued process with cadlag sample paths such that (1.12) holds, then we also say
that (Xt)t≥0 is a Markov process with generator G. We call r(i, j) the rate of jumps
from i to j. By applying (1.13) and (1.12) to functions of the form f(i) := 1{i=j},
we see that if (X i

t)t≥0 denotes the Markov process started in the initial law X i
0 := 1,

then
P[X i

t = j] = r(i, j)t+O(t2) as t→ 0 (i, j ∈ S, i 6= j).

This says that if we start the process in the state i, then for small t, the probability
that we jump from i to j somewhere in the interval (0, t) is tr(i, j) plus a term of
order t2.

Proof of Proposition 1.7 We will skip the proof that each continuous semigroup
of linear operators on a finite-dimensional real linear space is of the form (etG)t≥0,
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where G is called the generator of the semigroup. We will prove, however, that
if this semigroup is a Markov semigroup, then G must have the special form in
(1.13). Let G(i, j) be the matrix associated with G, i.e., Gf(i) =

∑
j G(i, j)f(j).

Then

Ptf(i) = f(i) + t
∑

j

G(i, j)f(j) +O(t2) as t→ 0
(
i ∈ S, f ∈ B(S)

)
.

Now the condition that Ptf ≥ 0 for all f ≥ 0 implies that Gf(i) ≥ 0 whenever
f(i) = 0, hence G(i, j) ≥ 0 for each i 6= j. Moreover, the condition that Pt1 = 1
implies that

1 = 1 + t
∑

j

G(i, j) +O(t2) as t→ 0 (i ∈ S),

which shows that
∑

j G(i, j) = 0 for each i. Setting r(i, j) := G(i, j) for i 6= j
and using the fact that G(i, i) = −

∑
j 6=i r(i, j), we see that G can be cast in

the form (1.13). The fact that conversely, each generator of this form defines
a Markov semigroup will follow from our explicit construction of the associated
Markov process below.

We are now ready to state the most important theorem of this chapter, which tells
us how to construct finite-state Markov processes based on a collection of Poisson
point processes.

Theorem 1.8 (Poisson construction of Markov process) Let S be a finite set
and let M be a finite set whose elements are functions m : S → S. Let (rm)m∈M be
nonnegative constants and let ∆ be a Poisson point set on M× [0,∞) = {(m, t) :
m ∈ M, t ≥ 0} with intensity rmdt, where dt denotes Lebesgue measure. Order
the elements of ∆ as (m1, t1), (m2, t2), . . . where t1 < t2 < · · · and set t0 := 0. Let
X0 be an S-valued random variable, independent of ∆. Define

Xt := mn · · ·m1(X0)
(
t ∈ [tn, tn+1), n ≥ 0

)
. (1.14)

Then (Xt)t≥0 is a Markov process with generator

Gf(i) =
∑

m∈M

rm

(
f(m(i))− f(i)

) (
i ∈ S, f ∈ B(S)

)
. (1.15)

Proof We will use approximation with Markov chains. We will be a bit sloppy
concerning the precise sense of the convergence and concentrate on the main idea.
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Set R :=
∑

m∈M rm and choose ε > 0 such that εR ≤ 1. Let (ρk)k≥1 be i.i.d.
M-valued random variables with

P[ρk = m] =
rm

R
(k ≥ 1, m ∈M).

Let (χk)k≥1 be i.i.d. Bernoulli random variables with P[χk = 1] = εR, independent
of the (ρk)k≥1, and define a random set ∆ε ⊂ {(m, εk) : m ∈M, k ≥ 1} by

∆ε :=
{
(ρk, εk) : χk = 1

}
.

Set

mε
k(i) :=

{
ρk(i) if χk = 1,
i if χk = 0,

(i ∈ S),

and define a discrete-time process (Xεk)k≥0 by

Xεk := mε
k · · ·mε

1(X0) (k ≥ 0).

Then (Xεk)k≥0 is a Markov chain in S that jumps in each time step from the state
i to the state m(i) with probability ε rm

R
and stays in the state i with probability

1 − εR. It is not hard to see that for ε → 0, the random sets ∆ε converge in
an appropriate sense to a Poisson point set on M × [0,∞) = {(m, t) : m ∈
M, t ≥ 0} with intensity rmdt and hence the process (Xεk)k≥0 converges in an
appropriate sense to the continuous-time process (Xt)t≥0 defined in (1.14). The
process (Xt)t≥0 inherits the Markov property from the approximating processes
(Xεk)k≥0. Moreover, if (X i

t)t≥0 denotes the process defined as in (1.14) with X i
0 :=

i, then we claim that

E
[
f(X i

t)
]

= (1− tR)f(i) + t
∑

m∈M

rmf(m(i)) +O(t2) as t→ 0.

Indeed, if t is small, then the probability that (m, s) ∈ ∆ for some s ∈ (0, t) is
approximately trm while the probability that ∆∩ (M× (0, t)) contains more than
one element is of order O(t2). This explains (rather than proves) formula (1.15).

Theorem 1.8 shows that for each finite collection M of maps m : S → S and
nonnegative rates (rm)m∈M, we can construct a unique associated Markov process
(Xt)t≥0 in S. We note that the inverse problem is far from unique; with this we
mean that for a given Markov process, or rather, for a given Markov semigroup
(Pt)t≥0, there may be many different ways of writing the generator G in the form
(1.15). Once we have chosen a particular way of writing G in the form (1.15), The-
orem 1.8 provides us with a natural way of coupling processes started in different



20 CHAPTER 1. MARKOV PROCESSES

initial states. Indeed, using the same Poisson point set ∆ = {(m1, t1), (m2, t2), . . .},
setting

X i
t := mn · · ·m1(i)

(
t ∈ [tn, tn+1), n ≥ 0, i ∈ S

)
defines for each i ∈ S a Markov process (X i

t)t≥0 with generator G started in the
initial state X i

0 = i, and all these processes (for different i) are in a natural way
defined on one and the same underlying probability space (i.e., they are coupled).
Such couplings are very important in the theory of interacting particle systems.
We conclude this section with the next result, which is similar to Theorem 1.8,
but not quite the same.

Proposition 1.9 (Embedded Markov chain) Let S be a finite set, let r(i, j)
(i, j ∈ S, i 6= j) be nonnegative constants, and assume that

R(i) :=
∑
j:j 6=i

r(i, j) > 0 (i ∈ S).

Let (σi
k)

i∈S
k≥1 be independent exponentially distributed random variables with mean

E[σi
k] = 1/R(i). Define a probability kernel P (i, j) on S by

P (i, j) :=


r(i, j)

R(i)
if i 6= j,

0 if i = j,

(i, j ∈ S).

Let (Yk)k≥0 be a Markov chain in S with transition kernel P (i, j) and let ln(i) :=
|{k : 0 ≤ k ≤ n, Yk = i}| denote the number of times (Yk)k≥0 has visited i by time
n. Define inductively times (tk)k≥0 by t0 := 0 and

tn+1 := tn + σYn

ln(Yn) (n ≥ 0),

and define a continuous-time process (Xt)t≥0 by

Xt := Yn for t ∈ [tn, tn+1).

Then (Xt)t≥0 is the Markov process with generator

Gf(i) =
∑

j

r(i, j)
(
f(j)− f(i)

) (
i ∈ S, f ∈ B(S)

)
.

Proof (sketch) This can be proved by approximation with Markov chains in the
spirit of the proof of Theorem 1.8.

We note that Proposition 1.9 can be extended to the case that R(i) = 0 for
some points i ∈ S by allowing that σi

1 := ∞ (these points are then traps for
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the continuous-time Markov process). It is not hard to see that conversely, given
the continuous-time process (Xt)t≥0, one can uniquely construct the associated
embedded Markov chain (Yk)k≥0. Because of Proposition 1.9, many properties of
the continuous-time Markov process (Xt)t≥0 can be translated in problems for the
embedded Markov chain (Yk)k≥0 and vice versa. One should not make the mistake
of thinking that all problems will become easier when translated into the language
of the Markov chain (Yk)k≥0. Indeed, continuous-time Markov processes have some
nice properties that discrete chains lack and it has happened more than once that
problems for discrete Markov chains could be solved by looking at a cleverly chosen
associated Markov processes in continuous time.

1.6 Invariant laws

Let (Xt)t≥0 be a Markov process with finite state space S, Markov semigroup
(Pt)t≥0, generator G and jump rates {r(i, j) : i, j ∈ S, i 6= j}. By definition, an
invariant law for (Pt)t≥0 is a probability measure µ on S such that∑

i

µ(i)Pt(i, j) = µ(j) (t ≥ 0, j ∈ S).

If µ is an invariant law for a Markov semigroup (Pt)t≥0 then we can construct a
process (Xt)t∈R that is also defined for negative times, such that (compare (1.12))
P[Xt ∈ · ] = µ for all t ∈ R and

E
[
f(Xt)

∣∣Fs

]
= Pt−sf(Xs) a.s.

(
s ≤ t, f ∈ B(S)

)
, (1.16)

where Fs := σ(Xu : −∞ < u ≤ s). Such a Markov process (Xt)t∈R is stationary,
i.e.,

P
[
(Xs+t)t∈R ∈ ·

]
= P

[
(Xt)t∈R ∈ ·

]
(s ∈ R).

In view of this, invariant laws are sometimes also called stationary laws. By defini-
tion, a Markov process with given jump rates {r(i, j) : i, j ∈ S, i 6= j} is irreducible
if

∀S ′ ⊂ S with S ′ 6= ∅, S ∃i ∈ S ′, j /∈ S ′ such that r(i, j) > 0.

Proposition 1.10 (Ergodicity) Consider a Markov process on a finite state
space S with jump rates {r(i, j) : i, j ∈ S, i 6= j}. If the jump rates are irre-
ducible, then the Markov process has a unique invariant law µ and the process
(Xt)t≥0 started in any initial law satisfies

P[Xt = i] −→
t→∞

µ(i) (i ∈ S). (1.17)
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Proof (sketch) Let (X i
t)t≥0 denote the process started in the initial state X i

0 = i
and let

τ i
j := inf{t ≥ 0 : X i

t = j}
denote the first arrival time of (X i

t)t≥0 in j and let

λi :=
∑

j

r(i, j)E[τ j
i ]

denote the mean return time to the state i, which is finite for each i ∈ S by
irreducibility. Then one can check that

µ(i) :=
λ−1

i∑
j λ

−1
j

(i ∈ S)

is an invariant law for the process (Xt)t≥0. To prove (1.17), let (Xt)t≥0 be started
in any initial law and let (X ′

t)t≥0 be an independent Markov process with the same
jump rates, started in the initial law µ. Set

σ := inf{t ≥ 0 : Xt = X ′
t}

and define

X ′′
t :=

{
Xt (t < σ),

X ′
t (σ ≤ t).

Then (X ′′
t )t≥0 is equal in law to (Xt)t≥0. Using irreducibility, one can prove that

σ <∞ a.s. It follows that∣∣P[Xt = i]− µ(i)
∣∣ ≤ P[X ′′

t = i, X ′
t 6= i] + P[X ′′

t 6= i, X ′
t = i] ≤ P[σ < t] −→

t→∞
0,

which implies (1.17).

Formula (1.17) is often described in words by saying that the Markov process
(Xt)t≥0 is ergodic, although this is not entirely correct terminology. (In fact, the
statement that (1.17) holds for each initial law is stronger than the statement that
the stationary process defined in (1.16) is ergodic.)
We recall from (1.5) that the Markov property is symmetric with respect to time
reversal. Thus, if (X1, . . . , Xn) is a (finite) Markov chain, then so is (Xn, . . . , X1);
similar statements hold for continuous-time processes. However, if a Markov pro-
cess is time-homogeneous, then the same need not be true for the time-reversed
process. An exception are stationary Markov processes: reversing the time in a
stationary Markov process yields a stationary, hence time-homogeneous Markov
process. The transition probabilities of this time-reversed process need not be
the same as those of the original process, however. This leads to the following
definition.
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Definition 1.11 (Reversibility) Let S be a finite set and let (Pt)t≥0 be a Markov
semigroup on S. Then, by definition, we say that an invariant law µ of (Pt)t≥0 is
reversible if the stationary process in (1.16) satisfies

P
[
(X−t)t∈R ∈ ·

]
= P

[
(Xt−)t∈R ∈ ·

]
. (1.18)

Note that (X−t)t∈R has left-continuous sample paths, which is why we compare
this in (1.18) with (Xt−)t∈R, the left-continuous modification of (Xt)t∈R. We state
the following fact without proof.

Proposition 1.12 (Detailed balance) A probability law µ on a finite set S is a
reversible invariant law for a Markov process in S with jump rates {r(i, j) : i, j ∈
S, i 6= j} if and only if

µ(i)r(i, j) = µ(j)r(j, i) (i, j ∈ S). (1.19)

Condition (1.19) is called detailed balance. Note that this says that in equilibrium,
jumps from i to j happen with the same frequency as jumps from j to i.

1.7 Feller processes

Let E be a compact metrizable space. (Such spaces are always separable.) We
let C(E) denote the space of continuous real functions on E, equipped with the
supremumnorm

‖f‖ := sup
x∈E

|f(x)| (f ∈ C(E)).

We let M1(E) denote the space of probability measures on E (equipped with the
topology of weak convergence). We note that C(E) is a separable Banach space
and that M1(E) is a compact metrizable space.

By definition, a continuous transition probability on E is a collection (Pt(x, dy))t≥0

of probability kernels on E such that

(i) (x, t) 7→ Pt(x, · ) is a continuous map from E × [0,∞) into M1(E),

(ii)

∫
E

Ps(x, dy)Pt(y, dz) = Ps+t(x, dz) and P0(x, · ) = δx (x ∈ E, s, t ≥ 0).

Each continuous transition probability defines a Markov semigroup (Pt)t≥0 by

Ptf(x) :=

∫
E

Pt(x, dy)f(y)
(
f ∈ B(E)

)
. (1.20)
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It follows from the continuity of the transition probability that the operators Pt

map the space C(E) into itself. Conversely, each collection of linear operators
Pt : C(E) → C(E) such that

(i) limt→0 ‖Ptf − f‖ = 0,

(ii) PsPtf = Ps+tf and P0f = f,

(iii) f ≥ 0 implies Ptf ≥ 0,

(iv) Pt1 = 1,

corresponds to a unique continuous transition probability on E. Such a collection
of linear operators Pt : C(E) → C(E) is called a Feller semigroup.

By definition, the generator is the operator

Gf := lim
t→0

t−1
(
Ptf − f),

which is defined only for functions f ∈ D(G), where

D(G) :=
{
f ∈ C(E) : the limit lim

t→0
t−1

(
Ptf − f) exists

}
.

Here, when we say that the limit exists, we mean the limit in the topology on
C(E), which is defined by the supremumnorm ‖ · ‖. It can be shown that a Feller
semigroup is determined uniquely by its generator.

We say that an operator A on C(E) with domain D(A) satisfies the maximum
principle if, whenever a function f ∈ D(A) assumes its maximum over E in a
point x ∈ E, we have Af(x) ≤ 0. We say that a linear operator A with domain
D(A) acting on a Banach space V (in our example the space C(E) equipped with
the supremunorm) is closed if and only if its graph {(f, Af) : f ∈ D(A)} is a closed
subset of V × V . The following is a version of the Hille-Yosida theorem:

Proposition 1.13 (Hille-Yosida, first version) A linear operator G on C(E)
is the generator of a Feller semigroup if and only if

(i) 1 ∈ D(G) and G1 = 0.

(ii) G satisfies the maximum principle.

(iii) D(G) is dense in C(E).

(iv) For every f ∈ D(G) there exists a continuously differentiable function t 7→ ut

such that u0 = f , ut ∈ D(G), and ∂
∂t
ut = Gft for each t ≥ 0.
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(v) G is closed.

Here the differentiation with respect to t is in the Banach space C(E).

In practice, it us usually not feasible to explicitly write down the full domain of
the generator of a Feller semigroup. Instead, one often first defines a ‘pregenera-
tor’ wich is defined for a smaller class of functions, and then constructs the ‘full
generator’ by taking the closure of the pregenerator.

By definition, a linear operator A with domain D(A) on a Banach space V is
closable if the closure of its graph (as a subset of V × V) is the graph of a linear
operator A with domain D(A), called the closure of A. The next version of the
Hille-Yosida theorem is often usueful.

Proposition 1.14 (Hille-Yosida, second version) A linear operator G on
C(E) with domain D(G) is closable and its closure G is the generator of a Feller
semigroup if and only if

(i) (1, 0) ∈ {(f,Gf) : f ∈ D(G)} (i.e., (1, 0) is in the closure of the graph of G).

(ii) G satisfies the maximum principle.

(iii) D(G) is dense in C(E).

(iv) There exists an r ∈ (0,∞) and a dense subspace D ⊂ C(E) with the property
that for every f ∈ D there exists a pr ∈ D(G) such that (1− rG)pr = f .

By definition, a Feller process associated to a given Feller semigroup (Pt)t≥0 is a
stochastic process (Xt)t≥0 with values in E and cadlag sample paths, such that
(compare (1.16))

E
[
f(Xt)

∣∣Fs

]
= Pt−sf(Xs) a.s.

(
s ≤ t, f ∈ C(E)

)
, (1.21)

where (Ft)t≥0 is the filtration generated by (Xt)t≥0. It can be shown that if (Pt)t≥0

is a Feller semigroup, then for each probability law µ on E there exists a unique
(in law) Feller process associated to (Pt)t≥0 with initial law P[X0 ∈ · ] = µ. Feller
processes have many nice properties, such as the strong Markov property.

1.8 Tightness and weak convergence

Since we will need this on some occasions, we recall a few facts from basic measure
theory. Let E be a Polish space and letM1(E) be the space of probability measures
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on E, equipped with the topology of weak convergence. By definition, a set R ⊂
M1(E) is tight if

∀ε > 0∃K ⊂ E s.t. K is compact and µ(E\K) ≤ ε ∀µ ∈ R.

A well-known result says that the closure of R is compact (i.e., R is ‘precompact’)
as a subset ofM1(E) if and only ifR is tight. In particular, if (µn)n≥0 is a sequence
of probability measures on E then we say that such a sequence is tight if the set
{µn : n ≥ 0} ⊂ M1(E) is tight. Note that each tight sequence of probabability
measures has a weakly convergent subsequence. Recall that a cluster point of a
sequence is a limit of some subsequence of the sequence. We sometimes say ‘weak
cluster point’ when we mean a ‘cluster point in the topology of weak convergence’.
One often needs tightness because of the following simple fact.

Lemma 1.15 (Tightness and weak convergence) Let (µn)n≥0 be a tight se-
quence of probability measures on a Polish space E and assume that (µn)n≥0 has
only one weak cluster point µ. Then µn converges weakly to µ.

Note that if E is compact, then tightness comes for free, i.e., every sequence of
probability measures on E is tight and M1(E) is itself a compact space.



Chapter 2

The contact process

2.1 Introduction

In this chapter, we study the contact process. The contact process is one of the
most basic and most intensively studied interacting particle systems. It was intro-
duced in the mathematical literature by Harris in 1974 [Har74] and a few years later
independently in the high-energy physics literature as the ‘reggeon spin model’.
Many important questions about the behavior of the nearest-neighbour contact
process on Zd were solved by Bezuidenhout and Grimmett in 1990–1991 (building,
of course, on the work of many others) [BG90, BG91]. Physicists, not hindered by
the burden of rigorous proof, proceeded must faster. In fact, the only statements
about the contact process that physicists consider nontrivial -concerning its crit-
ical behavior in low dimensions- remain largely unproved by mathematicians up
to date. The contact process continues to be the subject of intense study in the
mathematical literature. Questions about its critical behavior in high dimensions
were recently answered in [HS05]. In addition, all kind of variations on the origi-
nal process such as contact processes in a random environment [Lig92, Rem08] or
contact processes on more general lattices have recieved a lot of attention.

2.2 Definition of the model

We start by introducing the most basic contact process: the nearest-neighbour
contact process on Zd. Recall that

Zd :=
{
i = (i1, . . . , id) : ik ∈ Z ∀k = 1, . . . , d

}
27
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is the d-dimensional integer lattice. Points i ∈ Zd are often called sites. The
nearest-neighbour contact process on Zd is a collection(

Xt(i)
)

t≥0, i∈Zd

of {0, 1}-valued random variables, such that for each i ∈ Zd, the process(
Xt

)
t≥0

is a continuous-time Markov process with state space {0, 1} whose jump rates
depend on the states of its nearest neighbours, i.e., the processesXt(j) with |i−j| =
1. More precisely, if at some time t the state of the process is x = (x(i))i∈Zd ∈
{0, 1}Zd

, then the state at site i jumps as follows:

x(i) jumps:

0 7→ 1 with rate λ
∑

j:|i−j|=1 x(j),

1 7→ 0 with rate 1.

Here λ > 0 is a fixed constant, called the infection rate.

For example, if d = 2, then we can imagine that each site i ∈ Z2 represents a tree
in an infinite orchard. If Xt(i) = 1 then we say that the tree i is at time t infected
with a certain disease, while if Xt(i) = 0 we say that the tree i is healthy. Healthy
trees become infected with a rate that is proportional to their number of infected
neighbours, and infected trees get healthy with constant recovery rate 1.

Although we say informally that the process (Xt(i))t≥0 at the site i is a continuous-
time Markov process, because of the fact that its jump rates depend on the states
of its neighbours, the process (Xt(i))t≥0, on its own, actually does not have the
Markov property. On the other hand, if we let

Xt :=
(
Xt(i)

)
i∈Zd (t ≥ 0)

denote the whole collection of processes Xt(i) indexed by sites i ∈ Zd, then the
{0, 1}Zd

valued process (Xt)t≥0 does have the Markov property. We may formally
write the generator of this Markov process as

Gf(x) =λ
∑

i

1{x(i)=0}
∑

j:|i−j|=1

x(j)
(
f(x+ δi)− f(x)

)
+

∑
i

1{x(i)=1}
(
f(x− δi)− f(x)

)
,

(2.1)
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(x ∈ {0, 1}Zd
), where we define δi ∈ {0, 1}Zd

by

δi(j) := 1{i=j} (i, j ∈ Zd).

Note that we do not say precisely for which functions f the expression in (2.1)
is defined. At least for functions that depend on finitely many coordinates only,
one can check that the infinite sums reduce to finite sums and hence Gf is well-
defined. It can be shown that if one first defines Gf for such functions and then
takes the closure of the operator G, then this closure generates a Feller semigroup
on {0, 1}Zd

. We may then define (Xt)t≥0 as the Feller process associated with this
semigroup. We will follow this approach in Chapter A. In the present chapter,
we will use an alternative approach for constructing (Xt)t≥0, which is based on
Theorem 1.8.

2.3 The graphical representation

For each pair of neighbouring sites i, j ∈ Zd, |i − j| = 1, let us define a map
mij : {0, 1}Zd → {0, 1}Zd

by

(mijx)(k) :=

{
1 if k = i, x(j) = 1,

x(k) otherwise,

(
i, j, k ∈ Zd, x ∈ {0, 1}Zd)

.

Moreover, for each i ∈ Zd, let us define pi : {0, 1}Zd → {0, 1}Zd
by

(pix)(j) :=

{
0 if j = i,

x(j) if j 6= i,

(
i, j ∈ Zd, x ∈ {0, 1}Zd)

.

Then we may rewrite the generator G in (2.1) in the form

Gf(x) = λ
∑

i,j: |i−j|=1

(
f(mij(x))− f(x)

)
+

∑
i

(
f(pi(x))− f(x)

)
. (2.2)

(x ∈ {0, 1}Zd
). This form of the generator reminds us of Theorem 1.8. The only

difference is that there, we considered a finite set of maps M, while at present we
have to deal with infinitely many maps mij and pi. However, since our maps act
only locally, we may still hope that the same approach works.

In view of these considerations and inspired by Theorem 1.8, we let

E :=
{
(i, j) : i, j ∈ Zd, |i− j| = 1

}
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denote the set of all ordered nearest-neighbour pairs and we let ∆i and ∆r be
independent Poisson point sets on E × [0,∞) and Zd× [0,∞) with intensities λ dt
and 1 dt, respectively. We interpret a point (i, j, t) ∈ ∆i as the event that at time
t, the state of our contact process jumps from x to mij(x). Likewise, a point
(i, t) ∈ ∆r indicates that at time t, the state of our contact process jumps from x
to pi(x).

Unlike the situation in Theorem 1.8, we can no longer order the elements of ∆i and
∆r by their time coordinates; indeed, for each time interval (s, t) with s < t the
sets ∆i∩ (E × (s, t)) and ∆r∩ (Zd× (s, t)) contain infinitely many points. However,
since most of these points refer to events that take place somewhere far away, we
can still hope that by concatenating all maps mij and pi that matter locally in the
right order, we obtain a well-defined process.

In Figure 2.1 we have drawn a finite piece of the sets ∆i and ∆r for the process on
Z. We have drawn space horizontally and time vertically. Points (i, j, t) ∈ ∆i have
been indicated by drawing an arrow from (i, t) to (j, t) while points (i, t) ∈ ∆r

have been indicated with a black box. The arrows indicate potential infections:
if at time t there is an arrow from i to j and just before this time, the site i is
infected and j is healthy, then after this time both i and j should be infected;
otherwise nothing happens. Likewise, a black box at a point (i, t) indicates a
potential recovery: if just before time t, the site i is infected, then after time t it
should be healthy; otherwise nothing happens.

With this in mind, we make the following definitions. We start by noting that if
[s, u] is a time interval and γ : [s, u] → Zd is a cadlag function, then it is possible
that γ makes a jump at time u (i.e., γu 6= γu−), but because of right-continuity,
it cannot happen that γ makes a jump at time s. In view of this and since in
what follows, it will be inconvenient to have a definition that is not symmetric
with respect to time reversal, we start with a definition that may seem a little
cumbersome at first sight. By definition, by a path in Zd we will mean a pair of
functions (γt−, γt) defined on some time interval [s, u] with s ≤ u and taking values
in Zd, such that

limt↓t0 γt− = γt0

(
t0 ∈ [s, u)

)
,

limt↑t0 γt = γt0−
(
t0 ∈ (s, u]

)
.

(2.3)

Note that this definition allows for the case that γs− 6= γs, which is what we
wanted. We will often identify a path, as we have just defined it, with the set
γ ⊂ Zd × R defined by

γ :=
{
γt− : t ∈ [s, u]

}
∪

{
γt : t ∈ [s, u]

}
.
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t

Λ

A

ηA
t

infection rate λ

recovery rate 1

Figure 2.1: Graphical representation of the contact process.

Note that both the functions γt and γt−, as well as the starting time s and final
time u can be read off from the set γ.

Next, for points (i, s), (j, u) ∈ Zd × [0,∞), we say that there is an open path from
to (i, s) to (j, u), denoted as (i, s)  (j, u), if and only if there exists a path γ in
Zd with starting time s and final time t such that γs− = i, γu = j, and

(γt−, γt, t) ∈ ∆i for all t ∈ [s, u] s.t. γt− 6= γt,

γ ∩∆r = ∅.

In words, this says that an open path must walk upwards in time, may use infection
arrows, but must avoid recovery symbols. Next, for each x ∈ {0, 1}Zd

, we define

Xx
t (i) :=

{
1 if ∃j s.t. x(j) = 1, (j, 0) (i, t),

0 otherwise,

(t ≥ 0, i ∈ Zd, x ∈ {0, 1}Zd
). A little thinking convinces us that (Xx

t )t≥0 is
the contact process we wanted to construct. (Note that we have arranged our
definitions in such a way that (Xx

t (i))t≥0 has cadlag sample paths for each i ∈ Zd.)

Often, it is convenient to use slightly different notation. By identifying a set with
its indicator function, we see that the space {0, 1}Zd

is in a natural way isomorphic
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to the space of all subsets of Zd. With this in mind, for any A ⊂ Zd, we define

ηA
t :=

{
i : A× {0} (i, t)

} (
t ≥ 0, A ⊂ Zd

)
, (2.4)

where A×{0} (i, t) indicates the event that (j, 0) (i, t) for some j ∈ A. With
this notation, we see that

{i : x(i) = 1} = A implies {i : Xx
t (i) = 1} = ηA

t ,

i.e., if A is the set of sites that are infected at time 0 then ηA
t is the set of sites

that are infected at time t.

Exercise 2.1 Invent graphical representations for the interacting particle systems
on Z with generators (compare (2.1))

G′f(x) =λ
∑

i

1{x(i)=0}1{x(i−1)+x(i+1)>0}
(
f(x+ δi)− f(x)

)
+

∑
i

1{x(i)=1}
(
f(x− δi)− f(x)

)
and

G′′f(x) =λ
∑

i

1{x(i)=0}
(
x(i− 1) + x(i+ 1)

)2(
f(x+ δi)− f(x)

)
+

∑
i

1{x(i)=1}
(
f(x− δi)− f(x)

)
.

2.4 The survival probability

By definition, we say that the nearest-neighbor contact process on Zd with infection
rate λ survives if

θ(λ, d) = θ(λ) := P
[
η
{0}
t 6= ∅ ∀t ≥ 0

]
> 0.

If this probability is zero, then we say that the contact process dies out or gets
extinct.
By a combination of rigorous mathematics, nonrigourous methods, and computer
simulations, theoretical physicists have discovered the following properties of the
function θ. There exists a critical value λc = λc(d) with 0 < λc < ∞ such that
θ(λ) = 0 for λ ≤ λc and θ(λ) > 0 for λ > λc. The function θ is continuous, strictly
increasing and concave on [λc,∞) and satisfies limλ→∞ θ(λ) = 1. One has

λc(1) = 1.6489± 0.0002.
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1

θ(λ)

λc
λ

Figure 2.2: Survival probability.

Moreover, λc(d) is decreasing in d and satisfies

λc(d) ≈
1

2d
as d→∞, (2.5)

where the notation f(z) ≈ g(z) as z → z0 means that

lim
z→z0

f(z)

g(z)
= 1 as z → z0.

The behavior of θ near the critical point is very interesting. One has

θ(λ) ∼ (λ− λc)
β as λ ↓ λc, (2.6)

where we write f(z) ∼ g(z) as z → z0 if

lim
z→z0

log(f(z))

log(g(z))
= 1.

The constant β = β(d) is a critical exponent, approximately given by

β(1)∼= 0.276487,
β(2)∼= 0.584,
β(3)∼= 0.81,
β(d) = 1 (d ≥ 4).

In dimensions d 6= 4, it is believed that (2.6) can be strengthened to θ(λ) ≈
c(λ− λc)

β for some 0 < c <∞.
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Below, we will prove some of the easier properties of the function θ, such as mono-
tonicity, the existence of a critical parameter λc, and the fact that θ is right-
continuous everywhere and left-continuous everywhere except possibly at the crit-
ical point λc. Proving that θ is left-continuous at λc, which by our previous remarks
is equivalent to the statement that θ(λc) = 0, kept probabilists occupied for some
15 years, till Bezuidenhout and Grimmett proved this in their celebrated paper
[BG90]. Quite recently, it has been proved that (2.6) holds with β = 1 if the
dimension d is sufficiently large. The critical behavior in dimensions d = 1, 2, 3
remains very much an unsolved problem. Physicists come to their prediction (2.6)
using (nonrigorous) renormalization group arguments, where critical exponents
can be related to eigenvectors of linearized renormalization transformations near
a fixed point. Mathematically, there are big problems even defining these renor-
malization transformations rigorously, let alone studying them.
In dimension d = 1 it is known rigorously that 1.539 < λc < 1.943 [ZG85, Lig95].
For bounds in higher dimensions (including a proof of (2.5)), see [Lig85]. As far
as I know, nobody has any idea how to prove that θ is concave on [λc,∞).

2.5 Extinction

Lemma 2.2 (Survival versus extinction) If the contact process survives, then

P
[
ηA

t 6= ∅ ∀t ≥ 0
]
> 0 (2.7)

for each finite nonempty A ⊂ Zd. If the contact process dies out, then this proba-
bility is zero for each finite nonempty A ⊂ Zd.

Proof Let A be finite and nonempty. For obvious reasons we also denote the
probability in (2.7) by

P
[
(A× {0}) ∞

]
.

Now choose any i ∈ A. Then

P
[
(0, 0) ∞

]
= P

[
(i, 0) ∞

]
≤ P

[
(A× {0}) ∞

]
= P

[
∃j ∈ A s.t. (j, 0) ∞

]
≤

∑
j∈A

P
[
(j, 0) ∞

]
= |A|P

[
(0, 0) ∞

]
,

where we have used translation invariance and |A| denotes the number of elements
in A.

In this and the next section, we will prove the following result.
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Theorem 2.3 (Critical infection rate) For each d ≥ 1 there exists a λc = λc(d)
with 0 < λc < ∞ such that the nearest-neighbour contact process on Zd with
infection rate λ survives for λ > λc and dies out for λ < λc.

Note that this theorem says nothing about survival or extinction if λ = λc(d).

As a first step towards Theorem 2.3, we prove the following fact.

Lemma 2.4 (Monotone coupling) Let (ηt)t≥0 and (η′t)t≥0 be countact processes
on Zd with infection rates 0 ≤ λ ≤ λ′ and deterministic initial states η0 = A and
η′0 = A′ satisfying A ⊂ A′. Then (ηt)t≥0 and (η′t)t≥0 can be coupled such that

ηt ⊂ η′t (t ≥ 0).

In particular, survival of the contact process with infection rate λ implies survival
of the contact process with infection rate λ′.

Proof Let 0 ≤ λ ≤ λ′. Let ∆i and ∆̃i be independent Poisson point sets on
E × [0,∞) with intensities λ dt and (λ′ − λ) dt, respectively, and let ∆̃r be a
Poisson point set on Zd × [0,∞) with intensity 1 dt, independent of ∆i and ∆̃i.
Then ∆i∪ ∆̃i is a Poisson point set on E × [0,∞) with intensity λ′ dt. We interpret
points in ∆i and ∆̃i as infection arrows and points in ∆̃r as recovery symbols. We
let  indicate the presence of an open path that may use infection arrows from
∆i only and we write  ′ to indicate the presence of an open path that may use
infection arrows from ∆i ∪ ∆̃i. Then

ηt = {i : A× {0} (i, t)} ⊂ {i : A′ × {0} ′ (i, t)} = η′t (t ≥ 0)

since A ⊂ A′ and the process (η′t)t≥0 has more arrows at its disposal.

It follows from Lemma 2.4 that the function λ 7→ θ(λ) is nondecreasing and hence,
for each d ≥ 1, there exists a 0 ≤ λc(d) ≤ ∞ such that the nearest-neighbour
contact process on Zd with infection rate λ survives for λ > λc and dies out for
λ < λc. To prove Theorem 2.3, we must show that 0 < λc(d) < ∞. We start by
proving a the lower bound on λc, which is easiest.

Proposition 2.5 (Exponential bound) Let (ηA
t )t≥0 be the nearest-neighbour

contact process on Zd with infection rate λ, started in a deterministic initial state
ηA

0 = A with |A| <∞. Then |ηA
t | <∞ for all t ≥ 0 a.s., and

E
[
|ηA

t |
]
≤ |A|e(2dλ−1)t (t ≥ 0). (2.8)
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Proof We start by giving a heuristic argument. Each infected site is bordered by
at most 2d uninfected sites. Therefore, the expected number of new sites that are
infected by an already infected site in a small time interval of length dt is less than
2dλ dt. On the other hand, each infected site has a probability of 1 dt to die in the
same time interval. Therefore, the expected number of infected sites as a function
of time should satisfy

∂
∂t

E
∣∣|ηA

t |
]
≤

(
2dλ− 1)E

∣∣|ηA
t |

]
,

which implies (2.8).

To make this rigorous, we need to work a bit. We start by translating our argument
into the language of semigroups and generators. Let (Pt)t≥0 denote the Markov
semigroup of the contact process and let f denote the function f(A) := |A|. Then
(2.8) says that

Ptf(A) ≤ e(2dλ−1)tf(A) (t ≥ 0).

Let G be the generator of (Pt)t≥0. In our present notation,

Gf(A) =λ
∑
i∈A

∑
j /∈A

|i−j|=1

(
f(A ∪ {j})− f(A)

)
+

∑
i∈A

(
f(A\{i})− f(A)

)
=λ|{(i, j) ∈ E : i ∈ A, j /∈ A}| − |A| ≤ (2dλ− 1) |A|.

This says that Gf ≤ (2dλ − 1)f . Assuming that we can differentiate semigroups
as in the finite-dimensional case, we have

∂
∂t
Ptf = lim

ε↓0
ε−1(Pεf − f)Pt = GPtf (t ≥ 0),

hence
∂
∂t

(
e(1−2dλ)tPtf

)
= (1− 2dλ)e(1−2dλ)tPtf + e(1−2dλ)tGPtf ≤ 0

and therefore e(1−2dλ)tPtf ≤ e(1−2dλ)0P0f , which implies (2.8).

Although our argument is now more formal, it is still not rigorous, since we do not
know if we can differentiate our semigroup, which acts on functions in the infinite-
dimensional space B({0, 1}Zd

), in the same way as we would do for a Markov
process with a finite state space. To fix this, we use an approximation argument.
For N ≥ 1, let ΛN := {−N, l . . . , N}d denote a box of length 2N + 1 centered
around the origin. Using the graphical representation of the contact process, for
each A ⊂ Zd, we set

η
(N),A
t :=

{
i ∈ ΛN : (A ∩ ΛN)× {0} N (i, t)

}
,
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where  N to indicates the presence of an open path that stays in ΛN . It is easy
to see that

η
(N),A
t ↑ ηA

t as N ↑ ∞ (t ≥ 0).

By Theorem 1.8, (η
(N),A
t )t≥0 is a Markov process with finite state space. By essen-

tially the same generator calculation as above, which is now fully justified since
our semigroup acts on the finite-dimensional space B({0, 1}ΛN ), we find that

E
[
|η(N),A

t |
]
≤ |A|e(2dλ−1)t (t ≥ 0, N ≥ 1).

Letting N ↑ ∞ we arrive at (2.8).

It follows from (2.8) that P[|ηA
t | < ∞] = 1 for all t ≥ 0. In order to complete the

proof of Proposition 2.5, we need to sharpen this to the statement that P[|ηA
t | <

∞ ∀t ≥ 0] = 1. Let (ζA
t )t≥0 be a contact process on Zd without recoveries, i.e.,

ζA
t :=

{
i ∈ ΛN : A× {0} ′ (i, t)

}
,

where ′ is defined in the same way as , with the exception that this time, paths
need not avoid recovery symbols. Then obviously ηA

t ⊂ ζA
t for all t ≥ 0, while the

same reasoning as before gives

E
[
|ζA

t |
]
≤ |A|e2dλt (t ≥ 0).

Since |ζA
t | is a nondecreasing function of time, we have

P
[
|ηA

s | <∞ ∀s ∈ [0, t]
]
≥ P

[
|ζA

s | <∞ ∀s ∈ [0, t]
]
≥ P

[
|ζA

t | <∞
]

= 1 (t > 0).

Letting t ↑ ∞ we find that |ηA
t | <∞ for all t ≥ 0 a.s.

Proposition 2.5 has the following consequence.

Corollary 2.6 (Lower bound on critical infection rate) The critical infec-
tion rate of the nearest-neighbour contact process on Zd satisfies 1

2d
≤ λc.

Proof By (2.8), for each λ < 1
2d

,

P
[
ηA

t 6= ∅
]
≤ E

[
|ηA

t |
]
−→
t→∞

0

for each finite A ⊂ Zd.

In order to finish the proof of Theorem 2.3 we need to show that λc < ∞. As a
preparation for this, in the next section, we will start by studying a closely related
problem. Before we do this, we apply the tecnhiques developed so far to prove the
following facts about the function θ(λ, d).
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Proposition 2.7 (Monotonicty and right-continuity) The survival probabil-
ity θ(λ, d) is nondecreasing and right-continuous in λ, and nondecreasing in d.

Proof The fact that θ(λ, d) is nondecreasing in λ follows from Lemma 2.4. The
fact that θ(λ, d) is nondecreasing in d can be proved in a similar way, since if
d ≤ d′, then we may view Zd as a subset of Zd′ and observe that if there is an open
path that stays in Zd, then certainly there is an open path in Zd′ .

To prove right continuity of θ(λ, d) in λ, we will improve the coupling used in the
proof of Lemma 2.4 in such a way that we can define contact processes for any
value of the infection rate on the same probability space. To this aim, consider
the space E × [0,∞)× [0,∞) whose elements are triples ((i, j), t, κ) with (i, j) ∈ E
and t, κ ≥ 0, and let ∆

i
be a Poisson point set on this set with indensity dtdκ.

Then, for each λ ≥ 0,

∆i
λ :=

((
(i, j), t

)
: ∃

(
(i, j), t, κ

)
∈ ∆

i
with κ ≤ λ

}
.

is a Poisson point sets on E × [0,∞) with intensity λdt. Let ∆r be an independent
Poisson point set on Zd × [0,∞) with intensity dt and write  λ to indicate the
presence of an open path in the graphical representations defined by (∆i

λ,∆
r).

Another way of saying this is that a point ((i, j), t, κ) ∈ ∆
i
indicates the presence

of an arrow which has a value κ attached to it, and  λ indicates the presence of
a path that may use only arrows with values κ ≤ λ. Then we claim that

lim
λ↓λ0

θ(λn) = lim
λ↓λ0

P[(0, 0) λ ∞] = P[(0, 0) λ ∞ ∀λ > λ0]

!
= P[(0, 0) λ0 ∞] = θ(λ0).

The equality
!
= needs some explanation. It is obvious that (0, 0)  λ0 ∞ implies

(0, 0) λ ∞ ∀λ > λ0. On the other hand, if (0, 0) 6 λ0 ∞ then by Proposition 2.5

I :=
{
(i, t) ∈ Zd × [0,∞) : (0, 0) λ (i, t)

}
is a compact subset of Zd × [0,∞), such that each each infection ends somewhere
in a recovery sign, and all infection arrows starting in I and ending somewhere
outside I have a value strictly larger than λ. Since there are only finitely many
arrows with values κ ∈ (λ, 2λ) starting in I and ending somewhere outside I, we
know that there is some λ′ > λ such that all arrows starting in I and ending
somewhere outside I have a value larger than λ′, i.e., we know that (0, 0) 6 λ′ ∞
for some λ′ > λ.
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2.6 Oriented percolation

In order to prepare for the proof that the critical infection rate of the contact
process is finite, in the present section, we will study oriented (or directed) bond
percolation on Zd. For i, j ∈ Zd, we write i ≤ j if i = (i1, . . . , id) and j =
(j1, . . . , jd) satisfy ik ≤ jk for all k = 1, . . . , d. Let

A :=
{
(i, j) : i, j ∈ Zd, i ≤ j, |i− j| = 1

}
.

We view Zd as an infinite directed graph, where elements (i, j) ∈ A represent
arrows (or directed bonds) between neighbouring sites. Note that all arrows point
‘upwards’ in the sense of the natural order on Zd.

Now fix some percolation parameter p ∈ [0, 1] and let (ω(i,j))(i,j)∈A be a collection
of i.i.d. Bernoulli random variables with P[ω(i,j) = 1] = p. We say that there is
an open path from a site i ∈ Zd to j ∈ Zd if there exist n ≥ 0 and a function
γ : {0, . . . , n} → Zd such that

(γ(k − 1), γ(k)) ∈ A and ω(γ(k−1),γ(k)) = 1 (k = 1, . . . , n).

We denote the presence of an open path by  . Note that open paths must walk
upwards in the sense of the order on Zd. We write 0 ∞ to indicate the existence
of an infinite open path starting at the origin 0 ∈ Zd.

Theorem 2.8 (Critical percolation parameter) For oriented percolation in
dimensions d ≥ 2 there exists a critical parameter pc = pc(d) with 0 < pc < 1 such
that P[0 ∞] = 0 for p < pc and P[0 ∞] > 0 for p > pc.

Proof The existence of a critical parameter pc ∈ [0, 1] follows from a monotone
coupling argument like the one we used in the proof of Lemma 2.4. To prove that
0 < pc, let Nn denote the number of open paths of length n starting in 0. Since
there are dn different upward paths of length n starting at the origin, and each
path has probability pn to be open, we see that

E
[ ∞∑

n=1

Nn

]
=

∞∑
n=1

dnpn <∞ (p < 1/d)

This shows that
∑∞

n=1Nn <∞ a.s., hence P[0 ∞] = 0 if p < 1/d, and therefore

1

d
≤ pc(d).

To prove that pc(d) < 1 for d ≥ 2 it suffices to consider the case d = 2, for we may
view Z2 as a subset of Zd (d ≥ 3) and then, if there is an open path that stays in
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Figure 2.3: Peierls argument for oriented percolation.
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Z2, then certainly there is an open path in Zd. (Note, by the way, that in d = 1
one has P[0 ∞] = 0 for all p < 1 hence pc(1) = 1.)

We claim that

pc(2) ≤ 8

9
. (2.9)

To prove this, we use a Peierls argument, named after R. Peierls who used a similar
argument in 1936 for the Ising model [Pei36]. In Figure 2.3, we have drawn a piece
of Z2. Open arrows are drawn in black; closed arrows are not drawn. Sites i ∈ Z2

such that 0  i are indicated in black. These sites are called wet. Consider the
dual lattice

Ẑ2 := {(n+ 1
2
,m+ 1

2
) : (n,m) ∈ Z2}.

If there are only finitely many wet sites, then the set of all non-wet sites contains
one infinite connected component. (Here ‘connected’ is to be interpreted in terms
of the unoriented graph N2 with nearest-neighbor edges.) Let γ be the boundary
of this infinite component. Then γ is a nearest-neighbor path in Ẑ2, starting in
some point (n+ 1

2
,−1

2
) and ending in some point (−1

2
,m+ 1

2
) with n,m ≥ 0, such

that all sites immediately to the left of γ are wet, and no open arrows starting at
these sites cross γ. In Figure 2.3, we have indicated γ with dashed arrows.

From these considerations, we see that the following statement is true: one has
0 6 ∞ if and only if there exists a path in Ẑ2, starting in some point (n+ 1

2
,−1

2
)

(n ≥ 0), ending in some point (−1
2
,m+ 1

2
) (m ≥ 0), and passing to the northeast

of the origin, such that all arrows of γ in the north and west directions (indicated
in bold in the figure) are not be crossed by an open arrow. Let Mn be the number
of paths of length n with these properties. Since there are n dual sites from where
such a path of length n can start, and since in each step, there are three directions
where it can go, there are at most n3n paths of length n with these properties.
Since each path must make at least half of its steps in the north and east directions,
the expected number of these paths satisfies

E
[ ∞∑

n=2

Mn

]
≤

∞∑
n=2

n3n(1− p)n/2 <∞ (p > 8
9
)

and therefore

P[0 6 ∞] ≤ P
[ ∞∑

n=2

Mn ≥ 1
]
≤ E

[ ∞∑
n=2

Mn

]
<∞.

This does not quite prove what we want yet, since we need the right-hand side of
this equation to be less than one. To fix this, set Dm := {0, . . . ,m}2. Then, by
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the same arguments as before

P[Dm 6 ∞] ≤ P
[ ∞∑

n=2m

Mn ≥ 1
]
≤ E

[ ∞∑
n=2m

Mn

]
≤

∞∑
n=2m

n3n(1− p)n/2,

which in case p > 8
9

can be made arbitrarily small by choosing m suffiently large.
It follows that P[Dm  ∞] > 0 for some m, hence P[i ∞] > 0 for some i ∈ Dm,
and therefore, by translation invariance, also P[0 ∞] > 0.

2.7 Survival

In the present section, we will complete the proof of Theorem 2.3 by showing that
λc < ∞. The method we will use is comparison with oriented percolation. This
neither leads to a particularly short proof nor does it yield a very good upper
bound on λc, but it has the advantage that it is a very robust method that can be
applied to many other interacting particle systems.

Let λc(d) be the critical infection rate of the nearest-neighbour contact process on
Zd. If d ≤ d′, then we may view Zd as a subset of Zd′ , so by an obvious monotone
coupling we see that

λc(d) ≥ λc(d
′) (d ≤ d′).

In view of this, in order to finish the proof of Theorem 2.3, it suffices to show that
λc(1) <∞.

For notational convenience, we extend (without any harm done) our graphical
representation to negative times, i.e., we let ∆i and ∆r be Poisson point subsets of
E ×R and Zd ×R, respectively. We fix T > 0 and define a map from Z2 to Z×R
by (

κi, σi

)
:=

(
i1 − i2, T (i1 + i2)

) (
i = (i1, i2) ∈ Z2

)
.

Recall from the previous section the definition of the set A of arrows on Zd. We
wish to define a collection (ω(i,j))(i,j)∈A of Bernoulli random variables such that

ω(i,j) = 1 implies (κi, σi) (κj, σj)
(
(i, j) ∈ A

)
.

For each i ∈ Z2 we define

τ−i := inf
{
t ≥ σi : (κi, κi − 1, t) ∈ ∆i},

τ+
i := inf

{
t ≥ σi : (κi, κi + 1, t) ∈ ∆i},
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and we define the ‘good events’

G−i :=
{
τ−i < σi + T,

(
{κi} × (σi, τ

−
i )

)
∩∆r = ∅,(

{κi − 1} × (τ−i , σi + T )
)
∩∆r = ∅

}
,

G+
i :=

{
τ+
i < σi + T,

(
{κi} × (σi, τ

+
i )

)
∩∆r = ∅,(

{κi + 1} × (τ+
i , σi + T )

)
∩∆r = ∅

}
.

We observe that the event G±i implies that (κi, σi) (κi ± 1, σi + T ) via an open
path that stays in {κi, κi ± 1}. In view of this, we set

ω((i1, i2), (i1 + 1, i2))
:= 1G+

i
,

ω((i1, i2), (i1, i2 + 1)) := 1G−i
.

Then ω(i,j) = 1 implies the existence of an open path in the graphical representation
for the contact process from (κi, σi) to (κj, σj) (with (i, j) ∈ A), hence if we use
the random variables (ω(i,j))(i,j)∈A to define oriented percolation on Z2 in the usual
way, then:

i j in the oriented percolation on Z2 defined by the random variables
(ω(i,j))(i,j)∈A implies (κi, σi)  (κi, σi) in the graphical representation
for the contact process.

We observe that

p := P[ω(i,j) = 1] = P(G±i ) = (1− e−λT )e−T
(
(i, j) ∈ A

)
. (2.10)

For λ sufficiently large, by a suitable choice of T , we can make p as close to
one as we wish. We would like to conclude from this that P[(0, 0)  ∞] > 0
for the oriented percolation defined by the ω(i,j)’s, and therefore also P[(0, 0)  
∞] > 0 for the contact process. Unfortunately, the random variables (ω(i,j))(i,j)∈A
are not independent, and therefore Theorem 2.8 is not applicable. Luckily, the
(ω(i,j))(i,j)∈A are k-dependent for some suitable k, so by applying Theorem A.1 we
can estimate them from below by an independent collection of Bernoulli random
variables (ω̃(i,j))(i,j)∈A whose succes probability p̃ can be made arbitrarily close to
one, so we are done.

Exercise 2.9 Combine formulas (2.9), (2.10) and (A.1) to derive an explicit upper
bound on the critical infection rate λc of the one-dimensional contact process.
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2.8 Duality and the Feller property

We extend our graphical representation to negative times and, generalizing (2.4),
we define

ηA,s
t :=

{
i : A× {s} (i, s+ t)

}
,

η†A,s
t :=

{
i : (i, s− t) A× {s}

}
,

(2.11)

(A ⊂ Zd, s ∈ R, t ≥ 0). Since it is defined by a graphical representation obtained
by turning our original graphical representation upside down, we see that

(η†A,s
t )t≥0

is a contact process with the same infection rate as our original process. Moreover,
we observe that for any t ≥ 0 and A,B ⊂ Zd,

P
[
ηA,0

t ∩B 6= ∅
]

= P
[
A× {0} B × {t}

]
= P

[
A ∩ η†B,t

t 6= ∅
]
.

This formula remains true if A and B are random sets, independent of the Poisson
point processes of our graphical representation. This means that we have proved
the following result.

Proposition 2.10 (Duality) Let (ηt)t≥0 and (η′t)t≥0 be independent contact pro-
cesses on Zd with infection rate λ. Then

P
[
ηt ∩ η′0 6= ∅

]
= P

[
η0 ∩ η′t 6= ∅

]
(t ≥ 0).

This result is especially useful in view of the following fact. Below and in what
follows, P(Zd) := {A : A ⊂ Zd} denotes the set of all subsets of Zd, which is in a
natural way isomorphic to {0, 1}Zd

(equipped with the product topology).

Lemma 2.11 (Distribution determining functions) Let µ, ν be probability
laws on P(Zd) such that∫

µ(dA)1{A∩B 6=∅} =

∫
ν(dA)1{A∩B 6=∅}

for all finite nonempty B ⊂ Zd. Then µ = ν.

Proof We start by recalling the Stone-Weierstrass theorem. Let E be a compact
metrizable set. By definition, a subset F of C(E) is an algebra if F is a linear
space, F contains the constant function 1, and f, g ∈ F implies fg ∈ F . We say
that F separates points if for every x, y ∈ E with x 6= y there exists an f ∈ F with



2.8. DUALITY AND THE FELLER PROPERTY 45

f(x) 6= f(y). The Stone-Weierstrass theorem says that if subset F of C(E) is an
algebra that separates points, then F is dense in C(E).
Let F be the linear span of all functions of the form A 7→ 1{A∩B=∅} with B a finite
subset of Zd. It follows from our assumptions that∫

µ(dA)1{A∩B=∅} =

∫
ν(dA)1{A∩B=∅}

for each finite B ⊂ Zd, hence
∫
µ(dA)f(A) =

∫
ν(dA)f(A) for all f ∈ F and

therefore, by the Stone-Weierstrass theorem,
∫
µ(dA)f(A) =

∫
ν(dA)f(A) for all

f ∈ C(E), which implies µ = ν.

We define a transition probability on P(Zd) by

Pt(A, ·) := P[ηA
t ∈ · ] (A ∈ P(Zd), t ≥ 0).

Lemma 2.12 (Feller property) The (Pt)t≥0 form a continuous transition prob-
ability on P(Zd).

Proof The fact that∫
Ps(A, dB)Pt(B, dC) = Ps+t(A, dC) (A ∈ P(Zd), s, t ≥ 0)

follows easily from our graphical representation and the fact that Poisson point
sets restricted to disjoint parts of space are independent. To see that

(A, t) 7→ Pt(A, ·)

is continuous, assume that An → A and 0 ≤ tn → t. Here An → A means that
1An(i) → 1A(i) for each i ∈ Zd, or equivalently,

∀i ∈ Zd ∃N s.t. 1An(i) = 1A(i) ∀n ≥ N.

We observe that
Ptn(AN , · ) = P

[
ηAn,−tn

tn ∈ ·
]
.

We claim that (An, tn) → (A, t) implies

ηAn,−tn
tn −→

n→∞
ηA,−t

t a.s. (2.12)

Indeed,
1ηAn,−tn

tn
(i) = 1{An ∩ η† {i},0tn 6= ∅}.
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By Proposition 2.5, |η† {i},0s | <∞ for all s ≥ 0 a.s. It follows that there exists some

(random) N such that η
† {i},0
tn = η

† {i},0
t for all n ≥ N . Using this and the fact that

An → A, it is easy to see that

1{An ∩ η† {i},0tn 6= ∅} −→n→∞
1{A ∩ η† {i},0t 6= ∅} a.s.,

which implies (2.12). As a consequence, we have

E
[
f(ηAn,−tn

tn )
]
−→
n→∞

E
[
f(ηA,−t

t )
] (

f ∈ C(P(Zd))
)
,

which proves the desired continuity.

2.9 The upper invariant law

Extending our graphical representation to negative times as before, we define

ηt :=
{
i ∈ Zd : −∞ (i, t)

}
(t ∈ R).

Using the independence of restrictions of Poisson point processes to disjoint parts
of space, we see that

P
[
ηu ∈ ·

∣∣ (ηs)s≤t

]
= Pu−t(ηt, · ) a.s. (t ≤ u),

hence (ηt)t∈R is a stationary contact process and its law at any given time

ν := P
[
ηt ∈ ·

]
(t ∈ R)

is an invariant law of the contact process. We call ν the upper invariant law of
the contact process (with given infection rate). As we will see in a moment, in a
certain sense, it is the ‘largest’ invariant law of our process.

By definition, we say that a function f : {0, 1}Zd
is monotone if f(x) ≤ f(y) for

all x ≤ y.

Proposition 2.13 (Stochastic order) Let µ, ν be probability laws on {0, 1}Zd
.

Then the following statements are equivalent:

(i)
∫
µ(dx)f(x) ≤

∫
µ(dx)f(x) ∀ monotone f ∈ C({0, 1}Zd

),

(ii)
∫
µ(dx)f(x) ≤

∫
µ(dx)f(x) ∀ monotone f ∈ B({0, 1}Zd

),

(iii) It is possible to couple random variables X,Y with laws µ = P [X ∈ · ]
and ν = P [Y ∈ · ] in such a way that X ≤ Y .
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Proof The implications (iii)⇒(ii)⇒(i) are trivial. For the nontrivial implication
(i)⇒(iii) (which we will never actually need to use), see [Lig85, Theorem II.2.4].

If probability laws µ, ν on {0, 1}Zd
satisfy the equivalent conditions (i)–(iii) from

Proposition 2.13, then we say that µ and ν are stochastically ordered and we write1

µ ≤ ν.

Lemma 2.14 (Upper invariant law) Let ν be the upper invariant law of the
contact process and let ν be any other invariant law. Then ν ≤ ν in the stochastic
order.

Proof Let A be a random variable, taking values in P(Zd), with law P[A ∈ · ] = ν,
and assume that A is independent of the Poisson point processes used in our
graphical representation. Then, since ν is an invariant law, we have ν = P[ηA

t ∈ · ]
for all t ≥ 0. Since the random variables

(ηA
t , ηt),

take values in the compact space P(Zd)2, their laws are automatically tight, hence
we can select a subsequence tn → ∞ such that the (ηA

tn , ηtn) converge weakly in
law to some limiting random variable (η1, η2), say, where η1 has the law ν, η2 has
the law ν, and moreover

P[i ∈ η1, i /∈ η2] = lim
n→∞

P[i ∈ ηA
tn , i 6∈ ηtn ] = lim

n→∞
P[i ∈ ηA,−tn

0 , i 6∈ η0]

≤ lim
n→∞

P[Zd × {−tn} (i, 0), −∞ 6 (i, 0)] = 0 (i ∈ Zd),

where we have used that the events Zd × {−tn}  (i, 0) decrease monotonically
to the event −∞  (i, 0), hence the events Zd × {−tn}  (i, 0), −∞ 6 (i, 0)
decrease monotonically to the empty set. We conclude that η1 ⊂ η2 a.s., hence
ν ≤ ν in the stochastic order.

By definition, we say that a probability law µ on P(Zd) is nontrivial if

µ({∅}) = 0,

i.e., if µ gives zero probability to the configuration in which all sites are healthy.

1This notation may look a bit confusing at first sight, since, if µ, ν are probability measures
on any measurable space (Ω,F), then one might interpret µ ≤ ν in a pointwise sense, i.e., in
the sense that µ(A) ≤ ν(A) for all A ∈ F . In practice, this does not lead to confusion, since
pointwise inequality for probability measures is a nonsensical property. Indeed, it is easy to check
that probability measures µ, ν satisfy µ ≤ ν in a pointwise sense if and only if µ = ν.
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Lemma 2.15 (Survival and the upper invariant law) For the contact process
on Zd with infection rate λ ≥ 0, the following statements are equivalent:

(i) The contact process survives, i.e., θ(λ, d) > 0.

(ii) The upper invariant law ν is nontrivial.

(iii) There exists a nontrivial invariant law.

Moreover, if the contact process dies out, then ν = δ∅.

Proof The implication (ii)⇒(iii) is trivial and (iii)⇒(ii) follows from Lemma 2.14.
To see that (i) and (ii) are equivalent, we start by observing that by duality, for
each finite B ⊂ Zd∫

ν(dA)1{A∩B 6=∅} = P[η0 ∩B 6= ∅]

= P[η†B,0
t 6= ∅ ∀t ≥ 0] = P[ηB

t 6= ∅ ∀t ≥ 0].
(2.13)

Note that by Lemma 2.11, this formula determines the law ν uniquely. In partic-
ular, we see that ν = δ∅ if the contact process dies out. On the other hand, if the
contact process survives, then ν 6= δ∅. This is not quite the same as saying that ν
is nontrivial, but at least it tells us that P[η0 6= ∅] > 0. We observe that

P
[
ηt 6= ∅

]
= P

[
ηt 6= ∅

∣∣ η0 6= ∅
]
P
[
η0 6= ∅

]
,

which by the stationarity of η implies that

P
[
ηt 6= ∅

∣∣ η0 6= ∅
]

= 1 (t ≥ 0).

It follows that the conditioned law

ν( · |{A : A 6= ∅})

is a nontrivial invariant law for the contact process, hence by the equivalence of
(ii) and (iii), we must have that ν is nontrivial.

2.10 Ergodic behavior

We define translation operators Ti : P(Zd) → P(Zd) by

Ti(A) := {j + i : j ∈ A} (i ∈ Zd).
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We say that a probability law µ on P(Zd) is homogeneous or translation invariant
if µ ◦ T−1

i = µ for all i ∈ Zd. A lot of work in the theory of interacting particle
systems is concerned with classifying all invariant laws of a given system, and
proving that the system started from certain initial laws converges in law to a
certain invariant law. In the context of interacting particle systems, invariant laws
are sometimes also called equilibria or equilibrium laws. If an interacting particle
system has a unique invariant law, which is the limit law of the process started in
any initial state, then it is often said that the system is ergodic.2

The main aim of the present section is to prove the following result.

Theorem 2.16 (Convergence to upper invariant law) Let (ηt)t≥0 be a con-
tact process started in a homogeneus nontrivial initial law P[η0 ∈ · ]. Then

P[ηt ∈ · ] =⇒
t→∞

ν,

where ν is the upper invariant law.

We start with two preparatory lemmas.

Lemma 2.17 (Extinction versus unbounded growth) For each finite A ⊂
Zd, one has

ηA
t = ∅ for some t ≥ 0 or |ηA

t | −→
t→∞

∞ a.s. (2.14)

Proof Define

ρ(A) := P
[
ηA

t 6= ∅ ∀t ≥ 0
]

(A ⊂ Z2, |A| <∞).

It is not hard to see that for each N ≥ 0 there exists an ε > 0 such that

|A| ≤ N implies ρ(A) ≤ 1− ε. (2.15)

We first argue why it is plausible that this implies (2.14) and then give a rigorous
proof. Imagine that |ηA

t | 6→ ∞. Then, in view of (2.15), the process infinitely often
gets a chance of at least ε to die out, hence eventually it should die out.
To make this rigorous, let

AA := {ηA
t 6= ∅ ∀t ≥ 0} (A ⊂ Z2, |A| <∞).

2This is not very good terminology since it may lead to confusion with another, more usual
concept of ergodicity. If (Xt)t∈R is a stationary process, for example an interacting particle system
in equilibrium, then by definition (Xt)t∈R is ergodic if the law of (Xt)t∈R gives probability zero
or one to all events that are invariant under time shifts.
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denote the event that the process (ηA
t )t≥0 survives and let Ft be the σ-field gener-

ated by the Poisson point processes used in our graphical representation till time t.
Then

ρ(ηA
t ) = P

[
AA

∣∣Ft

]
−→
t→∞

1AA
a.s., (2.16)

where we have used an elementary result from probability theory which says that if
Fn is an increasing sequence of σ-fields and F∞ = σ(

⋃
nFn), then limn P[A|Fn] =

P[A|F∞] a.s. for each measurable event A. (See [Loe63, § 29, Complement 10 (b)].)
In view of (2.15), formula (2.16) implies (2.14).

Lemma 2.18 (Nonzero intersection) Let (ηt)t≥0 be a contact process started
in a homogeneus nontrivial initial law P[η0 ∈ · ]. Then for each s, ε > 0 there
exists an N ≥ 1 such that for any subset A ⊂ Zd

|A| ≥ N implies P
[
A ∩ ηs 6= ∅

]
≥ 1− ε.

Proof By duality (Lemma 2.10)

P
[
A ∩ ηs 6= ∅

]
= P

[
ηA

s ∩ η0 6= ∅
]

where η0 is independent of the graphical representation used to define ηA
s . Set

ΛM := {−M, . . . ,M}d. It is not hard to see that for set A ⊂ Zd with |A| ≥ N
contains a subset A′ ⊂ A with |A′| ≥ N/|ΛM | such that the sets

{
i+ ΛM : i ∈ A′}

are disjoint, where as before we define i + ΛM = {i + j : j ∈ ΛM}. Write  i+ΛM

to indicate the presence of an open path that stays in i+ ΛM and set

η{i} (M)
s :=

{
j ∈ Zd : (i, 0) i+ΛM

(j, s)
}
.

Then, using Hölder’s inequality3 in the inequality marked with an exclamation

3Recall that Hölder’s inequality says that 1/p + 1/q = 1 implies ‖fg‖1 ≤ ‖f‖p‖g‖q, where
‖f‖p := (

∫
|f |pdµ)1/p. By induction, this gives ‖

∏n
i=1 fi‖1 ≤

∏n
i=1 ‖fi‖n.
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mark, we have

P
[
ηA

s ∩ η0 = ∅
]

=

∫
P[η0 ∈ dB]P

[
ηA

s ∩B = ∅
]

≤
∫

P[η0 ∈ dB]P
[ ⋃

i∈A′

η{i} (M)
s ∩B = ∅

]
=

∫
P[η0 ∈ dB]

∏
i∈A′

P
[
η{i} (M)

s ∩B = ∅
]

!

≤
∏
i∈A′

( ∫
P[η0 ∈ dB]P

[
η{i} (M)

s ∩B = ∅
]|A′|

)1/|A′|

=
∏
i∈A′

( ∫
P[η0 ∈ dB]P

[
η{0} (M)

s ∩B = ∅
]|A′|

)1/|A′|

=

∫
P[η0 ∈ dB]P

[
η{0} (M)

s ∩B = ∅
]|A′|

.

Our arguments so far show that |A| ≥ N implies that

P
[
A ∩ ηs = ∅

]
≤

∫
P[η0 ∈ dB]P

[
η{0} (M)

s ∩B = ∅
]N/|ΛM |

=: f(N,M).

Here, using the fact that

P
[
η{0} (M)

s ∩B = ∅
]
< 1 if B ∩ ΛM 6= ∅,

we see that

lim
N↑∞

f(N,M) =

∫
P[η0 ∈ dB]1{B∩ΛM=∅} = P[η0 ∩ ΛM = ∅].

Since P[η0 ∈ · ] is nontrivial, we have moreover

lim
M↑∞

P[η0 ∩ ΛM = ∅] = P[η0 = ∅] = 0.

Thus, we have shown that

lim
M→∞

lim
N→∞

f(N,M) = 0.

By a diagonal argument, for each ε > 0 we can choose N and MN such that
f(N,MN) ≤ ε, proving our claim.

Exercise 2.19 Show by counterexample that the statement of Lemma 2.18 is false
for s = 0.
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Proof of Theorem 2.16 Since the space P(Zd) is compact, the laws of the ηt

with t ≥ 0 are tight, hence by Lemma 1.15 it suffices to prove that ν is the only
weak cluster point. By Lemma 2.11 and formula (2.13), it suffices to show that

lim
t→∞

P
[
A ∩ ηt 6= ∅

]
= P

[
A ∩ η0 6= ∅

]
= P

[
ηA

u 6= ∅ ∀u ≥ 0
]

=: ρ(A)

for all finite A ⊂ Zd. By duality (Lemma 2.10), this is equivalent to showing that

lim
t→∞

P
[
ηA

t−s ∩ ηs 6= ∅
]

= ρ(A)
(
A ⊂ Zd, |A| <∞

)
,

where (ηA
t )t≥0 and (ηt)t≥0 are independent and s > 0 is some fixed constant. For

each ε > 0, we can choose N as in Lemma 2.18, and write

P
[
ηA

t ∩ ηs 6= ∅
]
= P

[
ηA

t ∩ ηs 6= ∅
∣∣ |ηA

t | = 0
]
P
[
|ηA

t | = 0
]

+P
[
ηA

t ∩ ηs 6= ∅
∣∣ 0 < |ηA

t | < N
]
P
[
0 < |ηA

t | < N
]

+P
[
ηA

t ∩ ηs 6= ∅
∣∣ |ηA

t | ≥ N
]
P
[
|ηA

t | ≥ N
]
.

Here, by Lemma 2.17 and our choice of N ,

(i) P
[
ηA

t ∩ ηs 6= ∅
∣∣ |ηA

t | = 0
]

= 0,

(ii) lim
t→∞

P
[
0 < |ηA

t | < N
]

= 0,

(iii) lim inf
t→∞

P
[
ηA

t ∩ ηs 6= ∅
∣∣ |ηA

t | ≥ N
]
≥ 1− ε,

(iv) lim
t→∞

P
[
|ηA

t | ≥ N
]

= ρ(A),

from which we conclude that

(1− ε)ρ(A) ≤ lim inf
t→∞

P
[
ηA

t ∩ ηs 6= ∅
]
≤ lim sup

t→∞
P
[
ηA

t ∩ ηs 6= ∅
]
≤ ρ(A).

Since ε > 0 is arbitrary, our proof is complete.

Theorem 2.16 has a simple corollary.

Corollary 2.20 (Homogeneous invariant laws) All homogeneous invariant
laws of a contact process are convex combinations of δ∅ and ν.

Proof If µ is a nontrivial homogeneous invariant law and (ηt)t≥0 is a contact
process started in the initial law µ, then by Theorem 2.16

µ = P[ηt ∈ · ] =⇒
t→∞

ν.
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This shows that if the contact process survives, and hence ν is nontrivial (recall
Lemma 2.15), then ν is the only nontrivial homogeneous invariant law. We recall
from the proof of Lemma 2.15 that if µ is any homogeneous invariant law, then we
may write

µ = µ({∅})δ∅ +
(
1− µ({∅})

)
µ( · |{A : A 6= ∅})

where µ( · |{A : A 6= ∅}) is a nontrivial homogeneous invariant law. From this we
see that all homogeneous invariant laws are convex combinations of δ∅ and ν. On
the other hand, if the contact process dies out, then ν = δ∅ is the largest invariant
law with respect to the stochastic order, hence δ∅ is the only invariant law.

As an application of Theorem 2.16, we prove the following result.

Proposition 2.21 (Left-continuity) The function λ 7→ θ(λ) is left-continuous
on (λc,∞).

We first prove two preparatory lemmas. By definition, we let Cloc(P(Zd)) denote
the space of real functions on P(Zd) that are ‘local’, in te sense that they depend
on finitely many coordinates only, i.e., these are functions f : P(Zd) → R of the
form

f(A) = f ′(Λ ∩ A)
(
A ∈ P(Zd)

)
, (2.17)

where Λ ⊂ Zd is some finite set and f ′ : P(Λ) → R is some function.

Lemma 2.22 (Convergence of semigroups) Let (P λ
t )t≥0 be the Markov semi-

group of the contact process on Zd with infection rate λ. Then

‖P λn
t f − P λ

t f‖ −→
λn→λ

0
(
t, λ ≥ 0, f ∈ Cloc({0, 1}Zd

)
)
.

where ‖ · ‖ denotes the supremumnorm.

Proof We use the coupling from the proof of Proposition 2.7 and set

ηA,λ
t :=

{
i : A× {0} λ (i, t)

}
.

Let f be a local function that depends only on the coordinates in a finite set
Λ ⊂ Zd. Let 0 ≤ λn → λ and choose some λ′ such that λn ≤ λ′ for all n. Let

Γ be the collection of all infection arrows ((i, j), t, κ) ∈ ∆
i
that are used in some

infection path along arrows with values κ ≤ λ′ starting at time zero and ending
somewhere in the finite set Λ. Then Γ contains all arrows that are relevant for
deciding which points belong to the set Λ ∩ ηA,λ

t . Let Γλ denote the set of arrows
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in Γ that have a value κ ≤ λ. Since Γ is a.s. finite (by Proposition 2.5), there a.s.
exists some random m such that Γλn = Γλ for all n ≥ m. It follows that

|P λn
t f(A)− P λ

t f(A)| =
∣∣E[

f ′(Λ ∩ ηA,λn
t )− f ′(Λ ∩ ηA,λ

t )
]∣∣

≤ 2‖f‖P[Γλn 6= Γλ] −→
n→∞

0,

and this convergence is uniform in A, as claimed.

Lemma 2.23 (Convergence of invariant laws) Let νn, ν be probability laws on
P(Zd) such that νn ⇒ ν and let 0 ≤ λn → λ. Assume that νn is an invariant law
for the contact process with infection rate λn, for each n. Then ν is an invariant
law for the contact process with infection rate λ.

Proof We introduce the notation

µf :=

∫
µ(dx)f(x).

With this notation, if (Xt)t≥0 is a Markov process with Markov semigroup (Pt)t≥0,
started in the initial law P[X0 ∈ · ] = µ, then

µPtf =

∫
P[X0 ∈ dx]

∫
Pt(x, dy)f(y) = E[f(Xt)].

We write

|νP λ
t f − νf | ≤ |νP λ

t f − νnP
λ
t f |+ |νnP

λ
t f − νnP

λn
t f |+ |νnP

λn
t f − νnf |+ |νnf − νf |

where of course |νnP
λn
t f − νnf | = 0 since νn is an invariant law for the process

with infection rate λn. It follows from the Feller property of the contact process
(Lemma 2.12) that Pλ

t maps continuous functions into continuous functions, hence
by our assumption that νn ⇒ ν we have

|νnP
λ
t f − νP λ

t f | −→
n→∞

0 and |νnf − νf | −→
n→∞

0

for each f ∈ C(P(Zd)) and t ≥ 0. Assuming that moreover f ∈ Cloc(P(Zd)), we
have by Lemma 2.22 that

|νnP
λ
t f − νnP

λn
t f | ≤ ‖P λ

t f − P λn
t f‖ −→

n→∞
0.

It follows that
νP λ

t f = νf
(
t ≥ 0, f ∈ Cloc(P(Zd))

)
,
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hence ν is an invariant law for the contact process with infection rate λ.

Proof of Proposition 2.21 Let νλ denote the upper invariant law of the contact
process with infection rate λ. Choose λc < λn ↑ λ. Since the space {0, 1}Zd

is
compact, the measures νλn are tight. Since by Lemma 2.23, each weak cluster
point of the νλn is a nontrivial homogeneous invariant law of the contact process
with infection rate λ, by Corollary 2.20, one has

νλn =⇒
n→∞

νλ.

Since by (2.13),

θ(λ) =

∫
νλ(dA)1{0∈A},

this implies that θ(λn) → θ(λ).

2.11 Other topics

Corollary 2.20 tells us that all homogeneous invariant laws of a contact process are
convex combinations of δ∅ and the upper invariant law. One may wonder if there
exist inhomogeneous invariant laws. The answer to this question is known to be
negative. This follows from the following theorem, that strengthens Theorem 2.16
quite a bit:

Theorem 2.24 (Complete convergence) The contact process started in any
initial state satisfies

P[ηA
t ∈ · ] =⇒

t→∞
ρ(A)ν + (1− ρ(A))δ∅,

where ρ(A) := P
[
ηA

t 6= ∅ ∀t ≥ 0
]
.

Complete convergence was proved first only for λ sufficiently large. In [BG90],
this was extended to arbitrary λ ≥ 0. In fact, more is known: it is known that if
the process survives, then the infected area grows approximately linear and has a
deterministic limiting shape. This result is known as the shape theorem.
The proof of complete convergence is quite a bit more involved than the proof
of Theorem 2.16. To understand why this is so, it is useful to generalize a bit
and consider contact processes on more general lattices, e.g., infinite graphs. As
long as the graph has some sort of translation invariant structure, Theorem 2.16
still holds (and the proof basically carries through without a change). However,
complete convergence does not hold in this generality. In particular, for processes
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on trees, it is known that there exist two critical values λc < λ′c such that in the
intermediate regime complete convergence does not hold and there exist inhomo-
geneous invariant laws. The study of contact processes on more general lattices is
quite a lively modern subject with several nice open problems.



Chapter 3

The Ising model

3.1 Introduction

In this chapter, we study the Ising model. The Ising model model was introduced
by E. Ising in 1925 [Isi25] as a simple model for a ferromagnetic material, based on
the theory of Gibbs measures, which dated from the late nineteenth century when
people like Boltzmann tried to find a microscopic basis for the laws of thermody-
namics that had been discovered earlier in that century. In his Phd thesis, Ising
showed that the one-dimensional model that now bears his name does not exhibit
a phase transition, and based on this he incorrectly concluded that the same is
true in any dimension. In 1936, Peierls [Pei36] used his famous argument (a vari-
ation on which we have already seen in the previous chapter) to prove that this is
conjecture wrong in dimensions two and more. In 1944, Onsager showed that the
two-dimensional model can, in a certain sense, be solved explicitly [Ons44]. (No
explicit solutions are known or believed to exist in dimensions three and more.)

The Ising model as such, it should be pointed out, is not an interating particle
system. Rather, it is a certain probability law (Gibbs measure) on spin configura-
tions, depending on a certain parameter related to the temperature of the system.
It is possible, however, and physically meaningful, to construct interacting parti-
cle systems whose invariant measures are these Gibbs measures. Such interacting
particle systems are called stochastic Ising models. The first one to do so was
Glauber [Gla63]. The subject was taken up again and studied more profoundly
by Dobrushin in a series of papers starting with [Dob71]. Using the ‘interacting
particle systems approach’, it is possible to give nice short proofs of certain prop-
erties of the Ising model. Conversely, the Ising model gives in a natural way rise to
a number of interesting interacting particle systems which have sufficiently many
pleasant properties to make it possible to prove things about them, while on the

57
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other hand they are sufficiently ‘difficult’ to be interesting.

3.2 Definition, construction, and ergodicity

For definiteness, we will introduce one stochastic Ising model, i.e., an interacting
particle system that has the Gibbs measures of the Ising model as its invariant
law(s), that we will mostly focus on. As we will see later, there exist several ways
to invent a dynamics for the Ising model, and many things that we will prove for
our specific model are valid more generally.
The model that we will mostly focus our attention on is the interacting particle
system with the following description. At each site i ∈ Zd, there is an atom which
has a property called spin which makes it acts like a small magnet that can either
point up, in which case we say the site i is in the state +1, or down, in which
case we say the site i is in the state −1. Our stochastic Ising model is therefore a
Markov process (Xt)t≥0 with state space {−1, 1}Zd

. We will consider the following
dynamics: if the process is in a state x = (x(i))i∈Zd ∈ {−1, 1}Zd

, then the spin at
site i jumps as:

x(i) jumps:

−1 7→ 1 with rate e−β
∑

j: |i−j|=1 1{x(j)=−1} ,

1 7→ −1 with rate e−β
∑

j: |i−j|=1 1{x(j)=1} .

Here β > 0 is a parameter (loosely) called the inverse temperature. Indeed, in the
physical interpretation of the model, β = J/kT where T is the temperature, J is
the energy difference between aligned and unaligned neighboring spins, and k is
Boltzmann’s constant. The motivation for our dynamics is roughly as follows: due
to the constant motion of atoms, spins tend to flip in a random way between the +1
and −1 state. However, because of the magnetic interaction between neighboring
atoms, neighboring spins like to be aligned (i.e., point in the same direction). This
is expressed by making a spin less likely to flip when it has a lot of neighbors that
point in the same direction. This effect is stronger when β is large (i.e., when the
temperature is low). Note that (contrary to what we saw for the contact process)
our dynamics treat the two values −1,+1 for the spins symmetrically.

In order to construct our process rigorously, we use a graphical representation. We
first write down the formal generator of our process, which is

Gf(x) :=
∑
i∈Zd

e−β
∑

j∈Ni
1{x(j)=x(i)}

(
f(x{i})− f(x)

)
(x ∈ {−1, 1}Zd

),



3.2. DEFINITION, CONSTRUCTION, AND ERGODICITY 59

where we let

xA(i) :=

{
−x(i) if i ∈ A,
x(i) if i /∈ A, (x ∈ {−1, 1}Zd

, A ⊂ Zd)

denote the spin configuration obtained from x by flipping all spins in A, and

Ni := {j ∈ Zd : |i− j| = 1} (i ∈ Zd)

denotes the set of neighbors of a site i. To invent a graphical representation, we
need to rewrite our generator in terms of local maps. For each i ∈ Zd and subset
L ⊂ Ni, let us define the maps m−

i,L,m
+
i,L by

(m−
i,Lx)(k) :=

{
−1 if k = i, x(j) = −1 ∀j ∈ L,
x(k) otherwise,

(m+
i,Lx)(k) :=

{
+1 if k = i, x(j) = +1 ∀j ∈ L,
x(k) otherwise,

Then we may write our generator in the form

Gf(x) :=
∑
i∈Zd

∑
L⊂Ni

p|L|(1− p)2d−|L|(f(m−
i,Lx)− f(x)

)
+

∑
i∈Zd

∑
L⊂Ni

p|L|(1− p)2d−|L|(f(m+
i,Lx)− f(x)

)
,

where

p := 1− e−β.

To see why this is correct, note that according to our new formulation of the
generator, the spin at site i flips from −1 to +1 at rate∑

L⊂Ni

p|L|(1− p)2d−|L|1{x(j)=+1 ∀j∈L}. (3.1)

Let L be a random subset of Ni such that independently for each neighbor j of i,
one has P[j ∈ L] = p. Then the rate in (3.1) may be rewritten as

P[x(j) = +1 ∀j ∈ L] =
∏

j∈Ni: x(j)=−1P[j /∈ L]

= (1− p)
∑

j∈Ni
1{x(j)=−1} = e−β

∑
j∈Ni

1{x(j)=−1} ,

as required. By symmetry, a similar argument holds for flips from +1 to −1.
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Figure 3.1: Graphical representation of our stochastic Ising model.

Using these observations, we can define a graphical representation for our process
as follows. Let H be the space of all triples of the form

(σ, i, L) with σ ∈ {−,+}, i ∈ Zd, L ⊂ Ni,

and let ∆ be a Poisson point process on H × R with intensity p|L|(1 − p)2d−|L|dt.
We interpret a point (σ, i, L, t) as saying that at time t, the state of of system
changes according to the local map mσ

i,L. To draw this in a picture, for each point
(σ, i, L, t) ∈ ∆, we draw a circle at the point (i, t) ∈ Zd × R with the sign s in it,
and we draw arrows starting at each point j ∈ L and ending in i (see Figure 3.1).
(Note that L may contain anything between zero and 2d elements.)

To see that this yields a well-defined process, we need to show that given the state
of the system at time zero, there are a.s. only finitely many points (signifying
local changes) in ∆ that are relevant for deciding the state of a site i at some
given time t ≥ 0. In view of this, we make the following definition. For points
(i, s), (j, u) ∈ Zd × R, we say that there is a path of influence from (i, s) to (j, u),
denoted as (i, s)  (j, u), if and only if there exists a path γ in Zd with starting
time s and final time t such that γs− = i, γu = j, and

(i) ∀t ∈ [s, u] with γt− 6= γt ∃(σ, i, L) ∈ H s.t. (σ, i, L, t) ∈ ∆, γt− ∈ L, γt = i,

(ii) 6 ∃(σ, i, L, t) ∈ ∆ s.t. |L| = ∅, t ∈ [s, u], γt = i.
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In our picture, this says that a path may use arrows but must avoid points (i, t),
marked with an 	 or ⊕ where no arrows come in. Note that at such points, the
spin at site i flips to the state −1 or +1, regardless of the state of the system prior
to time t. For any (i, s) ∈ Zd, we set

ζ
(i,s)
t :=

{
j ∈ Zd : (j, s− t) (i, s)

}
(i ∈ Zd, s ∈ R, t ≥ 0).

The next proposition is similar to Proposition 2.5.

Proposition 3.1 (Exponential bound) For each (i, u) ∈ Zd × R, the process

(ζ
(i,u)
t )t≥0 satisfies |ζ(i,u)

t | <∞ for all t ≥ 0 a.s., and

E
[
|ζ(i,u)

t |
]
≤ e2(2dp− (1− p)2d)t (t ≥ 0).

Proof At each site i, points marked with an 	 or ⊕ occur at rate one each (hence
rate 2 in total), and at each such point there are on average 2dp incoming arrows.
Moreover, each such point has no incoming arrows with probability (1−p)2d. Using
these obvservations, the proof proceeds in exactly the same way as the proof of
Proposition 2.5.

Set
C(j, u) := {(i, t) : t ≤ u, (i, t) (j, u)} (j ∈ Zd, u ∈ R),

where the bar means closure. For each s ≤ u and j ∈ Zd, we observe that the set

∆(j,u)
s :=

{
(σ, i, L, t) ∈ ∆ : s ≤ t ≤ u, (i, t) ∈ C(j, u)

}
contains all local changes between time s and u that are relevant for the state of
site j at time u. (In our definition of C(j, u) we have to take the closure because of
our definition ‘paths of influence’ above, which was chosen with the aim of making
the process (ζ

(i,u)
t )t≥0 right-continuous.) By Proposition 3.1, the set ∆

(j,u)
s is a.s.

finite for each −∞ < s ≤ u and u ∈ R. In view of this, we define

Xx,s
t (i) := mσn

in,Ln
· · ·mσ1

i1,L1
(x) (x ∈ {−1,+1}Zd

, i ∈ Zd, s ∈ R, t ≥ 0),

where

∆(i,s+t)
s =

{
(σ1, i1, L1, t1), . . . , (σn, in, Ln, tn)

}
with t1 < · · · < tn.

In particular, we put Xx
t := Xx,0

t . Then (Xx
t )t≥0 is our stochastic Ising model

started in the state x, constructed with the graphical representation above time s.
Proposition 3.1 has an interesting corollary.
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Figure 3.2: Alternative graphical representation of our stochastic Ising model.

Corollary 3.2 (Ergodicity for high temperature) Let β′ := sup{β > 0 :
2d(1− e−β)− e−2dβ < 0}. Then, for each β < β′, our stochastic Ising model has a
unique invariant measure ν and the process started from any initial law satisfies

P[Xt ∈ · ] =⇒
t→∞

ν. (3.2)

Proof Since for each β < β′, one has 2d(1− e−β)− e−2dβ < 0, by Proposition 3.1,

the set ∆
(i,t)
−∞ is a.s. finite for each (i, t) ∈ Zd × R. It follows that the a.s. limit

X−∞
t (i) := lim

s→−∞
Xx,s

s+t(i) (3.3)

exists for each (i, t) ∈ Zd×R and does not depend on the choice of the initial state
x ∈ {−1,+1}Zd

. Since (X−∞
t )t ∈ R is a sationary stochastic Ising model, its law

at any time is an invariant law, and the a.s. convergence in (3.3) implies the weak
convergence in law in (3.2).

Exercise 3.3 (Alternative graphical representation) For each i ∈ Zd let us
define the maps

(m−
i x)(k) :=

{
−1 if k = i,
x(k) otherwise,

(m+
i x)(k) :=

{
+1 if k = i,
x(k) otherwise,
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Moreover, for each i ∈ Zd and nonempty subset L ⊂ Ni, let us define

(mi,Lx)(k) :=

{
−x(i) if k = i, x(j) 6= x(i) ∀j ∈ L,
x(k) otherwise.

Then we may rewrite our generator in the form

Gf(x) := (1− p)2d
∑
i∈Zd

(
f(m−

i x) + f(m+
i x)− 2f(x)

)
+

∑
i∈Zd

∑
∅6=L⊂Ni

p|L|(1− p)2d−|L|(f(mi,Lx)− f(x)
)
.

Based on this, we may introduce an alternative graphical representation for our
stochastic Ising model (see Figure 3.2). Use this to improve Corollary 3.2 by
proving ergodicity for a larger range of the parameter.

3.3 Gibbs measures and finite systems

Let Λ be some finite set and let H : {−1,+1}Λ → R be some function. By
definition, the Gibbs measure belonging to the Hamiltonian (or energy function)
H and inverse temperature β is the probability measure on {−1,+1}Λ given by

µ({x}) =
1

Z
e−βH(x) (

x ∈ {−1,+1}Λ
)
, (3.4)

where
Z :=

∑
x∈{−1,+1}Λ

e−βH(x) (3.5)

is a normalization constant, also called the partition sum. Note that if H,H ′ are
two energy functions that differ only by a constant, then the associated Gibbs
measures are the same. Indeed, if H(x) = H ′(x) + c and µ, µ′ are the associated
Gibbs measures, then all probabilities in µ′ get an extra factor e−βc, but this
disappears in the normalization. Indeed, we make the following simple observation.

Lemma 3.4 (Relative probabilities)
(a) If Λ is a finite set and µ is the Gibbs measure on {−1,+1}Λ with Hamiltonian
H and inverse temperature β, then

µ({x′})
µ({x})

= e−β(H(x′)−H(x)) (
x, x′ ∈ {−1,+1}Λ

)
. (3.6)



64 CHAPTER 3. THE ISING MODEL

(b) Conversely, if µ is a measure on {−1,+1}Λ and

µ({x{i}})
µ({x})

= e−β(H(x{i})−H(x)) (
i ∈ Λ, x ∈ {−1,+1}Λ

)
, (3.7)

then µ must be the Gibbs measure on {−1,+1}Λ associated with H and β.

Proof Part (a) is trivial. To prove part (b), we note that for each x, x′ ∈
{−1,+1}Zd

we can find x0, . . . , xn such that x = x0, x
′ = xn, and xk differs only in

one point from xk−1 (k = 1, . . . , n). In view of this, (3.7) implies (3.6). Choosing
some arbitrary reference state x′, we see that (3.6) determines all probabilities up
to an overall multiplicative constant, which follows from the normalization.

We need to introduce some notation. If S,R are disjoint sets, x ∈ {−1,+1}S, and
y ∈ {−1,+1}R, then we define x&y ∈ {−1,+1}S∪R as (x&y)(i) := x(i) if i ∈ S
and (x&y)(i) := y(i) if i ∈ R. Now let Λ be a finite set, let H : {−1,+1}Λ → R
be a function, and let µΛ,β be the Gibbs measure on {−1,+1}Λ with Hamiltonian
H and inverse temperature β. For each ∆ ⊂ Λ and y ∈ {−1,+1}Λ\∆, let H∆

y :
{−1,+1}∆ → R be a function such that

H∆
y (x) = H(x&y) + c∆y

(
x ∈ {−1,+1}∆

)
,

where c∆y is a constant that may depend on ∆ and y but not on x. Let µ∆,β
y be the

Gibbs measure on {−1,+1}∆ associated with H∆
y and β. (Note that this Gibbs

measure is uniquely defined even though H∆
y is defined only up to a constant.) We

make the following observations:

Lemma 3.5 (Conditional distributions)
(a) If (X(i))i∈Λ is a random variable with law µΛ,β, then for each ∆ ⊂ Λ, the
conditional law of X inside ∆ given its values outside ∆ is given by

P
[
(X(i))i∈∆ ∈ ·

∣∣ (X(i))i∈Λ\∆ = y
]

= µ∆,β
y . (3.8)

(b) Conversely, if (X(i))i∈Λ is a random variable with values in {−1,+1}Λ and
(3.8) holds for each ∆ ⊂ Λ such that |∆| = 1, then the law of X must be equal to
µΛ,β.

Proof We observe that

P
[
(X(i))i∈∆ = x′

∣∣ (X(i))i∈Λ\∆ = y
]

P
[
(X(i))i∈∆ = x

∣∣ (X(i))i∈Λ\∆ = y
]

=
P
[
(X(i))i∈∆ = x′, (X(i))i∈Λ\∆ = y

]
P
[
(X(i))i∈∆ = x, (X(i))i∈Λ\∆ = y

] =
e−βH(x′&y)

e−βH(x&y)
= e−β(Hy(x′)−Hy(x)).
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In view of this, the statements follow from Lemma 3.4.

The fact that we would like to prove is that Gibbs measures associated with the
Hamiltonian 1

H(x) :=
∑

{i,j}∈B

1{x(i) 6=x(j)} (3.9)

are reversible invariant measures for the stochastic Ising model constructed in the
previous section. A “slight” problem with this statement is that the sum in this
definition runs over the set

B :=
{
{i, j} : i, j ∈ Zd, |i− j|

}
of all (unordered) nearest neighbor pairs in Zd. As a consequence, for most x, the
sum in (3.9) is actually infinite. In addition, the set {−1,+1}Zd

is uncountable, so
it is clear that we cannot define Gibbs measures on {−1,+1}Zd

in the same way
as we have done for finite lattices.

The solution to this problem is suggested by Lemma 3.5. Instead of looking at
the absolute probability of one particular configuration x (which will typically be
zero), we will look at conditional probabilities of finding certain configurations
inside a finite set Λ ⊂ Zd, given what is outside.

To this aim, for each Λ ⊂ Zd, we define

∂Λ := {i ∈ Zd\Λ : ∃j ∈ Λ s.t. |i− j| = 1}

and let

BΛ :=
{
{i, j} : i, j ∈ Λ, |i− j|

}
and ∂BΛ :=

{
(i, j) : i ∈ Λ, j ∈ ∂Λ, |i− j|

}
denote the set of nearest-neighbor edges inside Λ and pointing out of Λ, respec-
tively. For each finite Λ ⊂ Zd, x ∈ {−1,+1}Λ and y ∈ {−1,+1}Zd\Λ, we define

HΛ
y (x) :=

∑
{i,j}∈BΛ

1{x(i) 6=x(j)} +
∑

(i,j)∈∂BΛ

1{x(i) 6=y(j)}.

We let µΛ,β
y denote the finite-volume Gibbs measure associated with Hy and β. We

call this the finite-volume Gibbs measure with boundary condition y.

1Here I deviate from the usual definition of the Hamiltonian for the Ising model, which is

H ′(x) := −
∑

{i,j}∈B

x(i)x(j) =
∑

{i,j}∈B

(21{x(i) 6=x(j)} − 1).

We observe that H ′(x) = 2H(x) + c, where c := |B| is an irrelevant additive constant. In view
of this, what is β in these lecture notes, is 2β in most of the literature on the Ising model.
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Definition 3.6 (Infinite-volume Gibbs measures) We say that the law µ of
an {−1,+1}Zd

-valued random variable (X(i))i∈Zd is a Gibbs measure associated
with the formal Hamiltonian (3.9) and inverse temperature β, if for each finite
Λ ⊂ Zd, one has

P
[
(X(i))i∈Λ ∈ ·

∣∣ (X(i))i∈Zd\Λ = y
]

= µΛ,β
y

for a.e. y w.r.t. µ.

We need to show that such infinite-volume Gibbs measures exist and are reversible
invariant laws for the stochastic Ising model constructed in the previous section.

As a first step, we will study finite-volume Gibbs measures µΛ,β
y with fixed bound-

ary conditions y. Our first result says that such finite-volume Gibbs measures are
reversible invariant laws for a suitable finite-volume version of our stochastic Ising
model.

Proposition 3.7 (Gibbs reversible law) Let Λ ⊂ Zd be a finite set, let y ∈
{−1,+1}Zd\Λ, and let (Xt)t≥0 be the finite state Markov process in {−1,+1}Λ that
jumps as

x 7→ x{i} with rate e−β(
∑

j∈Ni∩Λ 1{x(i)=x(j)} +
∑

j∈Ni∩∂Λ 1{x(i)=y(j)}).

Then the Gibbs measure µΛ,β
y is a reversible invariant law for (Xt)t≥0. Moreover,

the process (Xt)t≥0 started from any initial law satisfies P [Xt ∈ · ] =⇒
t→∞

µΛ,β
y .

Proof We must check detailed balance (1.19). Fix i ∈ Λ and x ∈ {−1,+1}Λ\{i},
and define x−, x+ ∈ {−1,+1}Λ by

x−(j) :=

{
−1 if j = i,
x(j) otherwise,

and x+(j) :=

{
+1 if j = i,
x(j) otherwise.

We must check that

µΛ,β
y ({x−})r(x−, x+) = µΛ,β

y ({x+})r(x+, x−), (3.10)

where r(x−, r+) and r(x+, x−) are the rates with which our process jumps from
x− to x+ and back, respectively. Let

n+ :=
∑

j∈Ni∩Λ

1{x(j)=+1} +
∑

j∈Ni∩∂Λ

1{y(j)=+1},

n− :=
∑

j∈Ni∩Λ

1{x(j)=−1} +
∑

j∈Ni∩∂Λ

1{y(j)=−1}.
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Then
µΛ,β

y ({x+})
µΛ,β

y ({x−})
=
e−βn−

e−βn+
=
r(x−, x+)

r(x+, x−)
,

which implies (3.10). To check that the process (Xt)t≥0 is ergodic, it suffices to
check irreducibility and apply Proposition 1.10.

3.4 The upper and lower invariant laws

We still need to show the existence of infinite-volume Gibbs measures, as well as
the fact that these are reversible invariant laws for our infinite-volume stochastic
Ising model. We will concentrate on two special infinite-volume Gibbs measures,
which are the upper and lower invariant laws of our stochastic Ising model.

Proposition 3.8 (Upper and lower invariant laws) Let (Xt)t≥0 be the stochas-
tic Ising model from Section 3.2, started in the initial state X0(i) = +1 for all
i ∈ Zd. Then

P
[
Xt ∈ ·

]
=⇒
t→∞

ν,

where ν is an invariant law of the process with the property that if ν is any other
invariant law, then ν ≤ ν in the stochastic order. Likewise, if (Xt)t≥0 is started in
X0(i) = −1 for all i ∈ Zd, then

P
[
Xt ∈ ·

]
=⇒
t→∞

ν,

where ν is an invariant law of the process with the property that if ν is any other
invariant law, then ν ≤ ν in the stochastic order.

Proof Our graphical representation shows that the Ising model is monotone, i.e.,
if Xx and Xx′ are processes started in initial states such that x ≤ x′, then we can
couple Xx and Xx′ such that Xx

t ≤ Xx′
t for all t ≥ 0. In terms of the semigroup

(Pt)t≥0 of our process, this says that if µ, µ′ are laws on {−1,+1}Zd
such that

µ ≤ µ′ in the stochastic order, then µPt ≤ µ′Pt for all t ≥ 0. Applying this to
µ = δ+1Pt−s and µ′ = δ+1, where +1 denotes the all plus configuration, we see that
δ+1Ps ≥ δ+1Pt−sPs = δ+1Pt for all 0 ≤ s ≤ t. This means that for each sequence of
times tn ↑ ∞ we can couple the random variables Xtn such that the Xtn decrease
to some a.s. limit. It is not hard to see that this implies that P[Xt ∈ · ] converges
weakly to some limit law ν as t → ∞, and using this we can prove that ν is an
invariant law. (We skip the details.) The fact that ν is the largest invariant law
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in the stochastic order can be proved similar to the proof of Lemma 2.14. By
symmetry, similar arguments apply to ν.

For each finite Λ ⊂ Zd, we let HΛ
+(x) and µΛn,β

+ denote the Hamiltonian HΛ
y (x)

and finite-volume Gibbs measure, respectively, with boundary condition y given
by y(i) = +1 for all i ∈ Zd\Λ. We define HΛ

−(x) and µΛ,β
− similarly, with minus

boundary conditions.

Proposition 3.9 (Limits of finite volume Gibbs measures) Let Λn ⊂ Zd be
finite sets such that Λn ↑ Zd. For each n, let XΛn = (XΛn(i))i∈Zd be a random
variable such that X(i) = +1 for all i ∈ Zd\Λn and

P
[
(XΛn(i))i∈Λ ∈ ·

]
= µΛn,β

+ . (3.11)

Then
P
[
(XΛn(i))i∈Zd ∈ ·

]
=⇒
n→∞

ν.

A similar statement holds for minus boundary conditions, in which case the limit
is ν. Moreover, ν and ν are infinite-volume Gibbs measures in the sense of Defi-
nition 3.6.

Proof Let (Xt)t≥0 be our infinite-volume stochastic Ising model started inX0 = +1
and for each n, let (XΛn

t )t≥0 be a process such that XΛn
t (i) = +1 for all i ∈ Zd\Λn

and t ≥ 0, while inside Λ, the process evolves as in Proposition 3.7, with plus
boundary conditions and initial state XΛn

0 (i) = +1 for all i. Using the graphical
representation, we see that we can couple our processes such thatXΛn

t ≥ XΛm
t ≥ Xt

for all t ≥ 0 and n ≤ m. Taking the limit t → ∞ we see that the random
variables XΛn from (3.11) can be coupled such that they decrease to an a.s. limit;
in particular, this implies that their laws converge weakly to some limit ν. By
using techniques similar to the proof of Lemma 2.23, we can prove that ν is an
invariant law for the infinite-volume stochastic Ising model, while our coupling
shows that ν ≥ ν. Since ν is the largest invariant law, it follows that ν = ν. The
fact that ν and ν are infinite-volume Gibbs measures in the sense of Definition 3.6
is obvious, since the approximating finite-volume Gibbs measures have the right
conditional distributions.

3.5 The spontaneous magnetization

Let ν be the upper invariant law of the Ising model. By definition, the quantity
(which by translation invariance does not depend on i ∈ Zd)

m∗(β, d) = m∗(β) :=

∫
ν(dx)x(i) (β ≥ 0)
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is called the spontaneous magnetization. By symmetry, we have∫
ν(dx)x(i) = −m∗(β).

Since moreover ν ≤ ν, it follows that ν 6= ν if and only if m∗(β) > 0. Since ν and
ν are the lowest and highest invariant law in the stochastic order, this implies that
our stochastic Ising model has a unique invariant law if and only if m∗(β) = 0. In
this and the next section, we will prove the following theorem.

Theorem 3.10 (Phase transition of the Ising model) The function m∗(β, d)
is nondecreasing and right-continuous in β and nondecreasing in d. In dimension
d = 1 one has m∗(β) = 0 for all β ≥ 0. On the other hand, for all dimensions
d ≥ 2, there exists a critical value 0 < βc < ∞ such that m∗(β) = 0 for β < βc

and m∗(β) > 0 for β > βc.

In the present section, we will prove that β 7→ m∗(β, d) is nondecreasing and right-
continuous and d 7→ m∗(β, d) is nondecreasing. In the next section, we will prove
that βc = ∞ in dimension d = 1 and βc <∞ in dimensions d ≥ 2.

At first, one might think that monotonicity of the spontaneous magnetization in
β and d can be proved by the same sort of monotonicity arguments that we have
used so far, by coupling Markov processes (in our case, stochastic Ising models)
with different values of β in such a way that one process ‘stays above’ the other.
It seems, however, that this idea does not work. Indeed, increasing β means that
spins ‘like more to be aligned’. Since our dynamics treat pluses and minuses in
a symmetric way, this means that pluses are more favored near other pluses and
minuses are more favored near minuses, an effect that can work both ways. In
view of this, we have to take a different approach. Our proof will be based on
Griffiths’ inequalities. An alternative proof (not given here) uses a representation
of our Gibbs measures in terms of the so-called random cluster model. It can be
shown that the latter is monotone in β and d in the usual sense, leading to the
desired monotonicities for m∗(β, d).

Let Λ be a finite set, let P(Λ) denote the set of all subsets of Λ, and let P(Λ) 3
A 7→ JA ∈ R be any function. For any A ∈ P(Λ) and x ∈ {−1,+1}Λ, we write

xA :=
∏
i∈A

x(i),

where x∅ := +1. We will be interested in Gibbs measures on {−1,+1}Λ of the
form

µJ({x}) :=
1

ZJ

e
∑

A⊂Λ JAxA ,
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where ZJ is the normalization constant (also known as partition sum)

ZJ :=
∑

x

e
∑

A JAxA .

We start by observing that

(i) ∂
∂JA

logZJ =

∫
µJ(dx)xA,

(ii) ∂2

∂JA∂JB
logZJ =

∫
µJ(dx)xAxB −

∫
µJ(dx)xA

∫
µJ(dx)xB.

(3.12)

To see this, just write

∂
∂JA

logZJ =
∂

∂JA
ZJ

ZJ

and

∂2

∂JA∂JB
logZJ = ∂

∂JB

∂
∂JA

ZJ

ZJ

=
ZJ

∂2

∂JA∂JB
ZJ − ( ∂

∂JA
ZJ)( ∂

∂JB
ZJ)

Z2
J

,

where
∂

∂JA
ZJ = ∂

∂JA

∑
x

e
∑

C JCxC =
∑

x

xAe
∑

C JCxC

and
∂2

∂JA∂JB
ZJ = ∂

∂JB

∑
x

xAe
∑

C JCxC =
∑

x

xAxBe
∑

C JCxC .

Proposition 3.11 (Griffiths’ inequalities) Assume that JA ≥ 0 for all A ⊂ Λ.
Then

(i) ∂
∂JA

logZJ ≥ 0,

(ii) ∂2

∂JA∂JB
logZJ ≥ 0

for all A,B ⊂ Λ.

Proof We observe that

ZJ =
∑

x

e
∑

A JAxA

=
∑

x

∞∑
n=0

1

n!

( ∑
A

JAxA

)n

=
∞∑

n=0

1

n!

∑
A1

· · ·
∑
An

( n∏
k=1

JAk

) ∑
x

n∏
k=1

xAk
.
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Since
xAxB = xAMB,

where AMB denotes the symmetric difference of A and B, we see that

∑
x

n∏
k=1

xAk
=

∑
x

xA1M···MAn =

{
2|Λ| if A1M · · ·MAn = ∅,
0 otherwise.

Thus

ZJ = 2|Λ|
∞∑

n=0

1

n!

∑
A1

· · ·
∑
An

1{A1M···MAn=∅}

n∏
k=1

JAk
.

Likewise

∂
∂JA

logZJ =
1

ZJ

∑
x

xAe
∑

C JCxC

=
∞∑

n=0

1

n!

∑
A1

· · ·
∑
An

( n∏
k=1

JAk

)
xA

∑
x

n∏
k=1

xAk

=
1

ZJ

2|Λ|
∞∑

n=0

1

n!

∑
A1

· · ·
∑
An

1{AMA1M···MAn=∅}

n∏
k=1

JAk
,

which is clearly nonnegative provided the JA ≥ 0 for all A. To prove also Griffiths’
second inequality, we write, using (3.12),

∂2

∂JA∂JB
logZJ =

1

Z2
J

( ∑
x

xAxBe
∑

C JCxC

)( ∑
y

e
∑

C JCyC

)
− 1

Z2
J

( ∑
x

xAe
∑

C JCxC

)( ∑
y

yAe
∑

C JCyC

)
=

1

Z2
J

∑
x,y

(
xAxB − xAyB

)
e
∑

C JC(xC + yC).

Using the facts that yB = (xB)2yB = xB(xy)B and xAxB = xAMB, we may rewrite
our formula as

∂2

∂JA∂JB
logZJ =

1

Z2
J

∑
x,y

xAMB

(
1 + (xy)B

)
e
∑

C JCxC

(
1 + (xy)C

)
=

1

Z2
J

∑
x,z

xAMB

(
1 + zB

)
e
∑

C JCxC

(
1 + zC

)
=

1

Z2
J

∑
z

(
1 + zB

) ∑
x

xAMBe
∑

C J
z
CxC ,
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where we have defined Jz
C :=

(
1 + zC

)
JC . Since |zC | = 1, we have Jz

C ≥ 0 for all
z, hence by Griffiths’ first inequality∑

x

xAMBe
∑

C J
z
CxC ≥ 0

for each z ∈ {−1,+1}Λ. Summing over x we obtain Griffiths’ second inequality.

The monotonicity of the spontaneous magnetization in β follows from Proposi-
tion 3.9 and the following simple consequence of Proposition 3.11.

Lemma 3.12 (Monotonicity of magnetization) For any finite set Λ ⊂ Zd

and i ∈ Λ, one has

∂
∂β

∫
µΛ,β

+ (dx)x(i) ≥ 0.

Proof We claim that µΛ,β
+ = µJ for a suitable function J . Indeed, up to an

irrelevant additive constant, we may rewrite our Hamiltonian as

HΛ
+(x) = −1

2

∑
{i,j}∈BΛ

x(i)x(j)− 1
2

∑
(i,j)∈∂BΛ

x(i).

In view of this, our finite volume Gibbs measures are generated by the function J
defined by

J{i,j} := 1
2
β

if i, j ∈ Λ, |i− j| = 1,

J{i} := 1
2
β|{j ∈ Zd\Λ : |i− j| = 1}

and JA := 0 in all other cases. It is now clear that increasing β means increasing
the function J and hence, by Proposition 3.11, increasing

∫
µJ(dx)x(i).

The monotonicity of m∗(β, d) in d is proved in a similar way. Indeed, if d ≤ d′,
then we may view Zd as a subset of Zd′ . With positive boundary conditions, if
we switch on the interaction between sites inside Zd and sites in Zd′\Zd, then by
Proposition 3.11 this will lead to a higher magnetization in any point in Zd.

We conclude this section with the following result.

Lemma 3.13 (Right-continuity) The spontaneous magnetization m∗(β) is a
right-continuous function of β.



3.6. EXISTENCE OF A PHASE TRANSITION 73

Proof Let νβ denote the upper invariant law at inverse temperature β and let
βn ↓ β. Using the compactness of our state space, going to a subsequence if
necessary, we may assume that νβn ⇒ ν for some probability law ν. Just as in
Lemma 2.23, we can show that ν is an invariant law for the stochastic Ising model
with inverse temperature β. Moreover, since β 7→ m∗(β) is nondecreasing, we must
have

lim
βn↓β

m∗(βn) =

∫
ν(dx)x(0) ≥ m∗(β).

Since νβ is the largest invariant law w.r.t. the stochastic order, we must have∫
ν(dx)x(0) ≤

∫
νβ(dx)x(0) = m∗(β),

proving our claim.

3.6 Existence of a phase transition

We conclude this chapter with two of the oldest results in the field, namely, the
result by Ising on the nonexistence of a phase transition for his model in dimension
d = 1, and the result by Peierls on the existence of a phase transition in dimensions
d ≥ 2. We start with Ising’s result.

Lemma 3.14 (No phase transition in one dimension) In dimension d = 1,
for each β ≥ 0, there exists a unique infinite-volume Gibbs measure µ associated
with the formal Hamiltonian (3.9) and inverse temperature β. If X = (X(i))i∈Z is
a random variable with law µ, then X is a stationary Markov chain with transition
probabilities

P
[
X(i+ 1) 6= X(i)

∣∣X(i)
]

=
e−β

e−β + 1
. (3.13)

Proof Let ν be the upper invariant law of the one-dimensional Ising model with
inverse temperature β and let X = (X(i))i∈Z is a random variable with law ν. We
claim that X is a Markov chain. By Proposition 3.9 it suffices to prove that for
any finite interval Λn = {−n, . . . , n}, the finite-volume Gibbs measures µΛn,β

+ are

the laws of a finite Markov chain. Let XΛn be a random variable with law µΛn,β
+ .

We need to show that for any −n ≤ k ≤ n, the random variables

(XΛn(i))−n≤i<k and (XΛn(i))k<i≤n

are conditionally independent given XΛn(k). But this follows from Lemma 3.5

and the structure of the finite-volume Gibbs measures µ
Λn\{k},β
y with y(i) = +1 for

i 6∈ Λn and y(k) = −1 or +1.
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Since (by Proposition 3.8) the upper invariant law is invariant under translations
and mirror images, the Markov chain X = (X(i))i∈Z is stationary and reversible.
Set

p := P
[
X(i+ 1) = +1

∣∣X(i) = −1
]

and q := P
[
X(i+ 1) = −1

∣∣X(i) = +1
]
.

Then
P[X(i) = +1] =

p

p+ q
.

From the fact that X is an infinite volume Gibbs measure for the Ising model, by
Lemma 3.4, we know that

P[X(i) = +1 |X(i− 1) = −1 = X(i+ 1)]

P[X(i) = −1 |X(i− 1) = −1 = X(i+ 1)]
=
e−2β

1
.

Since

P[X(i− 1) = −1, X(i) = +1, X(i+ 1) = −1] =
p

p+ q
pq,

P[X(i− 1) = −1, X(i) = −1, X(i+ 1) = −1] =
p

p+ q
(1− p)2,

this leads to the equation
pq

(1− p)2
= e−2β.

Likewise, since

P[X(i) = +1 |X(i− 1) = −1, X(i+ 1) = +1]

P[X(i) = −1 |X(i− 1) = −1, X(i+ 1) = +1]
=
e−β

e−β

and
P[X(i− 1) = −1, X(i) = +1, X(i+ 1) = +1] =

p

p+ q
p(1− q),

P[X(i− 1) = −1, X(i) = −1, X(i+ 1) = +1] =
p

p+ q
(1− p)p,

we see that
1− q

1− p
=
e−β

e−β
,

hence p = q. By our previous equation this implies( p

1− p

)2
= e−2β,

which in turn implies (3.13). It follows that E[X(i)] = p/(p + q) = 1/2, hence
m∗(β, 1) = 0 for all β ≥ 0.

Since m∗(β, d) is nondecreasing in d, in order to prove the existence of a phase
transition in dimensions d ≥ 2, it suffices to treat the case d = 2.
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++ + + + + + + +

Figure 3.3: Peierls argument for Ising model.

Proposition 3.15 (Estimate on critical temperature) One has m∗(β, 2) > 0
for all β > log 3.

Proof We will use the original Peierls argument from [Pei36]. Let

Λn := {−n, . . . , n}2.

We may view Λn as a graph with edges between nearest neighbors. In this pic-
ture, for a given spin configuration x ∈ {−1,= 1}Λn , we may group the −1 spins
and +1 spins into connected components, each surounded by a closed curve (see
Figure 3.3).
There is a one-to-one correspondence between configurations of curves and con-
figurations of spins. In particular, the origin has a +1 spin if and only if it is
surrounded by an even number of curves. More formally, for each x ∈ {−1,+1}Λn ,
define x ∈ {−1,+1}Λn+1 by

x(i) :=

{
x(i) if i ∈ Λn,

+1 if i ∈ ∂Λn,

let En be the collection of all pairs {i, j} with |i − j| = 1, i, j ∈ Λn+1, and define
Γ(x) ⊂ En by

Γ(x) :=
{
{i, j} : x(i) 6= x(j)

}
.
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Let
Gn :=

{
Γ(x) : x ∈ {−1,+1}Λn

}
be the configuration of all ‘configurations of curves’. Then the probability of seeing
a certain configuration of curves is given by

ρ({Γ}) =
1

Z
e−β|Γ|,

where |Γ| is the total length of the curves in the configuration Γ and

Z :=
∑
Γ∈Gn

e−β|Γ|

is a normalization constant. Now let γ ⊂ E be a collection of nearest-neighbor
edges that form a closed curve (not a configuration of curves but just one single
curve) surrounding the origin. We can ask what the probability is of seeing a con-
figuration of curves in which this this particular curve is present. This probability
is, of course,

1

Z

∑
Γ∈Gn: γ⊂Γ

e−β|Γ|

=

∑
Γ: γ⊂Γ e−β|Γ|∑

Γ e−β|Γ|

≤
∑

Γ: γ⊂Γ e−β|Γ|∑
Γ: γ⊂Γ e−β|Γ| +

∑
Γ: γ∩Γ=∅ e

−β|Γ|

=

∑
Γ: γ⊂Γ e−β|Γ|∑

Γ: γ⊂Γ e−β|Γ| + eβ|γ|
∑

Γ: γ⊂Γ e−β|Γ|
=

e−β|γ|

e−β|γ| + 1
≤ e−β|γ|.

Here we use that for every configuration of curves in which γ is present, there
is another configuration in which γ is completely removed, which is a factor eβ|γ|

more likely than the configuration in which γ is present. Since there are at most
k3k different curves γ of length k surrounding the origin, we find that the expected
number of curves surrounding the origin can be estimated from above by

∞∑
k=4

k3ke−kβ.

By choosing β sufficiently small, we can make this number as close to zero as we
wish; in particular, this proves that (uniformly (!) in n)

∫
µΛn,β

+ (dx)x(0) > 1
2

for
β sufficiently large.
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Unfortunately, this does not quite give the explicit bound we are after. If β > log 3,
then we see that the expected number of curves surrounding the origin is finite
(where, again, our estimate is uniform in n), but this is not enough to conclude
that

∫
µΛn,β

+ (dx)x(0) > 1
2
, hence m∗(β) > 0.

To fix this problem, we use a trick. We fix some m ≤ n and look at the proportion
of probabilities ∫

µΛn,β
+ (dx)1{x(i)=−1 ∀i∈Λm}∫
µΛn,β

+ (dx)1{x(i)=+1 ∀i∈Λm}
.

We note that the event {x(i) = −1 ∀i ∈ Λm} occurs if and only if there are
no contours inside Λm and there is an odd number of contours surroundig Λm.
Likewise, the event {x(i) = +1 ∀i ∈ Λm} occurs if and only if there are no
contours inside Λm and there is an even number of contours surroundig Λm. We
can estimate the proportion of the probabilities of these events by estimating the
expected number of contours surrounding Λm, conditional on the event that there
are no contours inside Λm. By the same arguments as above, this expectation can
be estimated by

∞∑
k=4m

k3ke−kβ,

which in case β > log 3 can be made arbitrarily small by choosing m sufficiently
large. Now, letting Λn ↑ ∞ while keeping m fixed, using Proposition 3.9, we see
that the upper invariant measure ν satisfies∫

ν(dx)1{x(i)=−1 ∀i∈Λm}∫
ν(dx)1{x(i)=+1 ∀i∈Λm}

< 1

for some m. In particular, this shows that ν is not symmetric with respect to a
simultaneous flip of all spins, hence ν 6= ν. As we have already seen, this implies
that m∗(β) > 0.

3.7 Other topics

For the Ising model on d = 2, Onsager has shown [Ons44] that

βc = log(1 +
√

2)

and

m∗(β, 2) =
(
1− sinh(β)−4

)1/8
(β ≥ βc),
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where
sinh(β) = 1

2

(
eβ − e−β

)
is the sinus hyperbolicus. Note that in light of this, the estimate βc ≤ log 3 arising
from Proposition 3.15 is not so bad! Onsager’s solution also implies that

m∗(β, 2) ∼ (β − βc)
1/8 as β ↓ βc,

which shows that the critical exponent associated with the spontaneous mag-
netrization is 1/8 in dimension d = 2. It is supposed that

m∗(β, 3) ∼ (β − βc)
0.308 as β ↓ βc,

but there is no mathematical theory to explain this. (There is -nonrigorous- renor-
malization group theory that sort of ‘explains’ this and even allows one to calculate
the critical exponent with some precision.) This critical exponent can actually be
measured and has been experimentally observed for varous magnetic systems and
gasses near the critical point. Obviously, these physical systems are locally not
very similar to the (nearest-neighbor) Ising model, but it is believed (and up to
some level understood by renormalization group theory) that this critical exponent
is universal and shared by a large number of different models.
Similar to what we know for the contact process, one can prove that for the
Ising model, all spatially homogeneous infinite volume Gibbs measures are convex
combinations of ν and ν. In dimension 2, these are in fact all infinite volume Gibbs
measures, but, contrary to what we saw for the contact process, in dimensions
d ≥ 3 there exist infinite volume Gibbs measures for the ising model that are not
translation invariant.
Generalizing from the Ising model, one may look at models where spins can take
q = 2, 3, . . . values, described by Gibbs measures with a Hamiltonian of the form
(3.9). These models are called Potts models. An interesting feature of these models
is that while the spontaneous magnetizationm∗(β) is (supposed to be) a continuous
of β for the Ising model, it is known that the same is not always true for Potts
models. Ising and Potts models can be studied in a nice uniform framework using
the random cluster model.



Appendix A

K-dependence

By definition, for k ≥ 0, one says that a collection (Xi)i∈Zd of random variables,
indexed by the integer square lattice, is k-dependent if for any A,B ⊂ Zd with

inf{|i− j| : i ∈ A, j ∈ B} > k,

the collections of random variables (Xi)i∈A and (Xj)j∈B are independent of each
other. Note that in particular, 0-dependence means independence.

The most important property associated with k-dependence is that a collection of
k-dependent Bernoulli random variables with success probability p can be stochas-
tically estimated from below by a collection of independent Bernoulli random vari-
ables with a success probability p̃ that has the property that p̃→ 1 as p→ 1. It is
a bit unfortunate that the term ‘k-dependence’ as it is standardly used explicity
(and only) refers to random variables on Zd, while in fact, as the next theorem
shows, for the property just mentioned the precise spatial structure is not very
important. The next theorem is taken from [Lig99, Thm B26], who in turn cites
[LSS97].

Theorem A.1 (K-dependence) Let Λ be a countable set and let p ∈ (0, 1),
K < ∞. Assume that (χi)i∈Λ are Bernoulli random variables with P [χi = 1] ≥ p
(i ∈ Λ), such that for each i ∈ Λ there exists a ∆i ⊂ Λ with i ∈ ∆i and |∆i| ≤ K,
such that

χi is independent of (χj)j∈Λ\∆i
.

Then it is possible to couple (χi)i∈Λ to a collection of independent Bernoulli random
variables (χ̃i)i∈Λ with

P [χ̃i = 1] = p̃ :=
(
1− (1− p)1/K

)2
, (A.1)

in such a way that χ̃i ≤ χi for all i ∈ Λ.
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Proof of Theorem A.1 Since we can always choose some arbitrary denumeration
of Λ, we may assume that Λ = N. Our strategy will be as follows. We will choose
{0, 1}-valued random variables (ψi)i∈Λ with P [ψi = 1] = r, independent of each
other and of the (χi)i∈N, and put

χ′i := ψiχi (i ∈ N). (A.2)

Note that the (χ′i)i∈N are a ‘thinned out’ version of the (χi)i∈N. In particular,
χ′i ≤ χi (i ∈ N). We will show that for an appropriate choice of r,

P [χ′n = 1 |χ′0, . . . , χ′n−1] ≥ p̃ (A.3)

for all n ≥ 0, and we will show that this implies that the (χ′i)i∈N can be coupled
to independent (χ̃i)i∈Λ as in (A.1) in such a way that χ̃i ≤ χ′i ≤ χi (i ∈ N).
We start with the latter claim. Imagine that (A.3) holds. Set

p′n(ε0, . . . , εn−1) := P [χ′n = 1 |χ′0 = ε0, . . . , χ
′
n−1 = εn−1] (A.4)

whenever P [χ′0 = ε0, . . . , χ
′
n−1 = εn−1] > 0. Let (Un)n∈N be independent, uniformly

distributed [0, 1]-valued random variables. Set

χ̃n := 1{Un < p̃} (n ∈ N) (A.5)

and define inductively

χ′n := 1{Un < p′n(χ′0, . . . , χ
′
n−1)} (i ∈ N). (A.6)

Then
P [χ′n = εn, . . . , χ

′
0 = ε0] = pn(ε0, . . . , εn−1) · · · p0. (A.7)

This shows that these new χ′n’s have the same distribution as the old ones, and
they are coupled to χ̃i’s as in (A.1) in such a way that χ̃i ≤ χ′i.
What makes life complicated is that (A.3) does not always hold for the original
(χi)i∈N, which is why we have to work with the thinned variables (χ′i)i∈N.1 We
observe that

P [χ′n = 1 |χ′0 = ε0, . . . , χ
′
n−1 = εn−1] = rP [χn = 1 |χ′0 = ε0, . . . , χ

′
n−1 = εn−1].

(A.8)

1Indeed, let (φn)n≥0 be independent {0, 1}-valued random variables with P [φn = 1] =
√

p for
some p < 1, and put χn := φnφn+1. Then the (χn)n≥0 are 1-dependent with P [χn = 1] = p, but
P [χn = 1|χn−1 = 0, χn−2 = 1] = 0.
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We will prove by induction that for an appropriate choice of r,

P [χn = 0 |χ′0 = ε0, . . . , χ
′
n−1 = εn−1] ≤ 1− r. (A.9)

Note that this is true for n = 0 provided that r ≤ p. Let us put

E0 := {i ∈ ∆i : 0 ≤ i ≤ n− 1, εi = 0},
E1 := {i ∈ ∆i : 0 ≤ i ≤ n− 1, εi = 1},
F := {i 6∈ ∆i : 0 ≤ i ≤ n− 1}.

(A.10)

Then

P [χn = 0 |χ′0 = ε0, . . . , χ
′
n−1 = εn−1]

= P
[
χn = 0

∣∣χ′i = 0 ∀i ∈ E0, χi = 1 = ψi ∀i ∈ E1, χ
′
i = εi ∀i ∈ F

]
= P

[
χn = 0

∣∣χ′i = 0 ∀i ∈ E0, χi = 1 ∀i ∈ E1, χ
′
i = εi ∀i ∈ F

]
=
P

[
χn = 0, χ′i = 0 ∀i ∈ E0, χi = 1 ∀i ∈ E1, χ

′
i = εi ∀i ∈ F

]
P

[
χ′i = 0 ∀i ∈ E0, χi = 1 ∀i ∈ E1, χ′i = εi ∀i ∈ F

]
≤

P
[
χn = 0, χ′i = εi ∀i ∈ F

]
P

[
ψi = 0 ∀i ∈ E0, χi = 1 ∀i ∈ E1, χ′i = εi ∀i ∈ F

]
=

P
[
χn = 0

∣∣χ′i = εi ∀i ∈ F
]

P
[
ψi = 0 ∀i ∈ E0, χi = 1 ∀i ∈ E1

∣∣χ′i = εi ∀i ∈ F
]

≤ 1− p

(1− r)|E0|P
[
χi = 1 ∀i ∈ E1

∣∣χ′i = εi ∀i ∈ F
] ≤ 1− p

(1− r)|E0| r|E1|
,

(A.11)

where in the last step we have used K-dependence and the fact that

P
[
χi = 1 ∀i ∈ E1

∣∣χ′i = εi ∀i ∈ F
]
≥ r|E1|. (A.12)

We claim that (A.12) is a consequence of the induction hypothesis (A.9). Indeed,
we may assume that the induction hypothesis (A.9) holds regardless of the ordering
of the first n elements, so without loss of generality we may assume that E1 =
{n − 1, . . . ,m} and F = {m − 1, . . . , 0}, for some m. Then the left-hand side of
(A.12) may be written as

n−1∏
k=m

P
[
χk = 1

∣∣χi = 1 ∀m ≤ i < k, χ′i = εi ∀0 ≤ i < m
]

=
n−1∏
k=m

P
[
χk = 1

∣∣χ′i = 1 ∀m ≤ i < k, χ′i = εi ∀0 ≤ i < m
]
≥ rn−m.

(A.13)
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If we assume moreover that r ≥ 1
2
, then r|E1| ≥ (1 − r)|E1| and therefore the

right-hand side of (A.11) can be further estimated as

1− p

(1− r)|E0| r|E1|
≤ 1− p

(1− r)|∆n∩{0,...,n−1}| ≤
1− p

(1− r)K−1
. (A.14)

We see that in order for our proof to work, we need 1
2
≤ r ≤ p and

1− p

(1− r)K−1
≤ 1− r. (A.15)

In particular, choosing r = 1− (1− p)1/K yields equality in (A.15). Having proved
(A.9), we see by (A.8) that (A.3) holds provided that we put p̃ := r2.
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k-dependence, 79
kernel

probability, 8
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recovery rate, 28
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stochastic
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