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Exercise 1 (A normal operator) Let A be a normal operator defined on some finite
dimensional complex inner product space H. Assume that A2 − A = 2I, where I
denotes the identity operator. Show that there exists a projection operator P such that
A = 3P − I.

Exercise 2 (Representation of factor algebras) Let A be a Q-algebra that is more-
over a factor algebra. Let H be a representation of A. Show that there exists an irre-
ducible representation H1 of A and a finite dimensional complex inner product space
H2 such that H ∼= H1 ⊗H2 and

A(φ1 ⊗ φ2) = (Aφ1)⊗ φ2 (φ1 ∈ H1, φ2 ∈ H2).

Exercise 3 (Measurement destroys entanglement) Let A1 = L(H1) and A2 =
L(H2) be Q-algebras that are moreover factor algebras. Let {e(1), . . . , e(n)} be an
orthonormal basis for H1 and set Pk := |e(k)〉〈e(k)| (k = 1, . . . , n). Let ρ be any state
on A1 ⊗A2. Let ρ′ be the state of our joint system A1 ⊗A2 after we perform the ideal
measurement {P1, . . . , Pn} on the system A1. Show that ρ′ is not entangled.



Solutions

Excercise 1
Since A is normal, we can find an orthonormal basis {e(1), . . . , e(n)} of H such that

A =
n∑
k=1

λk|e(k)〉〈e(k)|.

Now A2 − A = 2I is equivalent to

n∑
k=1

(λ2
k − λk)|e(k)〉〈e(k)| = 2

n∑
k=1

|e(k)〉〈e(k)|,

which means that the eigenvalues λk must satisfy λ2
k − λk − 2 = 0 for each k, which is

equivalent to (λk − 2)(λk + 1) = 0 for each k, hence λk ∈ {−1, 2} for each k. Set

P :=
∑

k:λk=2

|e(k)〉〈e(k)|.

Then P is a projection operator and A = 3P − I.

Excercise 2
By Lemma 4.6.1 in the Lecture Notes, all irreducible representations of A are equivalent,
hence by Theorem 4.6.2 in the Lecture Notes, every representation H of A is of the form

(∗) H ∼= H1 ⊕ · · · ⊕ H1︸ ︷︷ ︸
m times

,

where H1 is the up to equivalence unique irreducible representation of A.
We need to show that H ∼= H1⊗H2 for some complex inner product space H2. We note
that dim(H) = nm so we choose dim(H2) = m. We make H1⊗H2 into a representation
of A by defining

A(φ1 ⊗ φ2) := (Aφ1)⊗ φ2 (φ1 ∈ H1, φ2 ∈ H2).

Applying Theorem 4.6.2 in the Lecture Notes again, we find that

H1 ⊗H2
∼= H1 ⊕ · · · ⊕ H1︸ ︷︷ ︸

m′ times

,

where we must have m = m′ since dim(H1 ⊗H2) = nm.
For those who do not like this argument, we note that if {f(1), . . . , f(m)} is an orthonor-
mal basis for H2, then the orthonormal subspaces H(1), . . . ,H(n) ⊂ H1 ⊗H2 defined by

H(k) := span{e(i)⊗ f(k) : i = 1, . . . , n}
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correspond to the decomposition of H in (∗).

Excercise 3
One has

(∗) ρ′(A) =
n∑
k=1

ρ
(
(Pk ⊗ 1)A(Pk ⊗ 1)

)
=

n∑
k=1

ρ(Pk ⊗ 1)ρ
(
A
∣∣ (Pk ⊗ 1)

)
(A ∈ A1 ⊗A2),

where we write ρ(A|P ) := ρ(PAP )/ρ(P ) to denote a state ρ conditioned on an ob-
servation P . Since (∗) expresses ρ′ as a convex combination of the conditioned states
ρ
(
·
∣∣ (Pk⊗1)

)
(with ρ(Pk⊗1) 6= 0), it suffices to show that the latter are not entangled.

We observe that

ρ
(
A1 ⊗ A2

∣∣ (Pk ⊗ 1)
)

= ρ
(
(Pk ⊗ 1)(A1 ⊗ A2)(Pk ⊗ 1)

)
/ρ(Pk ⊗ 1)

= ρ
(
PkA1Pk ⊗ A2

)
/ρ(Pk ⊗ 1) (A1 ∈ A1, A2 ∈ A2).

Since Pk is a minimal projection, by Lemma 5.1.5 in the Lecture Notes, this expression
is equal to

ρ
(
ρPk

(A1)Pk ⊗ A2

)
/ρ(Pk ⊗ 1) = ρPk

(A1)
ρ
(
Pk ⊗ A2

)
ρ(Pk ⊗ 1)

,

where ρPk
denotes the pure state on A1 associated with Pk. Defining a state ρ(k) on A2

by

ρ(k)(A2) :=
ρ
(
Pk ⊗ A2

)
ρ(Pk ⊗ 1)

(A2 ∈ A2),

we see that

ρ
(
A1 ⊗ A2

∣∣ (Pk ⊗ 1)
)

= ρPk
(A1) · ρ(k)(A2) (A1 ∈ A1, A2 ∈ A2).

This shows that the conditioned state ρ
(
· |(Pk⊗ 1)

)
is a product state, hence the state

ρ′ is not entangled.
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