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Abstract

We consider contact processes on the hierarchical group, where sites infect other sites with a rate depending on
their hierarchical distance, and sites become healthy with a fixed recovery rate. If the infection rates decay too fast
as a function of the hierarchical distance, then we show that the critical recovery rate is zero. On the other hand,
we derive sufficient conditions saying how fast the infection rates can decay while the critical recovery rate is still
positive. Our proofs are based on a coupling argument that compares contact processes on the hierarchical group
with contact processes on a renormalized lattice. For technical simplicity, our main argument is carried out only
for the hierarhical group with freedom two.

The hierarchical group

By definition, the hierarchical group with freedom N is the set

ΩN :=
{
i = (i0, i1, . . .) : ik ∈ {0, . . . , N − 1},

ik 6= 0 for finitely many k
}
,

equipped with componentwise addition modulo N . Think of sites i ∈ ΩN
as the leaves of an infinite tree. Then i0, i1, i2, . . . are the labels of the
branches on the unique path from i to the root of the tree.
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The hierarchical distance

Set
|i| := inf{k ≥ 0 : im = 0 ∀m ≥ k} (i ∈ ΩN ).

Then |i−j| is the hierarchical distance between two elements i, j ∈ ΩN .
In the tree picture, |i− j| measures how high we must go up the tree to
find the last common ancestor of i and j.
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Contact processes on ΩN

Fix a recovery rate δ ≥ 0 and infection rates αk ≥ 0 such that∑∞
k=1αk < ∞. The contact process on ΩN with these rates is the

{0, 1}ΩN -valued Markov process (Xt)t≥0 with the following description.
If Xt(i) = 0 (resp. Xt(i) = 1), then we say that the site i ∈ ΩN is
healthy (resp. infected) at time t ≥ 0. An infected site i infects a healthy
site j at hierarchical distance k := |i− j| with rate αkN

−k, and infected
sites become healthy with rate δ ≥ 0.

0 0 0 00 000 101 10 10 0 0 0 0 0 0 01 1 1 01

Infection rates on the hierarchical group.
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The critical recovery rate

We say that a contact process (Xt)t≥0 on ΩN with given recovery and
infection rates survives if there is a positive probability that the process
started with only one infected site never recovers completely, i.e., there
are infected sites at any t ≥ 0. For given infection rates, we let

δc := sup
{
δ ≥ 0 : the contact process with infection rates

(αk)k≥1 and recovery rate δ survives
}

denote the critical recovery rate. A simple monotone coupling argument
shows that X survives for δ < δc and dies out for δ > δc. It is not hard
to show that δc <∞. The question whether δc > 0 is more subtle.

Theorem [AS08] Assume that αk = e−θk (k ≥ 1).
Then:
(a) If θ > N , then δc = 0.
(b) If N is a power of two and 1 < θ < N , then δc > 0.

More generally, we show that δc = 0 if

lim inf
k→∞

N−k log(βk) = −∞, where βk :=

∞∑
n=k

αn (k ≥ 1), (1)

while δc > 0 if N is a power of two and

∞∑
k=m

N−k log(αk) > −∞, (2)

for some m ≥ 1.

Extinction

The proof of part (a) of the theorem is rather simple. Let

ΩnN :=
{
i = (i0, . . . , in−1) : ik ∈ {0, . . . , N − 1}} (3)

be a finite part of ΩN , called n-block, corresponding to the leaves of

a finite tree of depth n. Let (X
(n)
t )t≥0 be a finite contact process on

ΩnN with recovery rate δ ≥ 0 and infection rates α1, . . . , αn. Rescaling

time if necessary, we may assume that
∑
k αk ≤ 1. Then X(n) may be

stochastically bounded from above by a process X̃(n) where sites jump
independently of each other from 0 to 1 with rate 1 and from 1 to 0 with
rate δ. Obviously, the process X̃(n) has a unique equilibrium law, which

is of product form, and if X̃
(n)
∞ denotes a random variable distributed

according to this law, then

P[X̃
(n)
∞ = 0] =

( δ

1 + δ

)Nn

,

where 0 denotes the all healthy state. On the other hand, since the
Markov process X̃(n) stays on average a time (Nn)−1 in the state 0
every time it gets there, one has

P[X̃
(n)
∞ = 0] =

N−n

l̃(n) + N−n
=

1

1 + Nnl̃(n)
,

where

l̃(n) := Eδ0
[

inf{t ≥ 0 : X̃
(n)
t = 0}]

denotes the expected time till extinction for the process X̃(n), started
with one infected site. Denoting the analogue quantity for X(n) by l(n),
we obtain the estimate

l(n) ≤ l̃(n) = N−n
(
(1 + δ−1)N

n − 1
) ≤ N−n(1 + δ−1)N

n
.

Using this, one can show that if (1) holds, then for any δ > 0 there exists
an n ≥ 1 such that n-blocks get extinct faster than they get infected,
hence the process dies out.

Coupling and renormalization

The proof of part (b) of the theorem is more complicated. We derive
explicit upper bounds on the probability that finite systems get extinct
before a fixed time t. These bounds are derived inductively, by comparing
large systems with smaller systems, via a renormalization-type argument.
For simplicity, the calculations are carried out only for N = 2.

A probability kernel

Define Ωn2 as in (3) and let Sn := {0, 1}Ωn
2 be the set of spin configura-

tions on Ωn2 . Let ξ ∈ (0, 1
2] be a constant, to be determined later. We

define a probability kernel P from Sn to Sn−1 whose aim is to ‘renor-
malize’ our system, i.e., to replace a finite contact process Xt, which is
a Markov process with state space Sn, by a ‘renormalized’ process which
takes values in the smaller space Sn−1. To that aim, we independently
replace 1-blocks, consisting of two spins each, by a single ‘renormalized’
spin, according to the stochastic rules:

00 −→ 0, 11 −→ 1,

and 01 or 10 −→
{

0 with probability ξ,
1 with probability 1− ξ,

In a picture, this looks like this:
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The probability of this transition is 1 · (1− ξ) · ξ · 1.

A coupling

Let (Xt)t≥0 be a finite contact process on Ωn2 with recovery rate δ ≥ 0
and infection rates α1, . . . , αn. Using a result of Rogers and Pitman
[RP81] (see also [Kur98]), we can couple (Xt)t≥0 to an Sn−1-valued pro-

cess (Ỹt)t≥0, in such a way that

P
[
Ỹt = y

∣∣Xt] = P (Xt, y) a.s. (t ≥ 0, y ∈ Sn−1),

where P is the probability kernel from Sn to Sn−1 defined above and

ξ := γ −
√
γ2 − 1

2 with γ :=
1

4

(
3 +

α1

2δ

)
.

Ideally, we would like (Ỹt)t≥0 to be a contact process itself, but we do not
know how to achieve this. We have the following proposition, however,
which is sufficient for our purposes:

Proposition The process (Ỹt)t≥0 can be coupled to a finite con-

tact process (Yt)t≥0 on Ωn−1
2 with recovery rate δ′ := 2ξδ and

infection rates α′1, . . . , α′n−1 given by α′k := 1
2αk+1, in such a way

that Ỹt ≥ Yt for all t ≥ 0.

We may view the map (δ, α1, . . . , αn) 7→ (δ′, α′1, . . . , α′n−1) as a renor-
malization transformation. By iterating this map n times, we get a se-
quence of recovery rates δ, δ′, δ′′, . . ., the last of which gives a upper bound
on the spectral gap of the finite contact process X on Ωn2 . Under the con-
dition (2), we can show that this spectral gap tends to zero as n → ∞,
and in fact, we can derive explicit lower bounds on the probability that
finite systems survive till some fixed time t.
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