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Abstract

What is the long-time behavior of the law of a contact process started with a single infected
site, distributed according to counting measure on the lattice? This question is related
to the configuration as seen from a typical infected site and gives rise to the definition
of so-called eigenmeasures, which are possibly infinite measures on the set of nonempty
configurations that are preserved under the dynamics up to a multiplicative constant. In
this paper, we study eigenmeasures of contact processes on general countable groups in
the subcritical regime. We prove that in this regime, the process has a unique spatially
homogeneous eigenmeasure. As an application, we show that the exponential growth rate
is continuously differentiable and strictly decreasing as a function of the recovery rate, and
we give a formula for the derivative in terms of the eigenmeasures of the contact process
and its dual.
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1 Introduction and main results

1.1 Introduction

It is known that contact processes on regular trees behave quite differently from contact
processes on the d-dimensional integer lattice Z¢. Indeed, if A. and \. denote the critical
infection rates associated with global and local survival, respectively, then one has A\ < A,
on trees while Ac = A, on Z?. For A\ > )., the process exhibits complete convergence and the
upper invariant law is the only nontrivial invariant law, while on trees, in the intermediate
regime A\ < A < X/, there is a multitude of (not spatially homogeneous) invariant laws. The
situation is reminiscent of what is known about unoriented percolation on transitive graphs,
where one has uniqueness of the infinite cluster if the graph is amenable, while it is conjectured,
and proved in some cases, that on nonamenable graphs there is an intermediate parameter
regime with infinitely many infinite clusters. We refer to [Ligd9] as a general reference to
contact processes on Z¢ and trees and [Hagll] for percolation beyond Z.

In general, it is not hard (but also not very interesting) to determine the limit behavior
of contact processes started from a spatially homogeneous (i.e., translation invariant) initial
law. On the other hand, it seems much more difficult to study the process started with a
finite number of infected sites. For example, it seems quite difficult to prove that A. = AL
on any amenable transitive graph. As an intermediate problem, in [Swa09, Problem 1 from
Section 1.5], it has been proposed to study the process started with a single infected site,
chosen uniformly from the lattice. For infinite lattices, the resulting ‘law’ at time ¢ will be an
infinite measure. However, as shown in [Swa09, Lemma 4.2], conditioning such a measure on
the origin being infected yields a probability law, which can be interpreted as the process seen
from a typical infected site.

There is a close connection between the law of the process seen from a typical infected
site and the exponential growth rate r of the expected number of infected sites of a contact
process. This can be understood by realizing that the number of healthy sites surrounding a
typical infected site determines the number of infections that can be made and hence the speed
at which the infection grows. In the context of infinite laws, which cannot be normalized, it
is natural to generalize the concept of an invariant measure to an ‘eigenmeasure’, which is
a measure on the set of nonempty configurations that is preserved under time evolution up
to a multiplicative constant. Alternatively, such eigenmeasures can be thought of as the
equivalent of a quasi-stationary law (as introduced in [DS67]) in the setting of interacting
particle systems. In particular, if the suitably rescaled ‘law’ at time ¢ of the process started
with a single, uniformly distributed site has a nontrivial long-time limit, then it follows from
results in [Swa09] that such a limit ‘law’ must be an eigenmeasure whose eigenvalue is the
exponential growth rate r of the process.

In the present paper, we study eigenmeasures of subcritical contact processes on general
countable groups. Our set-up includes translation-invariant contact processes on Z% and on
regular trees, as well as long-range processes and asymmetric processes. We will show that such
processes have a unique homogeneous eigenmeasure which is the vague limit of the rescaled
law at time ¢ of the process started in any homogeneous, possibly infinite, initial law. As an
application of our results, we give an expression for the derivative of the exponential growth
rate as a function of the recovery rate in terms of the eigenmeasures of the process and its
dual, and we use this to show that this derivative is strictly negative and continuous.



1.2 Contact processes on groups

We need to define the class of contact processes that we will be interested in, fix notation, and
recall some well-known facts. Let A be a finite or countably infinite group with group action
(i,7) + ij, inverse operation i +— i~!, and unit element 0 (also refered to as the origin). Let
a:Ax A —[0,00) be a function such that a(i,i) =0 (i € A) and

() a(i,j) = a(ki, kj) (i,j,k € A),
(i) al:="a(0,i) < oo, (1.1)
i€EA

and let 6 > 0. By definition, the (A, a,d)-contact process is the Markov process 1 = (1¢)t>0,
taking values in the space P = P(A) := {A: A C A} consisting of all subsets of A, with the
formal generator

Gf(A):= Z a(i, )lgeaylygatf(AU{G}) — f(A)}
bIeA (1.2)
+6 > e {F(Ai}) — F(A)}-
1€EA
If i € 1, then we say that the site ¢ is infected at time t; otherwise it is healthy. Then (1.2))
says that an infected site ¢ infects another site j with infection rate a(i,j) > 0, and infected
sites become healthy with recovery rate § > 0.
We will usually assume that the infection rates are irreducible in some sense or another.
To make this precise, let us write i< if the site j can be infected through a chain of infections
starting from i. Then we say that a is irreducible if i<=j for all 7,7 € A. Equivalently, this
says that for all A C A with A’ # (), A, there exist i € A’ and j € A\A’ such that a(i,j) > 0.
Similarly, we say that a is weakly irreducible if for all A’ C A with A’ # (), A, there exist i € A’
and j € A\A’ such that a(7,7) V a(j,4) > 0. Finally, we will sometimes need the intermediate
condition
Vi,jeA: Ikl eN: kS, k<Sg, a5, j<51L (1.3)

In words, this says that for any two sites ¢, j there exists a site k£ from which both ¢ and j
can be infected, and a site [ that can be infected both from i and from j. If the rates a are
symmetric, or more generally if one has a(i,j) > 0 iff a(j,7) > 0, then all three conditions are
equivalent. In general, irreducibility implies which implies weak irreducibility, but none
of the converse implications hold.

It is well-known that contact processes can be constructed by a graphical representation.
Let w = (w*,w') be a pair of independent, locally finite random subsets of A xR and A x A xR,
respectively, produced by Poisson point processes with intensity 6 and a(i, ), respectively.
This is usually visualized by plotting A horizontally and R vertically, marking points (i, s) € w"
with a recovery symbol (e.g., %), and drawing an infection arrow from (i,t) to (j,t) for each
(i,7,t) € w'. For any (i,s),(j,u) € A x R with s < u, by definition, an open path from (i, s)
to (j,u) is a cadlag function 7 : [s,u] — A such that {(7(t),t) : t € [s,u]} Nw" = 0 and
(m(t—),m(t),t) € w' whenever 7(t—) # 7(t). Thus, open paths must avoid recovery symbols
and may follow infection arrows. We write (i, s) ~» (j,u) to indicate the presence of an open
path from (i,s) to (j,u). Then, for any s € R, we can construct a (A,a,d)-contact process
started in an initial state A € P by setting

17;4’5::{jGA:(i,s)w(j,s—i—t)forsomeieA} (AeP, seR, t>0). (1.4)



In particular, we set n{* := 77;4 ¥ Note that this construction defines contact processes with
different initial states on the same probability space, i.e., the graphical representation provides
a natural coupling between such processes. Moreover, the graphical representation shows that
the contact process is essentially a sort of oriented percolation model (in continuous time but
discrete space).

Since the graphical representation is also defined for negative times we can, in analogy to
, define ‘backward’ or ‘dual’ processes by

n;rA’s ={j€A:(j,s—1t)~ (i,s) for some 1 € A} (AeP, seR, t>0). (1.5)

In particular, we set 772’4 = n;r A0 It is not hard to see that (772 A’S)tzo is a (A, al, §)-contact
process, where we define reversed infection rates as a'(i, j) := a(j,4). Since

{n* N B #0} ={(i,0) ~ (j,t) for some i € A, j € B} = {néﬂnzB’t #0} (0<s<t)
(1.6)
and the process 1T P is equal in law with nf 2, we see that the (A, a,d)-contact process and
(A, al,8)-contact process are dual in the sense that

Pl NB#£0=PANn Z£0] (A, BeP, t>0). (1.7)

We note that unless a = a' or the group A is abelian, the (A, a,d)- and (A,af,§)-contact
processes have in general different dynamics and need to be distinguished. (If A is abelian,
then the (A,a,d)- and (A,al,d)-contact processes can be mapped into each other by the
transformation i +— i~1.)

We say that the (A, a,d)-contact process survives if Pnf* # 0 Vt > 0] > 0 for some, and
hence for all nonempty A of finite cardinality |A|. We call

6c = 0c(A,a) :==sup {6 > 0: the (A, a,d)-contact process survives} (1.8)

the critical recovery rate. It is known that d. < co. If A is finitely generated, then moreover
dc > 0 provided a is weakly irreducible [Swa07, Lemma 4.18], but for non-finitely generated
groups irreducibility is in general not enough to guarantee . > 0 [AS10]. It is well-known
that
Pyt e ] = 7, (1.9)
t—o0

where 7 is an invariant law of the (A, a, §)-contact process, known as the upper invariant law.
Using duality, it is not hard to prove that ¥ = dy if the (A, al, §)-contact process dies out,
while 7 is concentrated on the nonempty subsets of A if the process survives.

It follows from subadditivity (see [Swa09, Lemma 1.1]) that any (A, a,d)-contact process
has a well-defined exponential growth rate, i.e., there exists a constant r = r(A,a,d) with
—6 <r <la| — ¢ such that

r = lim 1logE[[n(] (0 < |A] < 00). (1.10)
t—o0

In this article, we are concerned with subcritical contact processes for which r < 0. The
following theorem lists some properties of the function (A, a, ).

Theorem 0 (Properties of the exponential growth rate)
For any (A, a,0)-contact process:



(a) r(A,a,6) =r(A,dl,0).

(b) The function 6 — r(A,a,0) is nonincreasing and Lipschitz continuous on [0,00), with
Lipschitz constant 1.

(c) Ifr(A,a,d0) >0, then the (A, a,0)-contact process survives.

(d) {6 >0:7(A,a,0) <0} = (J¢,00).

The (easy) proofs of parts (a)—(c) can be found in [Swa09, Theorem 1.2]. The analogue
of part (d) for unoriented percolation on Z? was first proved by Menshikov [Men86] and
Aizenman and Barsky [AB87]. Using the approach of the latter paper, Bezuidenhout and
Grimmett [BG91), formula (1.13)] proved the statement in part (d) for contact processes on
Z%. This has been generalized to processes on general transitive graphs in [AJ07]. As we point
out in Appendix [A] their arguments are not restricted to graphs but apply in the generality
we need here. We note that it follows from parts (a) and (d) that d.(A,a) = 6.(A,al).
In general, it is not known if survival of a (A,a,d)-contact process implies survival of the
dual (A, af,§)-contact process but any counterexample would have to be at § = d, while by
[Swa09, Corollary 1.3], A would have to be amenable. If A is a finitely generated group of
subexponential growth and the infection rates satisfy an exponential moment condition (for
example, if A = Z? and a is nearest-neighbor), then r < 0 [Swa09, Thm 1.2 (e)], but in general
(e.g. on trees), it is possible that r > 0. Indeed, one of the main results of [Swa09] says that
if A is nonamenable, the (A, a,d)-contact process survives, and the infection rates satisfy the
irreducibility condition (1.3)), then r > 0 [Swa09, Thm. 1.2 (f)].

1.3 Locally finite starting measures

We will be interested in the contact process started in initial ‘laws’ that are infinite measures.
To do this properly, we need a bit of theory. Recall that P = P(A) denotes the space of all
subsets of A. We let Py := {A:|A| > 0} and Pg, := {4 : |A| < oo} denote the subspaces
consisting of all nonempty, respectively finite subsets of A, and write Pgy, 4 := Pan N P4. We
observe that P = {0, 1}A and equip it with the product topology and Borel-o-field. Note that
since P is compact, P1 = P\{0} is a locally compact space. Recall that a measure on a locally
compact space is locally finite if it gives finite mass to compact sets, and that a sequence of
locally finite measures converges vaguely if the integrals of all compactly supported, continuous
functions converge. We cite the following simple facts from [Swa09, Lemmas 3.1 and 3.2].

Lemma 1.1 (Locally finite measures) Let u be a measure on Py. Then the following
statements are equivalent:

(i) w is locally finite.
(i) [ pu(dA)1geay < oo foralli€ A.
(iit) [ pu(dA)lganpoy < oo for all B € Pay, 4.

Moreover, if pn, 1 are locally finite measures on P, then the u, converge vaguely to p if and
only if
/Nn(dA)l{AﬂB;é@} — /M(dA)l{AﬂB;é(Z)} (B € Phin, +)- (1.11)



We will sometimes deal with locally finite measures on P, that are concentrated on Pgy,.
We will refer to such measures as ‘locally finite measures on Py, 1’ (even though ‘locally finite’
refers to the topology on P, ). For such measures, we will sometimes need another, stronger
form of convergence than vague convergence. For each i € A, we define

Pi:={AeP:ic A} and Phy,i:= PanNPi. (1.12)

Note that Pgn ; is a countable set. We let u|pﬁn7i denote the restriction of a measure p to
Phn,i- If pin, 1 are locally finite measures on Pgy, 4, then we say that the p, converge to u
locally on Py, +, if for each i € A, the un|pg, ; converge weakly to u|pg, ; with respect to the
discrete topology on Pgy, ;. It can be shown that local convergence on Pgy, 4 implies vague
convergence (see Proposition below), but the converse is not true. For example, if A = Z,
then using Lemma [1.1] it is not hard to see that we have the vague convergence

25{2-,1-4_”} =: ln nfo}ou = 225{1}, (1.13)
i€z icZ
(where 64 denotes the delta-measure at a point A € P) but the u, do not converge locally
on Pgy, 4.
We now turn our attention to contact processes started in infinite initial ‘laws’. For a given
(A, a,d)-contact process, we define subprobability kernels P; (¢ > 0) on Py by

Py(A, ) =Pl e-] (t>0), (1.14)

7.
where |p, denotes restriction to P, and we define PtT similarly for the dual (A, a', §)-contact
process. For any measure p on P, we write

uP = /u(dA)Pt(A, Y (>0, (1.15)

which is the restriction to Py of the ‘law’ at time ¢ of the (A, a,d)-contact process started in
the initial (possibly infinite) ‘law’ .

For A C A and i € A, we write iA := {ij : j € A}, and for any A C P we write
iA = {iA: A e A}. We say that a measure p on P is (spatially) homogeneous if it is invariant
under the left action of the group, i.e., if 1(A) = p(i.A) for each i € A and measurable A C P.
If i is a homogeneous, locally finite measure on P, then uP; is a homogeneous, locally finite
measure on Py for each t > 0 (see [Swa09, Lemma 3.3] or Lemma [2.4] below).

For processes started in homogeneous, locally finite measures, we have a useful sort of
analogue of the duality formula ((1.7). To formulate this, we need two more definitions. For
any measure i on P, we define

() = / u(dA) A ey, (1.16)

where |A|™! := 0 if A is infinite. Note that if each set A € Pgy, 1 carries mass pu({A}), and
this mass is distributed evenly among all points in A, then ((u)) is the mass received at the
origin.

Next, for any measures p, v on Py, we let ;1 @ v denote the restriction to P, of the image
of the product measure p ® v under the map (A, B) — AN B. Note that

/# R v (dC)f(C) = /u(dA)/u(dB)f(AmB) (1.17)

6



for any bounded measurable f : P — R satisfying f(0) = 0. We call u R v the intersection
measure of p and v. It is not hard to show (see Lemma below) that p R v is locally finite
if p and v are. Note that if p and v are probability measures, then p R v is the law of the
intersection of two independent random sets with laws p and v, restricted to the event that
this intersection is nonempty. In particular, normalizing o R v yields the conditional law given
this event.

With these definitions, we have the following lemma, the proof of which can be found in
Section

Lemma 1.2 (Duality for infinite initial laws) Let u,v be homogeneous, locally finite
measures on Py. Then
(uP Av) =(urvPl)  (t=0), (1.18)

and uP; R v is concentrated on Pan, + if and only if pp R l/PtT is.

Remark If |u| := u(P4) denotes the total mass of a finite measure on Py, then the duality
formula |D is easily seen to imply that |uP; R v| = |u R VPJ] for any finite measures pu, v on
P4. One can think of (1.18) as an analogue of this for infinite (but homogeneous) measures.

1.4 Eigenmeasures

Following [Swa09], we say that a measure p on P, is an eigenmeasure of the (A, a,d)-contact
process if p is nonzero, locally finite, and there exists a constant A € R such that

pP=eMu  (t>0). (1.19)

We call A the associated eigenvalue.

It follows from [Swa(9, Prop. 1.4] that each (A, a,d)-contact process has a homogeneous
eigenmeasure  with eigenvalue r = r(A,a,d). In general, it is not known if v is (up to a
multiplicative constant) unique. Under the irreducibility condition , it has been shown
in [Swa09, Thm. 1.5] that if the upper invariant measure v of a (A, a,d)-contact process is
concentrated on P4 and (A, a,d) = 0, then v is unique up to a multiplicative constant and in
fact 7 = c¥ for some ¢ > 0. The main aim of the present paper is to investigate eigenmeasures
in the subcritical case r < 0. Here is our first main result.

Theorem 1 (Eigenmeasures in the subcritical case) Assume that the infection rates sa-
tisfy the irreducibility condition and that the exponential growth rate from satisfies
r < 0. Then there exist, up to multiplicative constants, unique homogeneous eigenmeasures
U and U7 of the (A, a,0)- and (A, al,8)-contact processes, respectively. These eigenmeasures
have eigenvalue v and are concentrated on Pgy. If p is any nonzero, homogeneous, locally
finite measure on Py, then

e " up; = ey, (1.20)

where = denotes vague convergence of locally finite measures on Py and ¢ > 0 is a constant,
given by
R ot
e R (1.21)
(& = ot

If 1 is concentrated on Pgn, 4, then holds in the sense of local convergence on Ppy, -



The proof of Theorem will be completed in Section [2.5

Remark Since © and o7 are infinite measures, their normalizations are somewhat arbi-
trary. For definiteness, we will usually adopt the convention that [ z(i(dA)l{OE a =1=
J 71(dA)1pe 43 Theorem [1f holds regardless of the choice of normalization.

1.5 The process seen from a typical infected site

We next set out to explain the connection of eigenmeasures and the process as seen from
a typical infected site, and formulate our second main result, which gives a formula for the
derivative of the exponential growth rate.

Let (nfo})tzo be a (A, a, d)-contact process, started with a single infected site at the origin,
where nt{o} = 77;{0} (w) is defined on some underlying probability space (2, F,P). Then, for
each t > 0, we can define a new probability law I@’t on a suitably enriched probability space Q
that also contains a A-valued random variable ¢, by setting

Plw e A, i€ (w)]
E[Jn{*]

Pilwe A, t=i] = (Ae F,ich). (1.22)

The law P, is a Campbell law (closely related to the more well-known Palm laws). In words,

P, is obtained from the original law P by size-biasing on the number |17£{0}] of infected sites at

time ¢ and then choosing one site ¢ from 17,;{0} with equal probabilities.

Let py = ZieAIP’[nt{i} € -]|p, be the infinite ‘law’ of the process started with a single
infection at a uniformly chosen site in the lattice. Then, defining conditional probabilities for

infinite measures in the natural way, it has been shown in [Swa09, Lemma 4.2] that
w( - [{A:0eA}) =B % e ], (1.23)
Le., u conditioned on the origin being infected describes the distribution of 772(0} under the
Campbell law P; with the ‘typical infected site’ ¢ shifted to the origin.
In view of this, Theorem [l| gives information about the long-time limit law of the process

seen from a typical infected site. Indeed, it is easy to see that Theorem [I] implies the weak
convergence of the probability measures in 1) to (- ‘ {A:0€ A}).
s, {0}

To see the connection of this with the derivative of the exponential growth rate, let 7,
denote the process with a given recovery rate § (and (A, a) fixed), constructed with the graph-
ical representation. A version of Russo’s formula (see [Swa09, formula (3.10)] and compare
[Gri99, Thm 2.25]) tells us that

1 6, 1 [t .

where (0,0) ~(; ) (¢,t) denotes the event that in the graphical representation, all open paths
from (0,0) to (¢,t) lead through (j,s). In other words, the right-hand side of is the
fraction of time that there is a pivotal site on the way from (0, 0) to the typical site (¢, ).

By grace of Theorem we are able to control the long-time limit of formula , leading
to the following result, whose proof will be completed at the end of Section [2.7]



Theorem 2 (Derivative of the exponential growth rate) Assume that the infection rates
satisfy the irreducibility condition . For § € (0¢,00), let vg and ﬁ; denote the homogeneous
eigenmeasures of the (A, a,8)- and (A, al,d)-contact processes, respectively, normalized such
that [ U5(dA)1jocay = 1 = fﬁg(dA)l{OeA}. Then the map (0¢,00) D § — U is continuous
with respect to local convergence on Pan 4, and similarly for oL Moreover, the function

d— (A, a,d) is continuously differentiable on (dc,00) and satisfies

b5 @ ] ({0})

— Zr(A,a,8) =
% (Bs @ BL)

>0 (6 €(d,00)). (1.25)

Remark The continuity of s and ﬁ; as a function of ¢ in the sense of local convergence on
Prin, + is easily seen to imply the continuity of the right-hand side of in §. On the other
hand, no such conclusion could be drawn from continuity in the sense of vague convergence,
since the functions A — 1g4_go3 and A — [A|" 1 e 4} (Which occur in the definition of (- )))
are not continuous with respect to the topology on P;..

The differentiability of the exponential growth rate in the subcritical regime is expected.
Indeed, for normal (unoriented) percolation in the subcritical regime, it is even known that
the number of open clusters per vertex and the mean size of the cluster at the origin depend
analytically on the percolation parameter. This result is due to Kesten [Kes81]; see also
[Gri99, Section 6.4]. For oriented percolation in one plus one dimension in the supercritical
regime, Durrett [Dur84, Section 14] has shown that the percolation probability is infinitely
differentiable as a function of the percolation parameter. It is not immediately clear, however,
if the methods in these papers can be adapted to cover the exponential growth rate. At any
rate, they would not give very explicit information about the derivative such as positivity.

In principle, if for a given lattice one can show that the right-hand side of stays
positive uniformly as § | d., then this would imply that 7(6) ~ (6 — d.)! as & | &, i.e., the
critical exponent associated with the function r is one. But this is probably difficult in the
most interesting cases, such as Z? above the critical dimension.

1.6 Discussion and outlook

This paper is part of a larger program, initiated in [Swa09], which aims to describe all ho-
mogeneous eigenmeasures of (A, a, §)-contact processes and to prove convergence for suitable
starting measures. There are several regimes of interest: the subcritical regime § > 4., the
critical regime § = d., and the supercritical regime § < d.. In the supercritical regime one
needs to distinguish further the case r = 0 (as for processes on Z¢) and the case r > 0 (as for
processes on trees).

In [Swa09] some first, relatively weak results have been derived for processes with r =
0 in the supercritical regime. In particular, it was shown that for such processes, there
exists a unique homogeneous eigenmeasure with eigenvalue zero [Swa09, Thm. 1.5], but it has
not been proved whether there are homogeneous eigenmeasures with other eigenvalues, while
convergence has only been shown for one special initial measure and Laplace-transformed
times [Swa09, Corollary 3.4].

Our present paper treats the subcritical case fairly conclusively. Arguably, this should be
the easiest regime. Indeed, our analysis is made easier by the fact that the homogeneous eigen-
measures are concentrated on finite sets, which allows us to use a ‘compensated’ h-transform to
translate problems related to long-time behavior into positive recurrence of a continuous-time



Markov chain (see Lemmabelow). In contrast, in the critical and supercritical regimes, we
expect homogeneous eigenmeasures to be concentrated on infinite sets, hence these techniques
are not available.

Nevertheless, our methods give some hints on what to do in some of the other regimes as
well. Formula , which we expect to hold more generally, says, roughly speaking, that
—%T(A,CL, 9) is the probability that two independent sets, which are distributed according
to the eigenmeasures 7 and ' of the forward and dual (backward) process, and which are
conditioned on having nonempty intersection, intersect in a single point. In view of this, it is
tempting to try to replace the fact that © and o are each concentrated on finite sets, which
holds only in the subcritical regime, by the weaker assumption that the intersection measure
v R o1 is concentrated on finite sets. In particular, one wonders if this always holds in the
regime r > 0.

A simpler problem, which we have not pursued in the present paper, is to investigate higher-
order derivatives of (A, a, §) with respect to ¢ or derivatives with respect to the infection rates
a(i,j). It seems likely that the latter are strictly positive in the subcritical regime and given
by a formula similar to (1.2F). Controlling higher-order derivatives of r(A, a, §) might be more
difficult; in particular, we do not know if the function 6 — 7(A,a,d) is concave, or (which in
view of is a similar question), if the conditional laws vg(-|{A : 0 € A}) are decreasing
in the stochastic order, as a function of 4.

2 Main line of the proofs

In this section we give an overview of the main line of our arguments. In particular, we give
the proofs of Theorems[I]and P]in Sections [2.5] and 2.7 respectively. These proofs are based on
a collection of lemmas and propositions which are stated here but whose proofs are in most
cases postponed until later.

In short, the line of the arguments is as follows. We start in Section by collecting
some general facts about locally finite measures on P,. In particular, we discuss the relation
between vague and local convergence, and we show that a homogeneous, locally finite measure
on Pgn 4+ can be seen as the ‘law’ of a random finite set, shifted to a uniformly chosen position
in the lattice.

In Section [2.2] we then prove the existence part of Theorem [I] Since existence of an
eigenmeasure with eigenvalue r has already been proved in [Swa09], the main task is proving
that there exists such an eigenmeasure that is moreover concentrated on Ps, 4. This is
achieved by a covariance calculation.

Once existence is proved, we fix an eigenmeasure © that is concentrated on Ptin, +, and
likewise o' for the dual process, and set out to prove the convergence in , which will
then also settle uniqueness. Our strategy is to reduce the problem to the ergodicity of an
irreducible, positively recurrent Markov chain.

To this aim, in Section [2.3] we transform contact processes started in finite initial states
into processes that cannot die out by means of a Doob transform based on the h-function
h(A) = [D1(dB)1 {AnB=0}- In Section we then show that the eigenmeasure v corresponds
to an invariant law for this Doob transformed process modulo shifts, and that the latter is an
irreducible, positively recurrent Markov process with countable state space. For this argument,
it is essential that r is concentrated on Prin, +-

In Section we then use this to prove the convergence in , completing the proof
of Theorem [I] We obtain vague convergence for general starting measures by duality, using
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the ergodicity of the Doob transform of the dual (A, af, §)-contact process modulo shifts. For
starting measures that are concentrated on Pgy,, 1, we moreover obtain pointwise convergence
by using the ergodicity of the Doob transformed (forward) (A, a,d)-contact process modulo
shifts, which together with vague convergence, by a general lemma from Section [2.I] implies
local convergence on Py, 4.

In order to prove Theorem in Section [2.6] we show continuity of the eigenmeasures
v in the recovery rate §. Continuity in the sense of vague convergence follows easily from
a compactness argument and uniqueness, but continuity in the sense of local convergence
on Pgn 4 requires more work. We use a generalization of the covariance calculation from
Section to obtain ‘local tightness’, which together with vague convergence, by a general
lemma from Section implies local convergence on Py, 4.

In Section finally, we use the results proved so far to take the limit ¢ — oo in Russo’s
formula and prove formula , thereby completing the proof of Theorem

At this point, the proofs of our main results are complete, but they depend on a number of
lemmas and propositions the proofs of which have for readability been postponed until later.
We supply these in Section [3] The paper concludes with two appendices. In Appendix [A] we
point out how the arguments in [AJ0O7] generalize to the class of contact processes considered
in the present article. Appendix [B]contains a simple fact about continuous-time Markov chains
used in the construction of the Doob transformed process.

2.1 More on locally finite measures

In this section, we elaborate on the discussion in Section of (contact processes started in)
locally finite measures on P, by formulating some lemmas that will be useful in what follows.

Recall from Section the definition of vague convergence and of local convergence on
Phin, +, and recall that Phy ; := {A € Phn : @ € A}, If py,, p are measures on Ppy, 4, then we
say the p, converge to p pointwise on Pay, 4 if p,({A}) — n({A}) for all A € Pgy,, . We say
that the (pn)n>1 are locally tight if for each i € A and € > 0 there exists a finite D C Py ;
such that sup,, tn(Phn,:\D) < €. The next proposition, the proof of which can be found in
Section [3.1] connects all these definitions.

Proposition 2.1 (Local convergence) Let i, i be locally finite measures on Py that are
concentrated on Pgy, . Then the following statements are equivalent.

(i) pn = p locally on Py, .

(ii) pn — p pointwise on Phn, + and the (pn)n>1 are locally tight.
(iii) pn, = p vaguely on Py and the (pn)n>1 are locally tight.
(iv) pn = p vaguely on P4 and p, — p pointwise on Phy 4.

Recall the definition of the intersection measure pu R v in 1} The next lemma, the
proof of which can be found in Section says that the operation R is continuous with
respect to vague and local convergence.

Lemma 2.2 (Intersection measure) If u,v are locally finite measures on Py, then p M v
is a locally finite measure on Py. If un, vy are locally finite measures on Py that converge
vaguely to u, v, respectively, then u, R v, converges vaguely to u R v. If moreover either the
fn or the vy, are concentrated on Pgy, 1+ and converge locally on Pgy, 4, then the p, R v, are
concentrated on Pgn 4 and converge locally on Phy, 4.

11



It is often useful to view a homogeneous, locally finite measure on Pg, 4 as the ‘law’ of
a random finite subset of A, shifted to a uniformly chosen position in A. To formulate this
precisely, we define an equivalence relation on Pg, by

A~B iff A=1iB forsomeié€A, (2.1)

and we let Pg, ::N{fl : A € Pgy} with A := {iA:i € A} denote the set of equivalence classes.
We can think of Py, as the space of finite subsets of the lattice ‘modulo shifts’. Recall the
definition of ((u)) from ([1.16). We have the following simple lemma, which will be proved in
Section B.1]

Lemma 2.3 (Homogeneous measures on the finite sets) Let A be a Pgy 4 -valued ran-
dom wvariable and let ¢ > 0. Then

M::cZ]P’[iAE-] (2.2)

IS

defines a nonzero, homogeneous measure on Pgy 4 such that (u)) = c. The measure p is locally
finite if and only szEUAH < oo. Conversely, any nonzero, homogeneous measure on Pgy 4
such that (w)) < oo can be written in the form with ¢ = (u)) for some Py, +-valued
random variable A, and the law of A is uniquely determined by .

We finally turn our attention to contact processes started in infinite initial ‘laws’. Recall
the definition of the subprobability kernels P, in (1.14]) and of the meaures pP; in ([1.15). We
cite the following simple fact from [Swa09, Lemma 3.3].

Lemma 2.4 (Process started in infinite law) If i1 is a homogeneous, locally finite measure
on Py, then uP; is a homogeneous, locally finite measure on Py for each t > 0. If pn, p are
homogeneous, locally finite measures on P4 such that p, = p, then u, Py = pPy; for allt > 0,
where = denotes vague convergence.

2.2 Existence of eigenmeasures concentrated on finite sets

The first step in the proof of Theorem [1]is to show that the condition r» < 0 implies existence
of a homogeneous eigenmeasure that is concentrated on Pgy,.

We start by recalling how homogeneous eigenmeasures with eigenvalue r are constructed in
[Swa09]. For any (A, a, d)-contact process, we can define homogeneous, locally finite measures
ue on Py by ‘

=Y Bt el (120). (2.3)
€A
We can think of y; as the law of a contact process started with one infected site, distributed
according to the counting measure on A. It is not hard to show (see [Swa09l formulas (3.8)
and (3.20)]) that
0
u({A:0¢e A} =E[n{] = m. (2.4)

Let 1) be the Laplace transform of (ut)¢>o, i-€.,

fiy = / e e Mdt (A >r). (2.5)
0
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Then o
fn({A:0€ A}) = / m e Mdt =: 7ty (A>r), (2.6)
0

which is finite for A > r by the definition of the exponential growth rate (see ((1.10))). We cite
the following result from [Swa09, Corollary 3.4], which yields the existence of homogeneous
eigenmeasures.

Proposition 2.5 (Convergence to eigenmeasure) The measures %ﬂk (A > r) are rela-
tively compact in the topology of vague convergence of locally finite measures on P4, and each
subsequential limit as \ | r is a homogeneous eigenmeasure of the (A, a,d)-contact process,
with eigenvalue r(A, a, ).

We wish to show that for r < 0, the approximation procedure in Proposition yields an
eigenmeasure that is concentrated on Pg,. The key to this is the following lemma, which will
be proved in Section using a covariance calculation. Note that this lemma still holds for
general r € R.

Lemma 2.6 (Uniform moment bound) Let iy and 7y be defined as in 7(@. Then,

for any (A, a,d)-contact process with exponential growth rate r = r(A, a,d),

. L[ > 0} 72
fimsup = [ () 1oy 4] < (ol +0) [ e atE (o) (27)
Alr - TTA 0
As a consequence, we obtain the following result that completes the existence part of
Theorem [1I

Lemma 2.7 (Existence of an eigenmeasure on finite configurations) Assume that the
exponential growth rate v = r(A,a,d) of the (A, a,d)-contact process satisfies r < 0. Then
there exists a homogeneous eigenmeasure v with eigenvalue T of the (A, a,d)-contact process
such that

/ H(AA) AL goe) < 0. (2.8)

7T)\n

Proof By Proposition we can choose A, | r such that the measures #ﬂ)\n converge
vaguely to a homogeneous eigenmeasure  with eigenvalue r. It follows from ((1.10) that

IEH?];{O}H = e"*°() where t — o(t) is a continuous function such that o(t)/t — 0 as t — oo,
hence, by (2.7)), provided r < 0,
/ e_TtthUnf }|] = / eZrt=rto®dr < oo (r <0). (2.9)
0 0

Let Ay be finite sets such that 0 € Ay C A and A T A. It is easy to check that A — fi(A) :=
|ANAg|1 {0eA} is a continuous, compactly supported real function on Py. Therefore, by the

vague convergence of ﬁ fix, to v, and by ,
n

o i 1 R
[oannca) = m = [, @A)f(4)
) A o - (2.10)
<timint —— [ i, (@Al pen) < (Ja] +9) / At E Il ).
n 0

n—oo T

Letting k T oo, using the fact that the right-hand side is finite by (2.9)), we arrive at (2.8). B
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2.3 A Doob transformed Markov process

Since existence of the eigenmeasure © from Theorem [1|is settled, the next aim is to prove the
convergence in , which will in particular imply uniqueness. The proof will proceed in
three steps. First, we will use a variant of the well-known Doob transform (also known as h-
transform) to transform our contact process into a process that never gets extinct, and we will
transform our eigenmeasure concentrated on finite configurations into an invariant measure
of this process. In the second step, we will use Lemma to ‘divide out’ translations and
show that the resulting Doob transformed process modulo shifts is irreducible and positively
recurrent. In the third step, we use standard ergodic results for irreducible, positively recurrent
Markov processes with countable state space, together with duality, to prove the convergence
in .

We recall that the classical Doob transform is based on a positive harmonic function h. We
will need a slight variation of this where h is a positive eigenfunction of the generator. (This is
a special case of what is called a ‘compensated h-transform’ in [FS02, Lemma 3].) In general,
a duality relation between two Markov processes translates invariant measures of one process
into harmonic functions of the dual process. Similarly, we will see that each eigenmeasure of
a (A, a,d)-contact process gives rise to a positive eigenfunction of the generator of the dual
(A, a',d)-contact process, and vice versa. We will exploit this and use the eigenmeasure o1 of
the dual process to construct a function h with which we can transform the ‘forward’ process.

To formulate this properly, we first need to say something about the space of functions on
which the generator G from is well-defined. Let

S(Phin) == {f : Pin — R : |f(A)] < K|A[F + M for some K, M,k > 0}. (2.11)

denote the class of real functions on Pg, of polynomial growth. It has been shown in [Swa09,
Prop. 2.1] that the operator G maps the space S(Pgy,) into itself and for each f € S(Pgy) and
A € Pgy, the process

M= st = [ Grdas =0 (2.12)

is a martingale with respect to the filtration generated by n4.

We say that a function f : Pg, — R is shift-invariant if f(iA) =
monotone if A C B implies f(A) < f(B), and subadditive if f(AU B) <
A, B € Pgn. We cite the following fact from [Swa09, Lemma 3.5].

f(A) for all i € A,
f(A) + f(B), for all

Lemma 2.8 (Eigenmeasures and harmonic functions) If u' is a homogeneous eigen-
measure with eigenvalue \ of the (A, al,8)-contact process, then

hA) =y (4) == [WlAB) sy (A€ Pan) (213)

defines a shift-invariant, monotone, subadditive function such that h(0) =0, h(A) > 0 for any
0 # A€ Pan, h € S(Pan), and Gh = Ah.

We are now ready to introduce the kind of Doob transformed processes that we are in-
terested in. For each A, B € Pgy 4, let 7(A, B) denote the rate at which the (A, a, d)-contact
process jumps from A to B. Let h = h,+ be given by (2.13). We will be interested in the
continuous-time Markov process with countable state space Pgy,, 4 and jump rates given by

h(B)

rh(A, B) = ha) AP (A, B € Pan, +)- (2.14)
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Let €4 = (ff‘)tzo denote this process, which a priori may be defined only up to some explosion
time 7 (we will see shortly that 7 = 00). We call €4 the h-transformed (A, a, §)-contact process,
and let

PMA,B) =Pl =B, t<1] (t>0, A, B€ Py ) (2.15)

denote its transition probabilities. A priori, due to the possibility of explosion, this might be a
subprobability kernel like the P; defined in , for which we adopt the analogous notation
P,(A, B) := P,(A,{B}). The following lemma says that this is not the case. The proof of this
result can be found in Section 3.5

Lemma 2.9 (Doob transformed process) Let puf be a homogeneous eigenmeasure with

eigenvalue \ of the (A, af,§)-contact process and let h = h,: be defined as in . Then the

h-transformed (A, a,0)-contact process does not explode and its transition kernel is given by
(B)

Pth(A, B) = €_>‘t m P,(A, B) (t >0, A,Be€e Pﬁn,+). (2.16)

Remark One can check that the process €4 solves the martingale problem for the operator
given by G"f := G(hf)/h — Af (f € S(Pn), f(0) =0), but we will not need this.

The next lemma shows in particular that if 7 and o' are eigenmeasures of the (A, a,d)-
and (A, a',d)-contact processe with properties as in Lemma and h = hg;, then hv is an
invariant measure of the h-transformed (A, a, §)-contact process. The proof can be found in
Section

Lemma 2.10 (Invariant measures of the Doob transformed process) Let u' be a
homogeneous eigenmeasure with eigenvalue A of the (A, al, d)-contact process and let h = byt
be defined as in . Let v be a homogeneous, locally finite measure on P4 such that
J 1(dA)[A[1 e ay < 00, and let hy denote the weighted measure hu(dA) := h(A)u(dA). Then
hu is a locally finite measure on P4. Moreover, v is an eigenmeasure of the (A, a,d)-contact
process with eigenvalue X\ if and only if hu is an invariant measure of the h-transformed
(A, a,0)-contact process.

2.4 The Doob transformed process modulo shifts

By Theorem@ (a), the (A, a, §)-contact processes and its dual (A, af, §)-contact processes have
the same exponential growth rate r = (A, a,d) = r(A,a’,8). In particular, if » < 0, then by
Lemma there exist homogeneous eigenmeasures o and 0! of the (A, a,)- and (A, af, 6)-
contact process, respectively, both with eigenvalue r, such that

/ﬁ(dA)|A|l{0€A} < oo and /BT(dA)|A|1{0€A} < 0. (2.17)

We normalize  and 07 such that [ 7(dA)1jpeay =1 = [7(dA)1gge4y. For the moment, we
do not know yet if © and o' are unique. However, we simply fix any two such measures and

define functions
h:=hg and hl:=hg (2.18)

as in (2.13)), which by Lemma satisfy Gh = rh and GTh! = rhf, where G and GT de-
note the generators of the (A, a,d)- and (A,al,§)-contact process, respectively. Using these
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functions, we define an h-transformed (A, a,d)-contact process (&)i>0 and hi-transformed
(A, at, §)-contact process (52)1520 with transition rates as in . By Lemma hv and
hToT are locally finite invariant measures of these processes, respectively. Note that ho and
htDt are moreover homogeneous (by the shift-invariance of h and k! and the homogeneity of
v and %gg) and concentrated on P, 1 (since  and P%gg have this property). Therefore, by
Lemma there exist Ppy, -valued random variables £, and 510 such that

h = (hi) Y Pliéo €] and hiot = (nlo1) Y Pligl €-]. (2.19)
i€ icA
The suggestive notation that we have chosen for these Pg,, 4-valued random variables is moti-
vated by the fact that h and hTDT are invariant measures of the processes (&)+>0 and (g )t>0
and will be further justified by Lemma below.

Recall from that Pg, denotes the space of finite subsets of A ‘modulo shifts’. It follows
from the shift-invariance of @ and h that if (&)¢>0 is the h-transformed (A, a, d)-contact process
(started in any initial law), then the Pg, -valued process (&)i>o is also a Markov process.
We call this the h-transformed (A, a,§)-contact process modulo shifts. The hf-transformed
(A, al, 8)-contact process modulo shifts is defined similarly. The following observation is the
central ingredient for our proof of the convergence formula . Below, we use the word
‘irreducible’ in the sense as defined in Section [1.2] i.e., for each two states in the state space
there is a positive probability of going from one to the other. For the proof we refer to

Section 3.5

Lemma 2.11 (Positive recurrence) Assume that r(A,a,0) < 0 and let h be defined in
. Assume that the infection kernel a satisfies the irreducibility condition . Then
the h-transformed (A, a,d)-contact process modulo shifts is a positively recurrent, irreducible
Markov process with countable state space 7~3ﬁn,+, and P[éoo € -] with & from 18 its
unique invariant law.

2.5 Convergence to the eigenmeasure

In this section, we prove Theorem [l We need one preparatory lemma, the proof of which can
be found in Section [3.1]

Lemma 2.12 (Intersection and weighted measures) Let p,v be homogeneous locally
finite measures on P, assume that p is concentrated on Pry, 4, and let hy, be defined as in

. Then
(@ v) = (hop)- (2.20)

If moreover fu(dA)\AH{OGA} < 00, then hyp is locally finite.

Proof of Theorem (1| The existence of  and ' has already been proved in Lemma SO
uniqueness will follow once we prove the convergence in ([1.20)), with the 2 that we fixed earlier.
We need to prove two statements: vague convergence for general (nonzero, homogeneous,

locally finite) initial measures ;o and local convergence on Pay 4+ if 11 is concentrated on Py, 4.
We start with vague convergence. By Lemma [1.1] it suffices to show that

ert/upt(dA)l{AﬂB#@} nj(;o C/Ij(dA)l{AmB?g@} (B e Pﬁm_‘_), (2.21)
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where ¢ > 0 is given in ((1.21)). Let h, be defined as in (2.13]). By duality (1.7 and Lemma

we observe that for any B € Pgy, 4,

e [ WP@A gy = [ WA OB £ 0

— et / udAP[AND P £ 0] = e / u(dA) Y PI(B. B anm20) (2.22)
B/
—e ; PtT(B, B)h,(B') = hi(B) ; PtT " (B, B/)hT(B/)_lhu(B/)v

where PtT and PtT o denote the transition probabilities of the (A,aT,(S)—contact process and
the hf-transformed (A, a',§)-contact process, respectively. We observe that hu/ ht is a shift-
invariant function. Therefore, writing (h,,/hT)(B’) for the value of the function h,/hf on the
equivalence class of sets B’ containing B’, we can rewrite the right-hand side of as

W (B)E[(hT/h,) (&7 1] = KT (B)E[(h/h) (€ )], (2.23)

where €81 denotes the hf-transformed (A, af, §)-contact process modulo shifts, started in B.
By Lemma 2.17] thls process is 1rredu01ble and positively recurrent with unique invariant law

[{oo -], where §oo defined as in . In particular, this process is ergodic, so by (|2
and - we may conclude that

/ HP(AA) L anpgoy = W (B)E[(h/h,)(&7)] — hI(B)E[(W/hu) (€], (2:24)

provided we show that h,/ h' is a bounded function. To see this, note that by the fact that
v is concentrated on Pg, 4 and Lemma there exists a Pgy, 4-valued random variable A
such that 7 can be written as in . Let x be a A-valued random variable such that kK € A
a.s. Then, by the definition of Al in ,

W(A4) = hy = [ HAB) Ly = (7)Y PLANIA 20
. , . ich (2.25)
> () Y PIAN{ir} # 0] = (D)]Al.
1SN
On the other hand, since hy, is subadditive and shift-invariant by Lemma 2.8 we have hy,(A) <

hu({0})[A] and therefore h u(A)/hT(A) < h({0D)/().
Recalling that hf = hg, we obtain from 1} that

e Tt/MPt(dA)l{AﬂByé@} — E[(hl/h)(€l)] /ﬁ(dA)l{AmB¢@}~ (2:26)
Since this holds for any B € Pgy, 4, we conclude with the help of Lemma that
e " P, = cv  where c —E[(hT/h )(& )] >0 (2.27)

and = denotes vague convergence of locally finite measures on Py.

It is possible to verify by direct calculation that the constant ¢ in equals the one in
, but this is rather tedious. More easily, we may observe that by the duality relation in
Lemma and the fact that ' is an eigenmeasure

(et uP AT = (et M PPN = (um Bty (12 0), (2.28)
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while by the vague convergence of e "'uP; to ¥, the local convergence of o' to itself, and
Lemma the measures e " uP; @ 0T converge locally on Pg, 4 to cv A &1, Since Pgn, o >
A A7 1peay is a bounded function, the function p — ((u)) on Pgy, 4 is continuous with
respect to local convergence on Ppy, 4, see the definition of ((-)) in (L.16). It therefore follows
that

(5 = (P @ BT — e (@ B, (2.29)

proving that ¢ = (u ® o1 /(& @ &), which is (1.21).

It remains to show that the vague convergence in (|1.20)) can be strengthened to local
convergence on Pgn 4 if p is concentrated on Pg, 1. By Proposition (iv), it suffices to
prove pointwise convergence. We may equivalently prove that

e ""h(puPy) — hi (2.30)

t—o0
where h(uP;) denotes the weighted measure h(uP;)({B}) := h(B)uP:({B}), and likewise hv
is U weighted with h. Note that h(uP;) need not be locally finite, but by Lemmas and

(recall (2.18)),
(h(uP)) = (uP @ 0T) = (u @ TP = e (u m it < oo (2.31)

since 1 R 1 is a locally finite measure by Lemma By Lemma

e "h(pP)({BY) =" Y w({ANR(AB(B) = Y p({AHh(A)P/(A,B),
AEPfin, + A€Pfin, +
(2.32)
which tells us that e "*h(uP;) = (hu)Pl'. We have, due to the fact that h(A) < h({0})|A]
that

(i) = [ (@A ey < h(G0D) [ (@A) ey < oc. (2.33)
Thus, by Lemma there exists a Pgy, 4-valued random variable &y such that
b= () S Pligo € -] (2.34)
Now
e h(uP) = (hin) Pl = (i) 3 Plig € -], (2.35)

where (&)¢>0 is the h-transformed (A, a,d)-contact process started in ;. By Lemma
the h-transformed (A, a, d)-contact process modulo shifts is ergodic with unique invariant law
Pl¢x € -], where £ is given in (2.19). Therefore, we may conclude that

e = 3

where (hu))/{(hD)) equals the constant ¢ = (u ® &1) /(¥ @ &1) in (1.21) by Lemma n

hv  pointwise on Pgy 4, (2.36)
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2.6 Continuity in the recovery rate

The first step in proving Theorem [2| will be to show continuity of the map (d.,00) > § — vs.
We start by proving continuity with respect to vague convergence, which is based on the
following abstract result, whose proof can be found in Section

Lemma 2.13 (Limits of eigenmeasures) Let v, (n > 0) be homogeneous eigenmeasures
of (A, a,d,)-contact processes, with eigenvalues An, normalized such that [ vn(dA)leay = 1.
Assume that A, — X and 6, — 0. Then the (v,)n>0 are relatively compact in the topology
of vague convergence, and each vague cluster point v is a homogeneous eigenmeasure of the
(A, a,0)-contact processes, with eigenvalue .

Continuity of the map (d.,00) 3 d — s is now a simple consequence of Theorem [1| and

Lemma 2.13]

Proposition 2.14 (Vague continuity of the eigenmeasure) Assume that the infection
rates satisfy the irreducibility condition . For § € (8c,00), let Us denote the unique homo-
geneous eigenmeasure of the (A, a,d)-contact process normalized such that [ ﬁg(dA)l{OeA} =1.
Then the map § — Us is continuous on (0c,00) w.r.t. vague convergence of locally finite mea-
sures on P.

Proof Choose 0,0 € (d.,00) such that d,, — d. Since the eigenvalue r(A, a,d) of the homo-
geneous eigenmeasure s is continuous in § by Theorem |§| (b), Lemma implies that the
measures (U5, )n>0 are relatively compact in the topology of vague convergence, and each vague
cluster point is a homogeneous eigenmeasure of the (A, a, §)-contact processes with eigenvalue
r(A,a,d). By Theorem (1 this implies that 75 is the only vague cluster point, hence the vy,
converge vaguely to vs. n

Unfortunately, continuity with respect to vague convergence is not enough to prove conti-
nuity of the right-hand side of , and hence of the derivative %T(A, a,d). As mentioned
earlier, we will remedy this by proving continuity of the map (d¢,00) > § — s with respect to
local convergence on Py, 4. Since vague convergence is already proved, by Proposition (iii),
it suffices to prove local tightness. This is the most technical part of our proofs, since it in-
volves estimating how ‘large’ the finite sets can be that s is concentrated on. The first step
is to introduce a suitable concept of distance. The next result will be proved in Section

Lemma 2.15 (Slowly growing metric) Let A be a countable group and let a : A x A —
[0,00) satisfy (I.1). Then there exists a metric d on A such that

(i) d(i,j) = d(ki, kj) (1,7, k € A),
(i) [{i € A:d(0,i) < M} < oo (0 < M < 00), (2.37)
(i) Ky(Aa) = a(0,i)e0) < o0 (0 <7y < ).

i
Next, we fix a metric d as in (2.37) and for each 0 < v < oo, we define a function
ey : Pan — [0,00) by

ey(A) = MO (y >0, A€ Pg). (2.38)
€A
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We note that a similar (but not entirely identical) function has proved useful in the study of
contact processes on trees, see [Lig99, formula (I1.4.3)]. We have in particular eg(A4) = |A|.
The next lemma says that there is a well-defined exponential growth rate . (A, a, §) associated
with the function e,, which converges to our well-known exponential growth rate r(A, a,d) as
~ 1 0. The proof can be found in Section

Lemma 2.16 (Exponential growth rates) Let (ni{o})tzo be the (A, a,d)-contact process

started in n({)o} = {0}. Let d be a metric on A as in Lemma and let e, be the func-
tion defined in . Then, for each 0 < v < oo, the limit

. 0 . 0
ry =1y(A a,8) = tlg})lo%logE[ev(n;{ })] = gg 2 logE[ev(n;{ })} (2.39)
exists. The function v — 1. is nondecreasing, right-continuous, and satisfies
-0 <ry(Aa,0) < Ky(Aa) (v >0), (2.40)

where K (A, a) is defined in (2.57).

We can generalize the proof of Lemma to yield a more general version of that lemma
(see Lemma [3.5| below), which after taking the limit (as in (2.10))) yields the following bound
on the eigenmeasures 5. (We refer to Section for the detailed proof.)

Lemma 2.17 (Tightness estimate) Let (ni{o})tzo be the (A, a,d)-contact process started in

néo} = {0}, let r(6) = r(A,a,d) be its exponential growth rate, let d be a metric on A as

in Lemma and let e, be the function defined in . For 6 € (0¢,00), let vs denote
the unique homogeneous eigenmeasure of the (A, a,d)-contact process normalized such that

flsg(dA)l{OeA} =1. Then

/ﬁg(dA)l{OeA}ey(A) < (la| + 6) /Ooo e E ey (0 N]? (v >0, 6 € (8, 00)).
(2.41)

With this preparation we are now ready to prove the desired local continuity.

Proposition 2.18 (Local continuity of the eigenmeasure) Assume that the infection
rates satisfy the irreducibility condition . For § € (8c,00), let Us denote the unique homo-
geneous eigenmeasure of the (A, a,§)-contact process normalized such that [ ﬁg(dA)l{OEA} =1.
Then the map 6 — s is continuous on (dc,00) in the sense of local convergence on Py, + -

Proof Vague continuity of the map (dc,00) 3 & — s has been proved in Proposition SO
by Proposition [2.1] (iii), it suffices to show that for any d, € (dc, 00) there exists an & > 0 such
that the measures (75)sc(s,—e,5.+¢) are locally tight.

By property (ii), for each v > 0 and K < oo, the set {A € Py, 0 : e4(A) < K} is
finite. Thus, by Lemma [2.17] to prove the required local tightness, it suffices to show that for
each J, € (¢, 00) there exist a v > 0 and € > 0 such that

sup / efr(é)tth[e,y(nf’ {O})]2 < 00. (2.42)
5€(8x—e,0x+€) JO
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By the continuity of § — 7(8) (Theorem[0] (b)), we can choose £ > 0 such that §. < J, —e and
4
r(d, —e) < 57"((5 + ). (2.43)

Let r, = r(6) be the exponential growth rate associated with the function e,. By Lemma
the function 7 + r, is right-continuous, so we can choose v > 0 such that

Ty (0x —€) < zr(é* —e€). (2.44)

By the fact that r(J) is nonincreasing in ¢ and the law of 7, 0.0} i nonincreasing in § with
respect to the stochastic order, it follows that for all § € (0, — &, 04 + €),

/(; e_r(é)tth[e'y(n?{O})]2 S/0 (5*+£)tth[ ( 0x—€, {0})]

:/Oodte(Qm(cik—e)—r(6*+€))t+o(t)S/ gt et (G H )t +0(t) _
0 0

(2.45)

)

where t — o(t) is continuous, o(t)/t — 0 for ¢ — oo by the definition of r, in Lemma
and we have used that 2r(6, —¢) < 2-2 . 1r(6, + ) = 2r(, +¢). This proves (2.42) and
hence the required local tightness. |

2.7 The derivative of the exponential growth rate

Let us define homogeneous, locally finite measures x4 on Pgy 4 by

Xa=> 6ia (A€ Pn), (2.46)
1EA

where 6;4 denotes the delta measure on Pgy, 4 at the point 7A. Let (Pf)tzo and (th)tzo be
the subprobability kernels defined in ((1.14)) for the (A, a,d)- and (A, af,§)-contact processes,
respectively, in dependence on §. Note that X{O}Pt5 denotes the ‘law’ at time ¢ of the process
started with a single infected site distributed according to the counting measure on A. We
start by rewriting Russo’s formula in terms of the objects we are working with.

Lemma 2.19 (Differential formula) For each t > 0, the function [0,00) 3 § E[\nf’{o}]]
s continuously differentiable and satisfies

t d I
XqorPs M xqo3 b ({03})
%tlognz[m o) = t/ds s O e L (2.47)
0 <<X{O}Ps g X{O}Pt—s>>

Proof By (1.24) and the definition of the Campbell law P; in (1.22)

t
{0}
logEUnt 1= t/o s 5{0}| Z}P’ [(0,0) =) (021)], (2.48)
where
D P[(0,0) v () (i }jP —5) ~>(0,0) (1710t — 9)]
' , (2.49)
:Zp[nﬁ{’}ﬂnﬁf} = {0}] = / X(oy P2 (dA) / X0y P (B) 1 an—{o}-

i,J
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and for 0 < s <,
Eflng ) =Y p[y 0 {iy £ 0] = ZP 0 0 {0} £ 0]
_ F G
= ;E[\m N {7} 1{0677;5{171}0{].}}]
~ [xw P @) [xo) @B) AN B ey
= {x( P A xq0) = Exgoy P2 A xqoy PLE),
where we have used Lemma [T.2]in the last step. [ |

We will prove Theorem |2 E by taking the limit ¢ — oo in ([2.47). To justify the interchange
of limit and differentiation, we will use the following lemma.

(2.50)

Lemma 2.20 (Interchange of limit and differentiation) Let I C R be a compact in-
terval and let fn, f, f be continuous real functions on I. Assume each f, is continuously
differentiable, that f,(x) — f(z) and 2 Sufn(@) — f'(x) for each x € I, and that

sup sup |0xfn( x)| < oo. (2.51)

zel n
Then f is continuously differentiable and %f(:n) = f'(z) (x € I).

Proof We write I = [x_, x| and observe that

fl@)= i fu(z-) + lim /

(2.52)
— fla) + / (i A W)= Fe)+ [ )
where the interchange of limit and integration is justified by dominated convergence, using

(2.51)). Differentiation of (2.52)) now yields the statement since f’ is continuous. |
@:51) y

Proof of Theorem [2{Continuity of the map (¢, 00) 3 § — s, and likewise for 13:5[, in the sense
of local convergence on Pgy, 4 has already been proved in Proposition 2.18, By Lemma
this implies local continuity of the map (Jc,00) 2 6 — g R ﬁg. Since local convergence
on Py, + implies convergence of the integral of the bounded functions A — 1;4_;0y; and
A A" 1{pe 4y (which occurs in the definition of ((-))), this implies continuity of the right-
hand side of .

Note that the right-hand side of is clearly bounded between zero and one. Therefore,
since

1
SlogE[ln ] — r(Aa8)  (520) (2.53)

by the definition of the exponential growth rate in , using Lemma we see that
follows provided we show that the right-hand side of converges for each ¢ € (d.,00) to
the right-hand side of as t — oo.

We rewrite the right-hand side of as

1 e—rtuX P(L R e—rt(l—u)X 0
/du « 0y % P t(l w ( }) (2.54)
0

oy Ph, A e U)X{O}P(l )
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It is easy to see from the definition of ((-)) that the integrand is bounded between zero and

one (in fact, this is the probability in (1.24])). By Theorem |1} for each 0 < u < 1, the measures

—rtu rt(l—u)

e X{O}Pti and e~ X{o}PtT(f_u converge locally on Pg, 1 to constant multiples of s

and ﬁg, respectively. By Lemma and the fact that local convergence on Pgy, 4 implies
convergence of the integral of the bounded functions A — 14—}y and A — ]A|_11{06A}, we
see that the integrand in converges in a bounded pointwise way with respect to u to
the right-hand side of . Thus, the result follows by Lebesgue’s dominated convergence
theorem. |

3 Proof details

In this section we supply the proof of all propositions and lemmas that have not been proved
yet. The organization is as follows. In Section [3.1]| we prove some properties of locally finite
measures and different forms of convergence, concretely Proposition and Lemmas
and In Section we consider contact processes started in infinite initial ‘laws’,
proving Lemmas [[.2] and In Section [3.3] we construct a metric on A with properties as
in Lemma [2.15] and prove Lemma [2.16| on the exponential growth rate associated with the
functions e, defined in terms of such a metric. In Section we do a covariance calculation
leading to an estimate of which Lemma [2.0]is a special case and use this to derive Lemma [2.17]
In Section finally, we prove the properties of our Doob transformed processes listed in

Lemmas [2.9] and

3.1 Locally finite measures

In this section, we prove Proposition [2.1] as well as Lemmas and Our first aim
is Proposition 2.1 We start with two preparatory lemmas. Recall the definition of P; from
(1.12)).

Lemma 3.1 (Compact classes) If C C Py is compact, then there erists a finite A C A
such that C C J;en Pi-

Proof Choose A, T A with A,, finite. If C ¢ UieAn P; for each n, then we can find 4,, € C
such that A, NA, = 0. It follows that A,, — 0 € C (in the product topology), hence C is not
a closed subset of P and therefore not compact. |

Lemma 3.2 (Vague and weak convergence) Let iy, pu be locally finite measures on Py.
Then the p, converge vaguely to p if and only if for each i € A, the restricted measures pin|p,
converge weakly to u|p, with respect to the product topology.

Proof Since P\P; is a closed subset of P, any continuous function f : P; — R can be extended
to a continuous, compactly supported function on P by putting f(A) := 0 for A € P\ P;.
Therefore, if the u, converge vaguely to p, it follows that the u,|p, converge weakly to pu|p,.
Conversely, if for each ¢ € A the p,|p, converge weakly to u|p,, then for each i,j € A one has

/‘Ln‘PiQ,Pj - /“L”Piﬂpjﬁ Hn|7>i\7)j = lu"Pi\'P]‘ and /"‘n”Pj\Pi = M|73j\7>7;7 (31)

where we have used that P; N'P;, P;\P; and P;\P; are compact sets. Continuing this process,
we see by induction that for each finite A C A, the restrictions '“”’UieA p, converge weakly to
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’U/’UieA p,- By Lemma if f: P+ — Ris a compactly supported continuous function, then f
is supported on [ J;c o P; for some finite A C A. Tt follows that [ p,(dA)f(A) — [ u(dA)f(A),
proving that the u, converge vaguely to pu. |

Proof of Proposition The equivalence of (i) and (ii) follows in a straightforward manner
from Prohorov’s theorem applied to the countable space Pgy, ; with the discrete topology.

Since the discrete topology on Pgy ; is stronger than the product topology, weak conver-
gence of the ,un]pﬁm with respect to the discrete topology implies weak convergence with
respect to the product topology. By Lemma this shows that local convergence on Py, 4+
implies vague convergence on P, and hence (i) implies also (iii).

To prove (iii)=(i), note that by local tightness, for each i € A the measures p,|py, , are
relatively compact in the topology of weak convergence with respect to the discrete topology.
Let pl be a subsequential limit. Since weak convergence with respect to the discrete topology
implies weak convergence with respect to the product topology, by Lemma [3.2] we conclude
that u! = | Pg, ;- Since this is true for each cluster point, we conclude that the p,|pg, ;
converge weakly to /"L|7jﬁn,i with respect to the discrete topology.

The implication (i)=-(iv) follows from what we have already proved. To prove the reverse
implication, it suffices to show local tightness. Since for each i € A, the finite measures pin |pg, ;
converge pointwise to u|pﬁn7i, it suffices to show that their total mass satisfies

limsupp,({A:i€ A}) <u({A:ie A}). (3.2)

n—oo
By vague convergence (see Lemma , the limit superior is actually a limit and equals the
right-hand side. |

Proof of Lemma The local finiteness of i1 R v follows from Lemma and the fact that
/M Ry (dc)l{ieo} = / p(dA) / ’/<dB)1{ieAmB}
— (/u(dA)l{ieA}></u(dB)l{ieB}) <oo (i€A)

To see that u, M v, converges vaguely to u R v if u,, v, converge vaguely to u, v, respectively,
by Lemma it suffices to check that

(3.3)

/Nn A v (dC)ionproy —2 /M Rv(dC)cnproy (D € Phin, +)- (3.4)
Since
Lerpgoy =1— [ Lugey = 1- [[Q - 1geey) = D DPTH]] Lyeey. (35
i€D i€D D'cD €D’
D' 20

and since [[;cpr Liiecy = Liprcoy formula (3.4) is equivalent to

/un R vp(dC)1{pcey — /u R v(dC)1{pcey (D € Phin, +)- (3.6)

Now

/,Um R Vn(dC)l{DCC}Z/Mn(dA)/Vn(dB)l{Dc(AmB)}
~ ( / pndA) ey ) ( / w(dB)Lpesy ),
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which, by our assumptions that u, = p and v, = v, converges to the analogue formula with
ln, Vn replaced by p, v

To see that the vague convergence of i, R v, can be strengthened to local convergence on
Phn, + if either p, or v, converges locally on Pg,, 4, it suffices by Proposition (iii)=(i) to
show that the local tightness of either u,, or v, implies local tightness of y,, R v,,. By symmetry,
it suffices to consider the case when the pu, are locally tight. Since vague convergence of the
v, implies convergence of [ Vn(dA)1gieay for each i € A, the statement now follows from the
following lemma, that we formulate separately since it is of some interest on its own. |

Lemma 3.3 (Local tightness of intersection measure) Let ju,,v, (n > 1) be locally
finite measures on P,. Assume that the p, (n > 1) are concentrated on Pgn 4+ and that they
are locally tight. Assume that the vy satisfy sup, >, fI/n(dA)l{ieA} < oo for alli € A. Then
the intersection measures i, A vy (n > 1) are concentrated on Pgyn, 4 and locally tight.

Proof Since p,, M v, is concentrated on sets of the form AN B with A € Pgy,, 4, it is clear
that p, R v, is concentrated on Pg, 4 for each n > 1. Fix ¢ € A and € > 0, and set
K :=sup,>; [ Vn(dA)1gieay- By the local tightness of the p,, there exists a finite D C Ppp, ;
such that sup,, pn(Pan,\P) < €/K. The same obviously holds for the larger finite set D' :=
P(D)={A:AC D}, where D :=|J{A: A € D}. Now

sup fin A Vp(Pin,i\D') = sup /Mn(dA) /Vn(dB) LiicanByl{anB¢ D}

n>1 n>1 (38)
< sup /Mn(dA) liieayliagpy /Vn(dB) liepy <e.
n_
Since ¢ € A and € > 0 are arbitrary, the claim follows. |

Proof of Lemma Formula ([2.2) obviously defines a nonzero, homogeneous measure on
Ptin, +. Since

p({A:0¢€ A}) = CZIP[O €iA] = CZP[rl e Al =cE[|A[], (3.9)

it follows from Lemma that p is locally finite if and only if E[JA|] < co. If 4 is given by

, then
) =c> E[iA|  peiny] = EB[AIT(D 1ieay)] =c (3.10)
€A 1€EA

To see that every nonzero, homogeneous measure p on Pr, 4 with (1)) < co can be written
in the form (2.2)), define a probability law p on Pgy o by

p({A}) = ()~ n({ADIAI™ L foeay.- (3.11)

Let A be a random variable with law p. We claim that p is given by (12.2)) with ¢ = {(u)). To
check this, we calculate, for A € Pgy 4:

) > PliA = A] = (u) > P[A=i""A] = (u) > p({i A}

1EA €A iEA (312)
=Y u{it A A’_ll{oeflA} = p({ADIAITY " Lieay = ({4},
1€EA €A
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where we have used the homogeneity of u. Since

H({AY) = () ST PIA = A] = (u) m(A)P[A = A
€A (313)
where m(A):=[{i € A:iA = A}| (A € Phin, +),
the law of A is uniquely determined by . |

Remark It is easy to see that the constant m(A) defined in (3.13)) satisfies m(A) < |A| and
that {i € A : iA = A} is a finite subgroup of A. If every element of A is of infinite order (as
is the case, for example, for A = Z%), then m(A) = 1 for all finite A C A.

We finish the section on locally finite measures with the still outstanding:

Proof of Lemma We will apply the mass transport principle, compare the proof of
Lemma below. Let u,r be homogeneous, locally finite measures on Py and assume that
o is concentrated on Php 1. For A € Ps, and B € P such that AN B # (), let us define a
probability distribution M4 g on A x A by

Map(i,j) == |Al " 1eay [ AN Bl e anny, (3.14)
and let f: A x A — [0, 00] be defined by
£6.3) = [0(@a) [V(aB)1anm s Ma sl ). (315)
Since p and v are homogeneous, we observe that f(ki, kj) = f(i,7) (4,7, k € A). Moreover,

S 10,5) = / u(dA) / v(dB) um#@}@l{m — / H(dA) hu<A>|A}|1{oeA} = (R,
J

(3.16)
while

3160 = Juad) [vaB) sy g oeanm = v (317)

Formula now follows from the fact that Y, f(,0) = >, f(0,i7!) = >_; f(0,7). Note
that this holds regardless of whether h,u is locally finite or not. If [ u(dA)|A[lpeca; < o0,
then by the shift-invariance and subadditivity of h,, we see that h,(A) < h,({0})|A] and
hence [ p(dA)h,(A)l{pcay < 0o, proving that hypu is locally finite. i

3.2 Infinite starting measures

In this section we prove Lemma on contact process duality for homogeneous, infinite
starting measures. We also give the proof of Lemma which is concerned with relative
compactness and cluster points of eigenmeasures for (A, a, §)-contact processes with varying 9.

Proof of Lemma [1.2|Fix ¢ > 0 and for A, B € P, consider the events

t Bt

Eap = {]17 "N B| < oo} and Exp={lAnn 7" < oo} (3.18)

We observe that uP; R v (resp. p R Z/PtT) is concentrated on Pgy 4 if and only if P(€45) =1
(resp. P(&) p) = 1) for a.e. A wrt. pand ae. B wrt. v. Set Ag := AN n;rB’t and A; =
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nt %N B. Since nt %5 A; and nZAt’t D Ap, we see that the events £4 p and 51’473 are a.s.

equal, and hence uP; R v is concentrated on Pgy,, 4 if and only if p ® VPtT is.

We will now prove by applying the “mass transport principle”. For a given graphical
representation w and sets A, B € P, such that the events £4 g and 5;1’ p hold, we define a
probability distribution M4 g, on A x A by

MA,B,w(ia.j) = ’Aoy_ll{iEAo}|At‘_11{j€At}' (319)
We define a function f: A x A — [0, c0] by
£6.9) = [n(@a) [v@aB) [P 1s, p0) Manalisi) (3.20)

Obviously, f(ki,kj) = f(i,7) (i,7,k € A) due to the homogeneity of 1 and v. Moreover,

Z £(5,0) = / (dA) / V(dB)E[In 0 Bl g aop ]

(3.21)
= [ upda) [ VABA' OBl Lgennn) = (uPr @ ).
The same argument shows that 3 f(0,7) = {(u R l/PtT» and hence

(uP; A v Zf i,0) Zf ={(pur VPT» (3.22)
where the middle step is a simple example of what is more generally known as the mass
transport principle, see [Hagll]. |

Proof of Lemma [2.13] By the homogeneity and normalization of the v, one has
/ Va(dA) L (anp20y <D / Vn(dA)1geay = |BI. (3.23)

i€B

Since this estimate is uniform in n, applying [Swa09, Lemma 3.2] we find that the (v)n>0
are relatively compact in the topology of vague convergence. By going to a subsequence
if necessary, we may assume that the v, converge vaguely to a limit v. Since the v, are
eigenmeasures, denoting the (A, a, §,,)-contact process started in A by (77;S ”’A)tz()? we have

/ vn (dAP[P € Alp, =M (E20). (3.24)

Since A, — A, the right-hand side of this equation converges vaguely to eMv. To prove vague
convergence of the left-hand side, by Lemma it suffices to prove that for B € Py,

/un(dA) A0 B £ 0] / (AP N B £ 0. (3.25)
We estimate
‘ / V(AP N B # 0] — / V(dA)P[ N B # (/)]\
/yn (A4) [Pl 0 B # 0] — Bl 0 B # 0] (3.26)
+ ] / V(AP N B # 0] — / V(dA)PPA N B # @]]. (3.27)
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The term in (3.27)) tends to zero as n — oo by Lemmas and By duality, we can rewrite
the term in (3.26]) as

/un(dA)‘IP[AﬂntT‘s"’B #0] — BlAN o™ £ 0] (3.28)

We couple the graphical representations for processes with different recovery rates in the
natural way, by constructing a Poisson point process Q" on A x Ry x R, with intensity one,
and letting wj := {(4,¢) : 30 < r < 6 s.t. (4,¢,7) € Q'} be the set of recovery symbols for the
process with recovery rate §. Then, letting 77;t 0B denote the process with zero recovery rate,

the quantity in (3.28) can be estimated from above by

/vn(dA)P[A N %P £0, nf°mP £l
= /P[WEO’B e dC, nf " # 4" /Vn(dA)l{AﬂC7£®} (3.29)

0,B 6n,B 8,B 0,B
< /P[ni e dC, o’ £ 9*P]|C| = E[In] LgygomByiomy ],

where we have used (3.23)). Since the right-hand side of (3.29) tends to zero by dominated
convergence, this proves the lemma. |

3.3 Exponential moments

Recall the function e, (A) = > ;4 7409 from , which measures how ‘spread out’ a set
A € Pgy is in terms of exponential weights and a suitably slowly growing metric d as in .
In this section, we provide the proof of Lemma showing that such a metric exists. We
then give the proof of Lemma which states that the expectation of the function e, of a
contact process has a well defined exponential growth rate, with certain bounds.

Proof of Lemma We can find finite {0} = Ay C Ay C -+ such that }7;c5\ 4, a(0,7) <
\a]e*(”*l). Making the sets A, for n > 2 larger if necessary, we can moreover choose these
sets such that they are symmetric, ie., {i ! :7 € A,} = A, and such that A, := Un>1 An
generates A. (In particular, we can always choose Ay, = A, but for nearest-neighbor processes
on graphs this leads to a somewhat unnatural metric d, which is why we only assume here

that Ay, generates A.) We set Ag := () and define

n (Z S An\An—la n > 1)

o) = { s (i € A\Aw). (3.30)

Since a(0,7) = 0 for i ¢ Ay, whe have that

D a(0,i)@)T=> 0" Y a(0,i) < a] Y nYe ™ < oo (3.31)

ieA n>1  i€AR\An_1 n>1

for each 0 < v < oco. Set

d'(i,j) = d'(0,i7'j) = log(@(i"'f))  (ij €. (3.32)
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Then d’ satisfies properties (2.37)) (i)—(iii), d'(¢,4) = 0 if and only if ¢ = j, and d'(i, j) = d'(j, 1)
(by the symmetry of the sets A,). Since d’ need not yet be a metric, we define

d(i,j): mf{Zd (lg—1,1k) :n > 1, ey in €A, ig =1, in:j}, (3.33)
k=1

i.e., d(i,7) is a graph-style distance between i and j, defined as the shortest path from i to j
where an edge from 451 to i has length d'(ix_1,ir). Note that d(i,j) < oo for each i,j € A
since Ao, generates A and d(i,j) > 0 for each i # j since d'(i,j) > log(2) for each i # j.
It is now straightforward to check that d is a metric on A and that d(i,j) = d(ki, kj) for all
i,j,k € A. Since d(i,5) < d'(4,j), the metric d also enjoys property (iii). Property
(2.37) (ii), finally, follows from the fact that

(i€ A:d0,)) <M} C {j1-jn:1<n<Mlog(2), d0,j,) <MVk=1,...,n}, (3.34)

where we use that d'(i,j) > log(2) for all ¢ # j, and we observe that if d(0,7) < M (i # 0),

then there must be some n > 1 and 0 = ig, ... %, = ¢ with Y ,_, d'(ig—1,ix) < M. Setting

g = z,;_llzk we see that ¢ must be of the form i = j; - - - j, with >, d'(0, jx) < M. |
As a preparation for Lemma [2.16] we need one more result.

Lemma 3.4 (Existence of exponential moments) Let (1{');>0 be a (A, a,§)-contact pro-
cess started in a finite initial state 77(]4 = A € Pgy and let d be a metric on A as in Lemma .
Then
E[ev(nf‘)] <efle (A) (t>0) where K,:= Za(O,z’)eVd(O’i). (3.35)
1EA
Proof For v = 0 this follows from [Swa09, Prop. 2.1]. To prove the statement for v > 0, let
G be the generator of the (A, a, §)-contact process as defined in ([1.2)). Then

Ge,(A ZZ a(i, j) e”d ) (526 7d(0,%)

oLy A (3.36)
< Z Z a(i, ) d0D+d6.5) — K- e (A),
i€A jEA

where we have used that .\ a(i, §)edii) = > jenal(0,i” 17)erd(0,i715) = K, (ieA).
Set 7y := inf{t > 0 : e,(n') > N}. Since the stopped process is a Markov process with
finite state space, it follows by standard arguments from (3.36) that
E[ey(mipry)] < €'es(A) (820, N> 1), (3.37)
which in turn implies that P[ev(nf}\w) > N] — 0 as N — oo and hence 7y — o0 a.s.
Therefore, letting N — oo in (3.37)), we arrive at (3.35)). |

Proof of Lemma Note that ro(A, a,d) = r(A, a,d) is the exponential growth rate from
(1.10). The statement for v = 0 has been proved in [Swa09, Lemma 1.1 and formula (3.5)]. To

prove the general statement, set 7} := E[ev( {0 })] Formula 1' will follow from standard
facts [Ligd9, Thm B.22] if we show that ¢ — logm, is subadditive. Recalling the graphical
representation of the (A, a, d)-contact process, we observe that indeed

i = ) PI0,0) = (i s + )]0

i . . 3.38
< STR((0,0) w (j,5) (i, + £)] A0 HGD) = 717y (3:38)
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which implies the subadditivity of ¢ — log 7} and hence formula (2.39). Since e,(A) < e/(A)
for all v </, it is clear that v +— 7 is nondecreasing. The fact that —0 < ry has been proved
in [Swa09, Lemma 1.1] while the estimate r, < K, is immediate from Lemma

To prove that the function [0,00) 3 v — 7 defined in Lemma is right-continuous, we
observe that it follows from that for any ¢, T oo,

. : 1 {0}
Ty = nlggo 1%2211 o log E ey (n;,”)]. (3.39)

By dominated convergence and the finiteness of exponential moments (Lemma [3.4) we have

that for each fixed ¢ > 0, the function v — 1log E[ew(ni{o})] is continuous. Therefore, being
the decreasing limit of continuous functions, v + 7, must be upper semi-continuous. Since
7 + 1 is nondecreasing, this is equivalent to continuity from the right. |

3.4 Covariance estimates

The next lemma gives a uniform estimate on expectations of the functions e,(A) defined in
1) under the measures 1{06.}%[;,\. Lemma and Lemma [2.17] which were stated and
used in Sections [2.2] and [2.6] respectively, follow as corollaries to this lemma. Their proofs are
given at the end of this section.

Although this is not exactly how the proof goes, the following heuristic is perhaps useful
for understanding the main strategy. Since Campbell measures change second moments into
first moments, what we need to control are expectations of the form E[e, (77;{0})2], which leads
us to consider events of the form

(0,0) ~ (i,t) and (0,0) ~ (j,1). (3.40)

Since in the subcritical regime, long connections are unlikely, the largest contribution to the
probability of such an event comes from events of the form

0.0) = (k) { 700 (3.11)

where s € [0,t] is close to t and k € A. Indeed, if the exponential growth rate r = (A, a,0) is
negative, then the probability of an event of the form is of the order e"* (er(t_s))2, which
much smaller than the probability that (0,0) ~~ (i,t), unless ¢t — s is of order one. In view of
this, if we find an infection at some late time ¢, then all other infected sites are likely to be

close to it. Although this reasoning is only heuristic, it turns out that the covariance formula
(3.45)) below provides a convenient way of making such arguments precise.

Lemma 3.5 (Uniform exponential moment bound) Let iy and 7\ be defined as in

7(@ and for v > 0, let ey be the function defined in in terms of a metric d
satisfying . Then, for any (A, a,d)-contact process with exponential growth rate r =

r(A, a,d),

. 1 [ o
limsup / fixn(dA) L geayey(A) < (|a] +9) / edtE[e,(nf D)% (3.42)
r 0
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We note that although the bound in (3.42]) holds regardless of the values of v and r = r(A, a, ),
the right-hand side will usually be infinite, unless » < 0 and ~ is small enough (see the proofs
of Lemma and Proposition [2.18]).

Proof Fix v > 0 and, to ease notation, set ¢ (i, j) := (i) (i,j,k € A). We observe that
A o )\t .
/M)\(dA)l{OGA}e’Y(A) = /0 e 'dt ZE[1{06775”}1&677;,{”}%(0’])]
17-]

- /0 €D B[ g gy ()] (3.43)
i\

- /0 eMat 3 (i, )Pl € 0™, j e n™).
1,7

Set fZ(A) = 1{i6A}' Then

{0}

Pli e 0™, jen®™ =E[LmD]E[f 0] + Cov (£, £;mi). (3.44)

By a standard covariance formula (see [Swa(09, Prop. 2.2]), for any functions f, g of polynomial
growth (as in (2.11)) below), one has

Cov(f(nf™), g(n"h)) = 2 /0 E[N(PS P ®)]ds (¢ > 0), (3.45)

where (P;);>0 denotes the semigroup of the (A, a, §)-contact process and I'(f, g) = 1(G(fg) —
fGg — gGf), with G as in (1.2). A little calculation (see [Swa09, formula (4.6)]) shows that

2F(Psfa Psg)(A) = Z Z a(k, l) (Psf(A U {l}) - Psf(A)) (Psg(A U {l}) - Psg(A))
keAlgA (346)
+0) (Pf(A\{K}) = Pof(4)) (Pog(A\{K}) — Pog(A)).
keA
Applying to the functions f = f;, g = f;, using the fact that, by the graphical repre-
sentation,

|Psfi(AU{1}) — Pofi(A)| = |P[i € VW) — P[i € n2]| < P[i € i, (3.47)
we find that
2|0(Psfi, P f)(A Z > alk,)Pli € niMP[j € ] + 6> Pli € P[5 € ni],
€A lZA keA
(3.48)

which by implies that
[Cov (£in™), £5n)]|

t
< /0 a(k,DP[k € n%, 1 ¢ n{ 0] P[i € niB]P[j € niP]ds

—|—6/ ZPkEn{O} zEng{k}]P[JGU{k}}d

(3.49)
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Inserting this into (3.44]), we obtain for the quantity in (3.43)) the estimate
o0
_ Nl 0
/ e Mt Y (i, )P € ™, j e ni™]
0 —

2y
< /0 eMdt > 4y (i, )PLi € P[5 € nf®"]

1,J

+/0 e_’\tdt/ ds Z Py (i, 4)a [k‘ € 77;{0} l ¢ n{o}] [z € nil}] [j € n{l}]
0,9,k,1
+5/ )‘tdt/ ds Zwvzy k:En{ }}]P’[Z’€77§k}]ﬁb[j€7]{k}}
0 4,5,k
(3.50)

Here

S w0, 5)P[k € 02| P[i € nFP[j € niM]

1,5,k
- Z¢~/ Yk~ j [k € 77{ }} [kili € nio}]ﬂj’[lﬁflj € Uio}]

(3.51)
(ZP [k e 0% )(Z% i, /)Pi € ni™]P[j € 77{0}])
=E !n{O}\ Z% (i, )P[i € n{?]P[j € n{®]
and similarly
> (i dalk, 0Pk € L 1 ¢ ni® P € nlV]B[j € nf]
,5,k,l
< > (17, alk, DP[E € Y P17Y € @R[ € %]
o o) (3.52)
= (X atk,0p[k e n) )(Z% i, j)P[i € n{]P[j € n{"])
k,l

= |a| B[l ] wa (.3)2[i € iR € nf0]
Inserting this into and recalling that this is an estimate for the quantity in yields
[ i@ ene, ()
< [ e Sl € ol Pl € 0]
0.
+ (la| + 6) /Ooo e)‘tdt/ dsE[|n{ ] Z% (i, 5)P[i € niP[j € ni®]

= (14 (lal +9) /OOO e—Atth[nEO}\])(/o et Y (i )L € ™l € ™).
2

(3.53)
where in the last step we have changed the integration order on the set {(s,t) : 0 < s < t}.
Using the fact that (i, ) = e74(i:3) where d is a metric, we may further estimate the sum in
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the second factor on the right-hand side of (3.53) as

S w0, 5)Pli € {7 € 5{?] = 3 UDP[i € M P[j € 0]
1, 1,
< N e dOD+dONPl; ¢ n{e[j e n*

(3.54)
Z?]
= (Sl )5 3 o)
) iEn;{O}
Inserting this into (3.53]) and recalling the definition of 7y in (2.6]) yields
. . < 2
[ i@, (4) < (14 (lal + 017 /0 MAUE[e, (] (3.55)
We note that setting v = 0 in (2.39) shows that
et <E[n] (>0, (3.56)
and therefore -
lim#y =lim [ e MAE[n”] = co. 3.57
= i | ) (3.57)
Using this and (3.55)), we arrive at (3.42)). n
As a direct applications we obtain:
Proof of Lemma [2.6] This is special case of Lemma where v = 0. i

Proof of Lemma This is very similar to the proof of Lemma For § € (¢, 00), let

(nf’{o})tzo and U5 be as in Lemma Let Ay be finite sets such that 0 € Ay, C A and Ap T A.
It is again easy to check that A — fJ(A) := ey (AN Ag)lgoecay is a continuous, compactly
supported real function on P;. Therefore, since (by Proposition the %ﬂAn converge

vaguely to 9,

/ 53(dA)f(A) = lim 1 / i (AA)1(A) < Timinf —— [ iy, (dA)es (A)L0eny

n—oo T n—oo Ty,
<, 5, 2
< (\a|+5)/0 e tth[ev(nt {0})] .

Letting k£ T oo such that f,Z T eW(A)l{Oe Ay we arrive at 1} by the monotone convergence
theorem. B

3.5 The Doob transformed process

In this section we provide the proofs of Lemmas and We start with Lemma[2.9]
We need to check that the Doob transformed contact process introduced in and
is a well defined non-explosive process. We will moreover show that the laws of the (A, a, d)-
contact process 77t and the Doob transformed (A, a, §)-contact process €4, started in the same
initial state A € Pgy, 4, are related by

P[(&Mo<s<t € dw] = e P[(n)o<s<t € dw] (t >0). (3.58)



Proof of Lemma Instead of showing that the rates in define a non-explosive
Markov process, we will argue in the opposite direction. We will first construct a non-explosive
Markov process with semigroup as in and then apply general theory to conclude that
this is the same as the one that we would have obtained by starting off with the rates in .

Thus, for the moment, we define P'(A, B) by (instead of ), and start by
observing that this is well-defined since h(A) > 0 for all A € Pgy, 1. By duality and the
fact that u' is an eigenmeasure, we see that

Ph(A) = 37 AAB) [ W@ snosm = [n@CRHNC £ 0]
Bepﬁn,+
= [Wiacrpans® £ 0] = [W@B) 1y = Mh(A) (A€ P)
(3.59)
It follows that

> PMAB = E_At@Pt(AvB):

h(A)
Bepﬁn,+ BE'Pﬁn,+

h A e M ph(A) =1 (3.60)

for all A € Pay, 4, ie., P" is a probability kernel. It is now straightforward to check that for
each A € Pqn 4+, the right-hand side of consistently defines a probability law on the
space of cadlag paths w : [0,00) — Pgn 4+ and that this is the law of a Markov process with
semigroup (P/')¢>0 and initial state A.

General theory (see Theorem in Appendix now tells us that both (P;);>¢ and
(P10 are uniquely defined in terms of jump rates r(A, B) and r7"(A, B), which satisfy

r(A,B) = § P(A,B and r"(A,B)=%P/A,B)|,_, (A#B). (3.61)

M=o

In particular, for each A, B € Pgy,, 4 with A # B, by (2.16),

r"(A,B) = &P/ (A, B)|,_, -
— %(e‘”h(A)_lPt(A,B)h(B))\tzo = h(A) (A, B)h(B), (3.62)

which shows that the jump rates of the process with semigroup (P/*);>0 are given by (2.14).0

In the next proof we relate eigenmeasures of the contact process to invariant measures of the
Doob transformed contact process.

Proof of Lemma Recall that h = h,+ as in . Since p! is homogeneous and locally
finite and p satisfies | u(dA)[A|1jpeay < oo by assumption, it follows by Lemmathat hu
is a locally finite measure on P, .
The measure p is an eigenmeasure of the (A, a, d)-contact process with eigenvalue r if and
only if
S° W{ADPAAB) = 'u({BY) (20, B € Py ), (3.63)
A€Pgn, 4

which by (2.16]) and the fact that h(A) > 0 for A € Pqy 4 is equivalent to

S W{ADRAPIAB) = h(B)Ju({BY)  (t20, BEPa ),  (364)
AEPgn, +
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i.e., hu is an invariant law of the h-transformed (A, a,d)-contact process. |

Finally, we can use this to show that the transformed process modulo shifts is positively recur-
rent with a unique invariant law that is related to the previously considered eigenmeasures.

Proof of Lemma By Lemma for any ¢ > 0, the measure

pi=cy Plits €] (3.65)

€A

is an invariant law for the h-transformed (A, a, d)-contact process. It is intuitively clear that
this implies that IP’[EOO € -] is an invariant law for the h-transformed (A, a, d)-contact process
modulo shifts, but for completeness, we prove this formally.

We can without loss of generality assume that ¢ = 1. The transition probabilities of the
h-transformed (A, a, §)-contact process modulo shifts are given by

PMA,By=m(B)' Y PMAiB)  (t>0, A,B € P 1), (3.66)
iEA

where m(B) is defined as in - Let R be a subset of Pg, 4 that contalns exactly one
representative of each equivalence class A € Pﬁn +. Then we have by (3 that

> Pléw=AIP(AB) = ) Pléx = AP(A,B)

AePan, + AER
= Z p({A})m(B)" ) Pl(A,iB)
AeR _1 B zg_/} o (3.67)
= m(B) Zm(A) Zu({l A} P (i A, B)
AeR ieA
=m(B)™" Y u({A)P!A,B)=m(B)"'u({B}) = Pléx = B,
A€Pan, +

which shows that P[4 € -] is an invariant law for the h-transformed (A, a, §)-contact process
modulo shifts.

Since the h-transformed (A, a, d)-contact process modulo shifts has an invariant law, pos-
itive recurrence and the other statements of the proposition will follow once we prove irre-
ducibility. It follows from and the fact that h(A) > 0 for all A # () that P(A,B) >0
if and only if P;(A,B) > 0 (A, B € Phy,+). Our assumption that r < 0 entails that § > 0.
Therefore, since it may happen that all sites except one recover, for each finite set A and i € A
we have P/'(A,{i}) > 0. On the other hand, by (1.3)), for each finite set A there exists an
i € A such that all sites in A can be infected from i, hence P}*({i}, A) > 0. This proves the
irreducibility of the h-transformed (A, a, d)-contact process modulo shifts. |

A Exponential decay in the subcritical regime

A.1 Statement of the result

The aim of this appendix is to show how the arguments in [AJ07], which are written down
for contact processes on transitive graphs, can be extended to prove Theorem |§| (d) for the
class of (A, a,d)-contact processes considered in this article. To formulate this properly, only
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in this appendix, we will consider a class of contact processes that is more general than both
the one defined in Section and the one considered in [AJO7], and contains them both as
subclasses. Indeed, only in this appendix, will we drop the assumptions that A has a group
structure (as in the rest of this article) or that A has a graph structure (as in [AJ07]). The
only structure on A that we will use is the structure given by the infection rates (a(i, j))i jea-

Let A be any countable set and let a : A x A — [0,00) be a function. By definition,
an automorphism of (A,a) is a bijection g : A — A such that a(gi,gj) = a(i,j) for each
i,7 € A. Let Aut(A,a) denote the group of automorphisms of (A, a). We say that a subgroup
G C Aut(A, a) is (vertex) transitive if for each i,j € A there exists a g € G such that gi = j.
In particular, we say that (A, a) is transitive if Aut(A,a) is transitive.

Let (A, a) be transitive, let af(i, j) := a(j, 1), and assume that

la| := Za(i,j) <oo and |af]:= ZaT(i,j) < 00, (A.1)

JEA JEA

where by the transitivity of (A, a), these definitions do not depend on the choice of i € A.
Then, for each 6 > 0, there exists a well-defined contact process on A with generator as in
and also the dual contact process with a replaced by al is well-defined. Only in this
appendiz, we will use the term (A, a,d)-contact process (resp. (A,al,d)-contact process) in
this more general sense.

For any (A, a, §)-contact process, as defined in this appendix, we define the critical recovery
rate d; = dc(A,a) as in , which satisfies §. < oo but may be zero in the generality con-
sidered here. A straightforward extension of [Swa09, Lemma 1.1] shows that the exponential
growth rate r = r(A,a,d) in is well-defined for the class of (A, a,d)-contact processes
considered here.

We will show that the arguments in [AJ07] imply the following result.

Theorem A.1 (Exponential decay in the subcritical regime) Let (A, a) be transitive

and let a satisfy (A.1). Then {6 >0:r(A,a,8) <0} = (c,00).

We remark that Theorem [0] (a) does not hold in general for the class of (A,a,d)-contact
processes considered in this appendix. This is related to unimodularity. A transitive subgroup
G C Aut(A,a) is unimodular if [BLPS99, formula (3.3)]

H{gi:g€G, gi=jH=WHgj:9€G, gi=i} (4,7 € A). (A.2)

Note that this is trivially satisfied if A is a group and G = A acts on itself by left multiplication,
in which case the sets on both sides of the equation consist of a single element. Unimodularity
gives rise to the mass transport principle which says that for any function f: A x A — [0, 00)
such that f(gi,g7) = f(i,5) (9 € G, i,5 € A), one has Zj fli,5) = Zj f(4,4). In particular,
this implies that the constants |a| and |af| from are equal and that r(A, a,§) = r(A, af, 8).
In the nonunimodular case, this is in general no longer true and in fact it is not hard to
construct examples where the critical recovery rates d.(A,a) and 6.(A, a') of a contact process
and its dual are different. We remark that although in [AJO7], the authors do not always
clearly distinguish between a contact process and its dual (e.g., in their formulas (1.3), (1.9)
and Lemma 1.4), they do not assume that a = a! and their results are valid also in the
asymmetric case a # al.
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A.2 The key differential inequalities and their consequences

The main method used in [AJ07], that in its essence goes back to [AB87] and that yields
Theorem and a number of related results, is the derivation of differential inequalities for
certain quantities related to the process. Using the graphical representation to construct a
(A, a,d)-contact process and its dual, we define the susceptibility as

¥ =x(Aa,6) =E| /0 Tl ai), (A3)

which may be 4+00. Moreover, letting w® be a Poisson point process on A x R with intensity
h > 0, independent of the Poisson point processes w' and w" corresponding to infection arrows
and recovery symbols, we define

0=0(A,a,d,h):= IP’[C(()’O) Nw®# 0] where Cliys) = {(G,t):t>s, (i,8) ~ (4, 1)}. (A4)

Then 6 can be interpreted as the density of infected sites in the upper invariant law of a (dual)
“(A,al, 8, h)-contact process”, which in addition to the dynamics in (1.2)) exhibits spontaneous
infection of healthy sites with rate h, corresponding to a term in the generator of the form

h 2 F(AU{i}) — f(A)}

Let A,a,6 be fixed and for \;h > 0 let § = 6(\, h) := 6(A, Xa,d,h) and x = x(A) :=
X(A, Aa, 0) be the quantities defined above. The analysis in [AJO7] centers on the deriviation
of the following three differential inequalities (see [AJOT, formulas (1.17), (1.19) and (1.20)])

(1) gxx<lalx’
(i) Z0<l|al0 90, (A.5)
(i)  O<hZ0+ (2)%|ald + hA) 50 + 62
These differential inequalities, and their proofs, generalize without a change to the more
general class of (A, a,d)-contact processes discussed in this appendix.
Since § > h(1 4 h), which follows by estimating the (A, \af,d, h)-contact process from

below by a process with no infections, one has h < 0(1 — 6). Inserting this into (A.5]) (iii)
yields

A
0<hi0+ <2>\2|a] + m)ea@%ew? (A.6)

Abstract results of Aizenman and Barsky [AB87, Lemmas 4.1 and 5.1] allow one to draw the

following conclusions from (A.5)) (ii) and (A.6).

Lemma A.2 (Estimates on critical exponents) Assume that there exists some X' > 0
such that O(XN',0) = 0 and limj, o h~10(N,h) = co. Then there exist c1,c2 > 0 such that
(i) 6N, h)>c hl/? (h>0),

(A7)
(i) O\ 0)>ca(A—X) (A= N).

Note that this lemma (in particular, formula (A.7) (i), which depends on the assumption
that limy_oh '0(N,h) = oo) implies in particular that if for some fixed N > 0, one has
O(N,h) ~ h® as h — 0, then either a < § or o > 1.

Remark Lemmas 4.1 and 5.1 of [AB87] are also cited in [AJO7, Thm. 4.1], but there the
statement that c1,co > 0 is erroneously replaced by the (empty) statement that ¢, co < oco.
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Proof of Theorem (sketch) Set

Ae:=inf{A >0:60()\,0) > 0},

_ (A.8)
A :=inf{\ > 0: x(\) = oo}.

Since x(A) < oo implies (A, 0) = 0, obviously A, < A.. Our first aim is to show that they are
in fact equal. We note that it is always true that A, > 0. It may happen that A, = oo but in
this case also A\¢ = oo so without loss of generality we may assume that A, < oo.

It follows from (i) and approximation of infinite systems by finite systems (compare
[AN84] Lemma 3.1], which is written down for unoriented percolation and which is cited in
[AJ07, formula (1.18)]) that limy;x, x(A) = x(A.) = 0o, and in fact

ja| !
PPN

x(\) > (A< N). (A.9)

Now either 6(\.,0) > 0, in which case we are done, or #(\.,0) = 0. In the latter case, since

X(A) = lim RO R (A< ), (A.10)

(see [AJOT, formula (1.11)]), using the monotonicity of # in A and h, it follows from (A.9) that

lim h1O(N., h) = 0o (A.11)
and therefore Lemma [A.2]implies that holds at X' = \.. In particular, (ii) implies
that 6(\,0) > 0 for A > \., hence A, = ..

Since by a trivial rescaling of time, questions about critical values for A can always be
translated into questions about critical values for §, we learn from this that for any (A, a,d)-
contact process, one has y (A, a,d) < oo if § > dc(A, a), where the latter critical point is defined
in (L.8). It follows from that x(A,a,d) = oo if 7(§) = r(A,a,d) > 0, hence we must
have 7(8§) < 0 for 6 € (d.,00). Part (b) of Theorem [0] is easily generalized to the class of
(A, a,d)-contact processes considered in this appendix. Moreover, it is not hard to prove that
r < 0 implies that the process does not survive. This shows that r(4) > 0 on [0,d.) while
d — r(6) is continuous, which allows us to conclude that {0 > 0 : r(d) < 0} = (d.,00) if
dc > 0. If 5. = 0 (which may happen for the general class of models considered here), then we
may use the fact that 6(A,a,0) = 1 to conclude that r(A,a,0) > 0, hence the conclusion of
Theorem [A ] is also valid in this case. |

B A basic result about continuous-time Markov chains

In this appendix we prove a basic result about continuous-time Markov chains that we need
in the construction of the Doob transformed process and for which we did no find an exact
reference.

Let S be a countable set. By definition, a transition kernelon S is a collection of probability
kernels (P;);>o on S such that PsP, = Peiy (s,t > 0) and limyjo Py(z,2) = Py(z,z) =1
(x € S). By definition, a Markov process with semigroup (P;);>0 is an S-valued stochastic
process X = (X)¢>0 such that

P[th+1 =X ‘(th,. . .,th)] = ‘Pthrl—tn(th?x) a.s. (Z S S, 0 <t <o < tn+1). (Bl)
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We say that X has cadlag sample paths if for each w in the underlying probability space, the
function ¢t — X;(w) is cadlag (i.e., right-continuous with left limits).

By definition, a Q-matriz is a collection of real numbers {q(z,y) : =,y € S} such that
q(z,y) >0 for x # y and

—q(z,x) = Z q(z,y) < o0 (x €89). (B.2)
Y y#x

For any QQ-matrix, it can be shown (see [Ligl0, Thm 2.26] or [Nor97, Thm 2.8.3]) that the
family of differential equations

SP(x,y) =Y qlz,a)P(z',y)  (t=0, 3,y €S) (B.3)
z'eS

with Po(w,y) = 1—y) (7,3 € S) has a unique minimal nonnegative solution. We say that
this solution is stochastic if 3 ¢ Pi(z,y) =1 for allz € S and t > 0.

Theorem B.1 (Continuous-time Markov chains) Let S be a countable set and let Q) be a
Q-matriz on S. Assume that the minimal nonnegative solution (Py)t>o of is stochastic.
Then (P;)t>0 is a transition kernel on S and for each z € S, there exists a unique (in distribu-
tion) Markov process X* = (X7 )i>0 with initial state X§ = z, semigroup (P;)t>0, and cadlag
sample paths. Conversely, if for a given transition kernel (P;)i>0 on S and for each z € S,
there exists a Markov process X* = (X7 )i>0 with initial state X§ = z, semigroup (P;)i>0,
and cadlag sample paths, then there exists a Q-matriz on S such that (P;)i>o is the unique
minimal nonnegative solution of .

Proof The first part of the theorem, that says that the stochasticity of the minimal solution
of implies the existence of an associated Markov process with cadlag sample paths, can
be found in, for example, [Ligl0, Thm 2.37] or [Nor97, Thm 2.8.4]. It is well-known that the
second, converse part of the theorem is false without the assumption of cadlag sample paths;
see any book on the topic for counterexamples.

To see that the statement is true under the assumption of cadlag sample paths, fix z € S,
write X = X* and define inductively stopping times by oy = o5 = 0 and

o ::inf{t > Op—1 1 Xy 7é Xo'k—l}

op:=inf{el > o0j_; : X # Xo: , 1 €N} (e >0) B4
k- = Ofp_1 - A¢gl Oh_1’ .

Let K. := sup{k > 0 : 0, < oo}. Then, for each ¢ > 0, we may define a Markov chain

Y® = (Y )r>0 by setting Y7 := Xoe for k < K. and Yy = X"f(e for £ > K.. Conditional on

Y*, the times (o — of_;) with 1 < k < K. are independent and geometrically distributed.

By the fact that X has cadlag sample paths, oy — o a.s. and Y7 — Y}, a.s. as € | 0 for each

k > 0, where the process Y = (Y})r>0 is defined analogously to Y with o}, replaced by oy.
By [Ligl0, Thm 2.14 (a)], for each x € S, the limit

Q(z) = laiﬁ)la*l(l — P.(z,2)) (B.5)

exists in [0, co]. In particular, since

P*[0f = ek] = P-(2,2)" 1 (1 = Pe(2,2)) (k> 1), (B.6)



we see that either of the following three possibilities holds: 1. Q(z) = oo and ¢ — o1 =0
as e — 0, 2. 0 < Q(2) < oo and o7 is exponentially distributed with parameter Q(z), or 3.
Q(z) = 0 and 01 = co. By the fact that X has cadlag sample paths, X7 — z a.s. as ¢t | 0 which
implies 01 > 0 a.s., so we can exclude the first possibility. Since z is arbitrary, we conclude
that Q(x) < oo for all x € S. Now by [Ligl0, Thm 2.14 (b)] we have for each z,y € S with
x # y the existence of the limit

q(z,y) = laig)le_lPE(x,y) with Z q(z,y) < Q(x) (x €9). (B.7)
Yy yF£T

If Q(z) > 0, then we observe that Yy is distributed according to the law

PA[Yf =y] = (1 - Pu2,2) 'Pelz,y)  (yES, y#2). (B.8)

Since Y7 — Y7 as € — 0, we conclude by and that Y] is distributed according to
the probability law Q(z)1q(z, ). In particular, this shows that > yyzz 4(2,y) = Q(z). Since
z is arbitrary, the same holds with z replaced by an arbitrary z € S. It is now not hard to
check that Y is a Markov chain that jumps from a state x with Q(z) > 0 to a state y with
probability Q(z) 1q(z,y), and that conditional on Y, the times (o} — 0;_1) are independent
and exponentially distributed with parameter Q(Yx—1). By [Nor97, Thm 2.8.4], we conclude
that (P;);>0 is the unique minimal nonnegative solution of . |
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