Exam Quantum Probability

September 18, 2008

Exercise 1 (A normal operator) Let A be a normal operator defined on some finite dimensional complex inner product space \mathcal{H}. Assume that $A^{2}-A=2 I$, where I denotes the identity operator. Show that there exists a projection operator P such that $A=3 P-I$.

Exercise 2 (Representation of factor algebras) Let \mathcal{A} be a Q-algebra that is moreover a factor algebra. Let \mathcal{H} be a representation of \mathcal{A}. Show that there exists an irreducible representation \mathcal{H}_{1} of \mathcal{A} and a finite dimensional complex inner product space \mathcal{H}_{2} such that $\mathcal{H} \cong \mathcal{H}_{1} \otimes \mathcal{H}_{2}$ and

$$
A\left(\phi_{1} \otimes \phi_{2}\right)=\left(A \phi_{1}\right) \otimes \phi_{2} \quad\left(\phi_{1} \in \mathcal{H}_{1}, \phi_{2} \in \mathcal{H}_{2}\right)
$$

Exercise 3 (Measurement destroys entanglement) Let $\mathcal{A}_{1}=\mathcal{L}\left(\mathcal{H}_{1}\right)$ and $\mathcal{A}_{2}=$ $\mathcal{L}\left(\mathcal{H}_{2}\right)$ be Q -algebras that are moreover factor algebras. Let $\{e(1), \ldots, e(n)\}$ be an orthonormal basis for \mathcal{H}_{1} and set $P_{k}:=|e(k)\rangle\langle e(k)|(k=1, \ldots, n)$. Let ρ be any state on $\mathcal{A}_{1} \otimes \mathcal{A}_{2}$. Let ρ^{\prime} be the state of our joint system $\mathcal{A}_{1} \otimes \mathcal{A}_{2}$ after we perform the ideal measurement $\left\{P_{1}, \ldots, P_{n}\right\}$ on the system \mathcal{A}_{1}. Show that ρ^{\prime} is not entangled.

Solutions

Excercise 1

Since A is normal, we can find an orthonormal basis $\{e(1), \ldots, e(n)\}$ of \mathcal{H} such that

$$
A=\sum_{k=1}^{n} \lambda_{k}|e(k)\rangle\langle e(k)| .
$$

Now $A^{2}-A=2 I$ is equivalent to

$$
\sum_{k=1}^{n}\left(\lambda_{k}^{2}-\lambda_{k}\right)|e(k)\rangle\langle e(k)|=2 \sum_{k=1}^{n}|e(k)\rangle\langle e(k)|,
$$

which means that the eigenvalues λ_{k} must satisfy $\lambda_{k}^{2}-\lambda_{k}-2=0$ for each k, which is equivalent to $\left(\lambda_{k}-2\right)\left(\lambda_{k}+1\right)=0$ for each k, hence $\lambda_{k} \in\{-1,2\}$ for each k. Set

$$
P:=\sum_{k: \lambda_{k}=2}|e(k)\rangle\langle e(k)| .
$$

Then P is a projection operator and $A=3 P-I$.

Excercise 2

By Lemma 4.6 .1 in the Lecture Notes, all irreducible representations of \mathcal{A} are equivalent, hence by Theorem 4.6.2 in the Lecture Notes, every representation \mathcal{H} of \mathcal{A} is of the form

$$
(*) \quad \mathcal{H} \cong \underbrace{\mathcal{H}_{1} \oplus \cdots \oplus \mathcal{H}_{1}}_{m \text { times }},
$$

where \mathcal{H}_{1} is the up to equivalence unique irreducible representation of \mathcal{A}.
We need to show that $\mathcal{H} \cong \mathcal{H}_{1} \otimes \mathcal{H}_{2}$ for some complex inner product space \mathcal{H}_{2}. We note that $\operatorname{dim}(\mathcal{H})=n m$ so we choose $\operatorname{dim}\left(\mathcal{H}_{2}\right)=m$. We make $\mathcal{H}_{1} \otimes \mathcal{H}_{2}$ into a representation of \mathcal{A} by defining

$$
A\left(\phi_{1} \otimes \phi_{2}\right):=\left(A \phi_{1}\right) \otimes \phi_{2} \quad\left(\phi_{1} \in \mathcal{H}_{1}, \phi_{2} \in \mathcal{H}_{2}\right) .
$$

Applying Theorem 4.6.2 in the Lecture Notes again, we find that

$$
\mathcal{H}_{1} \otimes \mathcal{H}_{2} \cong \underbrace{\mathcal{H}_{1} \oplus \cdots \oplus \mathcal{H}_{1}}_{m^{\prime} \text { times }},
$$

where we must have $m=m^{\prime}$ since $\operatorname{dim}\left(\mathcal{H}_{1} \otimes \mathcal{H}_{2}\right)=n m$.
For those who do not like this argument, we note that if $\{f(1), \ldots, f(m)\}$ is an orthonormal basis for \mathcal{H}_{2}, then the orthonormal subspaces $\mathcal{H}^{(1)}, \ldots, \mathcal{H}^{(n)} \subset \mathcal{H}_{1} \otimes \mathcal{H}_{2}$ defined by

$$
\mathcal{H}^{(k)}:=\operatorname{span}\{e(i) \otimes f(k): i=1, \ldots, n\}
$$

correspond to the decomposition of \mathcal{H} in $(*)$.

Excercise 3

One has

$$
\begin{aligned}
(*) \quad \rho^{\prime}(A) & =\sum_{k=1}^{n} \rho\left(\left(P_{k} \otimes 1\right) A\left(P_{k} \otimes 1\right)\right) \\
& =\sum_{k=1}^{n} \rho\left(P_{k} \otimes 1\right) \rho\left(A \mid\left(P_{k} \otimes 1\right)\right) \quad\left(A \in \mathcal{A}_{1} \otimes \mathcal{A}_{2}\right),
\end{aligned}
$$

where we write $\rho(A \mid P):=\rho(P A P) / \rho(P)$ to denote a state ρ conditioned on an observation P. Since (*) expresses ρ^{\prime} as a convex combination of the conditioned states $\rho\left(\cdot \mid\left(P_{k} \otimes 1\right)\right)\left(\right.$ with $\left.\rho\left(P_{k} \otimes 1\right) \neq 0\right)$, it suffices to show that the latter are not entangled. We observe that

$$
\begin{aligned}
& \rho\left(A_{1} \otimes A_{2} \mid\left(P_{k} \otimes 1\right)\right)=\rho\left(\left(P_{k} \otimes 1\right)\left(A_{1} \otimes A_{2}\right)\left(P_{k} \otimes 1\right)\right) / \rho\left(P_{k} \otimes 1\right) \\
& \quad=\rho\left(P_{k} A_{1} P_{k} \otimes A_{2}\right) / \rho\left(P_{k} \otimes 1\right) \quad\left(A_{1} \in \mathcal{A}_{1}, A_{2} \in \mathcal{A}_{2}\right) .
\end{aligned}
$$

Since P_{k} is a minimal projection, by Lemma 5.1.5 in the Lecture Notes, this expression is equal to

$$
\rho\left(\rho_{P_{k}}\left(A_{1}\right) P_{k} \otimes A_{2}\right) / \rho\left(P_{k} \otimes 1\right)=\rho_{P_{k}}\left(A_{1}\right) \frac{\rho\left(P_{k} \otimes A_{2}\right)}{\rho\left(P_{k} \otimes 1\right)}
$$

where $\rho_{P_{k}}$ denotes the pure state on \mathcal{A}_{1} associated with P_{k}. Defining a state $\rho^{(k)}$ on \mathcal{A}_{2} by

$$
\rho^{(k)}\left(A_{2}\right):=\frac{\rho\left(P_{k} \otimes A_{2}\right)}{\rho\left(P_{k} \otimes 1\right)} \quad\left(A_{2} \in \mathcal{A}_{2}\right)
$$

we see that

$$
\rho\left(A_{1} \otimes A_{2} \mid\left(P_{k} \otimes 1\right)\right)=\rho_{P_{k}}\left(A_{1}\right) \cdot \rho^{(k)}\left(A_{2}\right) \quad\left(A_{1} \in \mathcal{A}_{1}, A_{2} \in \mathcal{A}_{2}\right) .
$$

This shows that the conditioned state $\rho\left(\cdot \mid\left(P_{k} \otimes 1\right)\right)$ is a product state, hence the state ρ^{\prime} is not entangled.

