Exam Quantum Probability

June 25, 2008

Exercise 1 (Commuting projections) Let \mathcal{H} be a finite-dimensional inner product space over \mathbb{C} and let $P_{1}, P_{2} \in \mathcal{L}(\mathcal{H})$ be projection operators. Show that $P_{1} P_{2}$ is a projection operator if and only if P_{1} commutes with P_{2}.

Exercise 2 (Contraction of tensors) Let \mathcal{V} be a finite-dimensional linear space over $\mathbb{K}=\mathbb{R}$ or \mathbb{C} and let \mathcal{V}^{\prime} be its dual space, i.e., \mathcal{V}^{\prime} is the space of all linear forms $l: \mathcal{V} \rightarrow \mathbb{K}$. Let $\{e(1), \ldots, e(n)\}$ be a basis for \mathcal{V} and let $\{f(1), \ldots, f(n)\}$ be the associated dual basis of \mathcal{V}^{\prime}, i.e., the $f(i)$'s are the linear forms defined by $f(i)(e(j))=\delta_{i j}$. Consider the tensor product space $\mathcal{V} \otimes \mathcal{V} \otimes \mathcal{V}^{\prime}$. A basis for this space is formed by all vectors of the form $e(i) \otimes e(j) \otimes f(k)$, hence each vector $A \in \mathcal{V} \otimes \mathcal{V} \otimes \mathcal{V}^{\prime}$ can uniquely be written in terms of this basis as

$$
A=\sum_{i j k} A^{i j}{ }_{k} e(i) \otimes e(j) \otimes f(k),
$$

where $A_{k}^{i j} \in \mathbb{K}$ are the coordinates of the tensor A. Likewise, each vector $\phi \in \mathcal{V}$ can uniquely be written as

$$
\phi=\sum_{i} \phi_{i} e(i)
$$

where ϕ_{i} are the coordinates of ϕ. Obviously, the coordinates of A and ϕ depend on the choice of the basis $\{e(1), \ldots, e(n)\}$ (which then uniquely determines its dual basis $\{f(1), \ldots, f(n)\})$. Show that for each $A \in \mathcal{V} \otimes \mathcal{V} \otimes \mathcal{V}^{\prime}$ there exists a $\phi \in \mathcal{V}$ such that one has

$$
\phi_{i}=\sum_{j} A^{i j}{ }_{j},
$$

and this formula holds for any choice of the basis $\{e(1), \ldots, e(n)\}$. (Hints Consider first the case that A has the form $A=\psi \otimes \chi \otimes l$ where $\psi, \chi \in \mathcal{V}$ and $l \in \mathcal{V}^{\prime}$. In this case, can you express the coordinates of A in terms of the coordinates of ψ, χ, and l ? Still in this special case, if you define $\phi_{i}:=\sum_{j} A^{i j}{ }_{j}$ and $\phi:=\sum_{i} \phi_{i} e(i)$, then can you give a nice expression for ϕ ? Now how do you generalize to the case when A is not of the form $A=\psi \otimes \chi \otimes l ?)$

Exercise 3 (Measurement) Let \mathcal{A}, \mathcal{B} be Q -algebras and assume that both \mathcal{A} and \mathcal{B} are factor algebras. Let $H \in \mathcal{A} \otimes \mathcal{B}$ be a hermitian operator. For each state ρ on $\mathcal{A} \otimes \mathcal{B}$ and $t \geq 0$, define

$$
S_{t} \rho(A):=\rho\left(e^{-i t H} A e^{i t H}\right) \quad(A \in \mathcal{A} \otimes \mathcal{B})
$$

(a) Show that $S_{t} \rho$ is a state on $\mathcal{A} \otimes \mathcal{B}$. We interpret $S_{t} \rho$ as the state ρ evolved during a time interval of length t.
(b) Show that $S_{t} S_{t} \rho=S_{s+t} \rho$.
(c) Let σ be a fixed state on \mathcal{B}, and, for each state ρ on \mathcal{A} and $t \geq 0$, define

$$
T_{t} \rho(A):=S_{t}(\rho \otimes \sigma)(A \otimes 1) \quad(A \in \mathcal{A})
$$

Show that there exist $V_{t}(1), \ldots, V_{t}(n) \in \mathcal{A}$ such that $\sum_{m=1}^{n} V_{t}(m) V_{t}(m)^{*}=1$ and

$$
T_{t} \rho(A)=\sum_{m=1}^{n} \rho\left(V_{t}(m) A V_{t}(m)^{*}\right) \quad(A \in \mathcal{A})
$$

We may interpret \mathcal{A} as our physical system of interest, \mathcal{B} as our measuring equipment, and T_{t} as the effect of performing a measurement on the system \mathcal{A}.
(d) Is it true that $T_{s} T_{t} \rho=T_{s+t} \rho$?

