Exam Quantum Probability
September 18, 2008

Exercise 1 (A normal operator) Let A be a normal operator defined on some finite
dimensional complex inner product space H. Assume that A2 — A = 21, where [
denotes the identity operator. Show that there exists a projection operator P such that
A=3P—1.

Exercise 2 (Representation of factor algebras) Let A be a Q-algebra that is more-
over a factor algebra. Let H be a representation of A. Show that there exists an irre-
ducible representation H; of A and a finite dimensional complex inner product space
‘Hs such that 'H = 'H; ® Hy and

A(P1 ® o) = (Ag1) ® b2 (¢1 € Hi, @2 € Ha).

Exercise 3 (Measurement destroys entanglement) Let 4; = L(H;) and A, =
L(H3) be Q-algebras that are moreover factor algebras. Let {e(1),...,e(n)} be an
orthonormal basis for H; and set Py := |e(k))(e(k)| (k =1,...,n). Let p be any state
on A; ® As. Let p’ be the state of our joint system A; ® As after we perform the ideal
measurement { Py, ..., P,} on the system A;. Show that p’ is not entangled.



Solutions

Excercise 1
Since A is normal, we can find an orthonormal basis {e(1),...,e(n)} of H such that

A=Y Mle(k)){e(k)]-

Now A% — A = 21 is equivalent to

n n

D = Ale(R){e(k) =2 le(k)){e(k)],

k=1 k=1

which means that the eigenvalues A must satisfy A2 — A\, — 2 = 0 for each k, which is
equivalent to (A — 2)(Ag + 1) = 0 for each k, hence A, € {—1,2} for each k. Set

Pi= Y le(k)(e(k)].
k: Ap=2
Then P is a projection operator and A =3P — I.

Excercise 2
By Lemma 4.6.1 in the Lecture Notes, all irreducible representations of A are equivalent,
hence by Theorem 4.6.2 in the Lecture Notes, every representation H of A is of the form

(x) HEH, - ®Hy,
—_——
m times

where H; is the up to equivalence unique irreducible representation of A.

We need to show that H = 'H; ® H, for some complex inner product space Hsy. We note
that dim(H) = nm so we choose dim(H;) = m. We make H; ® H, into a representation
of A by defining

A(p1 @ ¢2) 1= (A1) ® ¢ (1 € Hi, @2 € Ho).

Applying Theorem 4.6.2 in the Lecture Notes again, we find that
Hi®@Hs = Hi D -+ D Hy,
—_——
m’ times

where we must have m = m’ since dim(H; ® Hs) = nm.
For those who do not like this argument, we note that if { f(1),..., f(m)} is an orthonor-
mal basis for H,, then the orthonormal subspaces HV, ..., H™ C H; ® H, defined by

H® = span{e(i) ® f(k):i=1,...,n}



correspond to the decomposition of H in (x).

Excercise 3
One has

(x) P(A)=> p((P®@1)AP 1))

p(Pe@)p(A] (Pe®1)  (Ae A ®A),

Bl 5
Il 3 3
— —

where we write p(A|P) := p(PAP)/p(P) to denote a state p conditioned on an ob-
servation P. Since (x) expresses p’ as a convex combination of the conditioned states
p(- | (Pe®1)) (with p(Py®1) # 0), it suffices to show that the latter are not entangled.
We observe that

p(A1 @ Ay [ (P @ 1)) = p((Pe @ 1)(A1 ® A2)(Pr @ 1)) /p(Py ® 1)
= p(PkAlpk ® Ag)/p(Pk ® 1) (Al € Al, Ag € ./42)

Since Py is a minimal projection, by Lemma 5.1.5 in the Lecture Notes, this expression
is equal to

p(Pr ® Ay)

p(Pe®1) "
where pp, denotes the pure state on A; associated with P;. Defining a state p*) on A,
by

p(pp (A1) P ® As) /p(Py @ 1) = pp (A1)

p(Pr ® Ag)

)= e

(AQ c Az),
we see that

p(Al ® Ay ‘ (P, ® 1)) = pp, (A1) - p(k)(Az) (A1 e Ay, Ay e Ay).

This shows that the conditioned state p( - [(P, ® 1)) is a product state, hence the state
P’ is not entangled.



