Exam Quantum Probability

September 18, 2008

Exercise 1 (A normal operator) Let A be a normal operator defined on some finite dimensional complex inner product space \mathcal{H} . Assume that $A^2 - A = 2I$, where I denotes the identity operator. Show that there exists a projection operator P such that A = 3P - I.

Exercise 2 (Representation of factor algebras) Let \mathcal{A} be a Q-algebra that is moreover a factor algebra. Let \mathcal{H} be a representation of \mathcal{A} . Show that there exists an irreducible representation \mathcal{H}_1 of \mathcal{A} and a finite dimensional complex inner product space \mathcal{H}_2 such that $\mathcal{H} \cong \mathcal{H}_1 \otimes \mathcal{H}_2$ and

$$A(\phi_1 \otimes \phi_2) = (A\phi_1) \otimes \phi_2 \qquad (\phi_1 \in \mathcal{H}_1, \ \phi_2 \in \mathcal{H}_2).$$

Exercise 3 (Measurement destroys entanglement) Let $\mathcal{A}_1 = \mathcal{L}(\mathcal{H}_1)$ and $\mathcal{A}_2 = \mathcal{L}(\mathcal{H}_2)$ be Q-algebras that are moreover factor algebras. Let $\{e(1), \ldots, e(n)\}$ be an orthonormal basis for \mathcal{H}_1 and set $P_k := |e(k)\rangle\langle e(k)|$ $(k = 1, \ldots, n)$. Let ρ be any state on $\mathcal{A}_1 \otimes \mathcal{A}_2$. Let ρ' be the state of our joint system $\mathcal{A}_1 \otimes \mathcal{A}_2$ after we perform the ideal measurement $\{P_1, \ldots, P_n\}$ on the system \mathcal{A}_1 . Show that ρ' is not entangled.

Solutions

Excercise 1

Since A is normal, we can find an orthonormal basis $\{e(1), \ldots, e(n)\}$ of \mathcal{H} such that

$$A = \sum_{k=1}^{n} \lambda_k |e(k)\rangle \langle e(k)|.$$

Now $A^2 - A = 2I$ is equivalent to

$$\sum_{k=1}^{n} (\lambda_k^2 - \lambda_k) |e(k)\rangle \langle e(k)| = 2 \sum_{k=1}^{n} |e(k)\rangle \langle e(k)|,$$

which means that the eigenvalues λ_k must satisfy $\lambda_k^2 - \lambda_k - 2 = 0$ for each k, which is equivalent to $(\lambda_k - 2)(\lambda_k + 1) = 0$ for each k, hence $\lambda_k \in \{-1, 2\}$ for each k. Set

$$P := \sum_{k:\,\lambda_k=2} |e(k)\rangle \langle e(k)|.$$

Then P is a projection operator and A = 3P - I.

Excercise 2

By Lemma 4.6.1 in the Lecture Notes, all irreducible representations of \mathcal{A} are equivalent, hence by Theorem 4.6.2 in the Lecture Notes, every representation \mathcal{H} of \mathcal{A} is of the form

(*)
$$\mathcal{H} \cong \underbrace{\mathcal{H}_1 \oplus \cdots \oplus \mathcal{H}_1}_{m \text{ times}},$$

where \mathcal{H}_1 is the up to equivalence unique irreducible representation of \mathcal{A} . We need to show that $\mathcal{H} \cong \mathcal{H}_1 \otimes \mathcal{H}_2$ for some complex inner product space \mathcal{H}_2 . We note that $\dim(\mathcal{H}) = nm$ so we choose $\dim(\mathcal{H}_2) = m$. We make $\mathcal{H}_1 \otimes \mathcal{H}_2$ into a representation of \mathcal{A} by defining

$$A(\phi_1 \otimes \phi_2) := (A\phi_1) \otimes \phi_2 \qquad (\phi_1 \in \mathcal{H}_1, \ \phi_2 \in \mathcal{H}_2).$$

Applying Theorem 4.6.2 in the Lecture Notes again, we find that

$$\mathcal{H}_1 \otimes \mathcal{H}_2 \cong \underbrace{\mathcal{H}_1 \oplus \cdots \oplus \mathcal{H}_1}_{m' \text{ times}},$$

where we must have m = m' since $\dim(\mathcal{H}_1 \otimes \mathcal{H}_2) = nm$. For those who do not like this argument, we note that if $\{f(1), \ldots, f(m)\}$ is an orthonormal basis for \mathcal{H}_2 , then the orthonormal subspaces $\mathcal{H}^{(1)}, \ldots, \mathcal{H}^{(n)} \subset \mathcal{H}_1 \otimes \mathcal{H}_2$ defined by

$$\mathcal{H}^{(k)} := \operatorname{span}\{e(i) \otimes f(k) : i = 1, \dots, n\}$$

correspond to the decomposition of \mathcal{H} in (*).

Excercise 3

One has

$$(*) \quad \rho'(A) = \sum_{\substack{k=1 \\ n}}^{n} \rho((P_k \otimes 1)A(P_k \otimes 1))$$
$$= \sum_{\substack{k=1 \\ k=1}}^{n} \rho(P_k \otimes 1)\rho(A \mid (P_k \otimes 1)) \qquad (A \in \mathcal{A}_1 \otimes \mathcal{A}_2),$$

where we write $\rho(A|P) := \rho(PAP)/\rho(P)$ to denote a state ρ conditioned on an observation P. Since (*) expresses ρ' as a convex combination of the conditioned states $\rho(\cdot | (P_k \otimes 1))$ (with $\rho(P_k \otimes 1) \neq 0$), it suffices to show that the latter are not entangled. We observe that

$$\rho(A_1 \otimes A_2 \mid (P_k \otimes 1)) = \rho((P_k \otimes 1)(A_1 \otimes A_2)(P_k \otimes 1)) / \rho(P_k \otimes 1)$$
$$= \rho(P_k A_1 P_k \otimes A_2) / \rho(P_k \otimes 1) \qquad (A_1 \in \mathcal{A}_1, \ A_2 \in \mathcal{A}_2).$$

Since P_k is a minimal projection, by Lemma 5.1.5 in the Lecture Notes, this expression is equal to

$$\rho(\rho_{P_k}(A_1)P_k\otimes A_2)/\rho(P_k\otimes 1)=\rho_{P_k}(A_1)\frac{\rho(P_k\otimes A_2)}{\rho(P_k\otimes 1)},$$

where ρ_{P_k} denotes the pure state on \mathcal{A}_1 associated with P_k . Defining a state $\rho^{(k)}$ on \mathcal{A}_2 by

$$\rho^{(k)}(A_2) := \frac{\rho(P_k \otimes A_2)}{\rho(P_k \otimes 1)} \qquad (A_2 \in \mathcal{A}_2),$$

we see that

$$\rho(A_1 \otimes A_2 \mid (P_k \otimes 1)) = \rho_{P_k}(A_1) \cdot \rho^{(k)}(A_2) \qquad (A_1 \in \mathcal{A}_1, \ A_2 \in \mathcal{A}_2).$$

This shows that the conditioned state $\rho(\cdot | (P_k \otimes 1))$ is a product state, hence the state ρ' is not entangled.