Exam Quantum Probability

October 6, 2008

Exercise 1 (A normal operator) Let A be a normal operator defined on some finite dimensional complex inner product space \mathcal{H}. Let $\operatorname{abs}(z)$ be the function that assigns to each complex number z its absolute value $\operatorname{abs}(z):=|z|$ and let $\operatorname{abs}(A)$ be defined using the functional calculus for normal operators.
(a) Show that there exists a unitary operator U such that $\operatorname{abs}(A)=U A$.
(b) Show that $|\langle\psi| A| \psi\rangle \mid \leq\langle\psi| \operatorname{abs}(A)|\psi\rangle$ for all $\psi \in \mathcal{H}$.
(c) Is it true that $|\langle\psi| A| \psi\rangle \mid=\langle\psi| \operatorname{abs}(A)|\psi\rangle$ for all $\psi \in \mathcal{H}$?

Exercise 2 (Greenberger-Horne-Zeilinger state) Let \mathcal{H} be a 2-dimensional complex inner product space and let $\{e(1), e(2)\}$ be an orthonormal basis for \mathcal{H}. Let X and Y be the operators on \mathcal{H} whose matrices with respect to the basis $\{e(1), e(2)\}$ are given by

$$
X=\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right) \quad \text { and } \quad Y=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right)
$$

(a) Show that X and Y are hermitian operators with spectra $\sigma(X)=\sigma(Y)=\{+1,-1\}$. In view of (a), there exists orthonormal bases $\{f(1), f(2)\}$ and $\{g(1), g(2)\}$ for \mathcal{H} such that

$$
X=|f(1)\rangle\langle f(1)|-|f(2)\rangle\langle f(2)| \quad \text { and } \quad Y=|g(1)\rangle\langle g(1)|-|g(2)\rangle\langle g(2)|
$$

(b) On the product space $\mathcal{H} \otimes \mathcal{H} \otimes \mathcal{H}$, consider the operators $M_{1}:=X \otimes X \otimes X$, $M_{2}:=X \otimes Y \otimes Y, M_{3}:=Y \otimes X \otimes Y$, and $M_{4}:=Y \otimes Y \otimes X$. Show that for each $k=1,2,3,4$, the operator M_{k} is a hermitian operator with spectrum $\sigma\left(M_{k}\right)=\{+1,-1\}$. Let \mathcal{F}_{i} be the eigenspace of M_{i} corresponding to the eigenvalue +1 . Show that

$$
\begin{aligned}
& \mathcal{F}_{1}=\operatorname{span}\{f(1) \otimes f(1) \otimes f(1), f(1) \otimes f(2) \otimes f(2), \\
& f(2)\otimes f(1) \otimes f(2), f(2) \otimes f(2) \otimes f(1)\}, \\
& \mathcal{F}_{2}=\operatorname{span}\{f(1) \otimes g(1) \otimes g(1), f(1) \otimes g(2) \otimes g(2), \\
&f(2) \otimes g(1) \otimes g(2), f(2) \otimes g(2) \otimes g(1)\}, \\
& \mathcal{F}_{3}=\operatorname{span}\{g(1) \otimes f(1) \otimes g(1), g(1) \otimes f(2) \otimes g(2), \\
&g(2) \otimes f(1) \otimes g(2), g(2) \otimes f(2) \otimes g(1)\}, \\
& \mathcal{F}_{4}=\operatorname{span}\{g(1) \otimes g(1) \otimes f(1), g(1) \otimes g(2) \otimes f(2), \\
&g(2) \otimes g(1) \otimes f(2), g(2) \otimes g(2) \otimes f(1)\},
\end{aligned}
$$

(c) Let ψ be the pure state on $\mathcal{H} \otimes \mathcal{H} \otimes \mathcal{H}$ given by

$$
\psi:=\frac{1}{\sqrt{2}}(e(1) \otimes e(1) \otimes e(1)+e(2) \otimes e(2) \otimes e(2)) .
$$

Show that $M_{1} \psi=\psi, M_{2} \psi=-\psi, M_{3} \psi=-\psi$, and $M_{4} \psi=-\psi$.
(d) For $k=1,2,3,4$, let P_{k} denote the orthogonal projection on the eigenspace \mathcal{F}_{k}, and set $Q_{k}:=1-P_{k}$. Show that under the state ψ, the observations P_{1}, Q_{2}, Q_{3}, and Q_{4} each have probability one.
(e) Consider the observables $X_{1}:=X \otimes 1 \otimes 1, X_{2}:=1 \otimes X \otimes 1, X_{3}:=1 \otimes 1 \otimes X$, $Y_{1}:=Y \otimes 1 \otimes 1, Y_{2}:=1 \otimes Y \otimes 1$, and $Y_{3}:=1 \otimes 1 \otimes Y$. Imagine that we prepare our system in the pure state ψ and then measure the values x_{1}, x_{2}, x_{3} of the observables X_{1}, X_{2}, X_{3}. Show that their product $x_{1} x_{2} x_{3}$ is always +1 . Likewise, if we measure the values x_{1}, y_{2}, y_{3} of the observables X_{1}, Y_{2}, Y_{3}, then their product $x_{1} y_{2} y_{3}$ is always -1 ; if we measure the values y_{1}, x_{2}, y_{3} of the observables Y_{1}, X_{2}, Y_{3}, then their product $y_{1} x_{2} y_{3}$ is always -1 ; if we measure the values y_{1}, y_{2}, x_{3} of the observables Y_{1}, Y_{2}, X_{3}, then their product $y_{1} y_{2} x_{3}$ is always -1 .
(f) Let $x_{1}, x_{2}, x_{3}, y_{1}, y_{2}, y_{3} \in\{+1,-1\}$ and assume that $x_{1} y_{2} y_{3}=y_{1} x_{2} y_{3}=y_{1} y_{2} x_{3}=-1$. Show that $x_{1} x_{2} x_{3}=-1$.

Solutions

Excercise 1 (a) Since A is normal, there exists an orthonormal basis $\{e(1), \ldots, e(n)\}$ of \mathcal{H} such that

$$
A=\sum_{i=1}^{n} \lambda_{i}|e(i)\rangle\langle e(i)|,
$$

where $\lambda_{1}, \ldots, \lambda_{n} \in \mathbb{C}$ are the eigenvalues of A. By the definition of the functional calculus,

$$
\operatorname{abs}(A)=\sum_{i=1}^{n}\left|\lambda_{i}\right||e(i)\rangle\langle e(i)| .
$$

Set $\gamma_{i}:=\left|\lambda_{i}\right| \lambda_{i}^{-1}$ if $\lambda_{i} \neq 0$ and $\gamma_{i}:=1$ otherwise, and define a linear operator U by

$$
U:=\sum_{i=1}^{n} \gamma_{i}|e(i)\rangle\langle e(i)| .
$$

Then U is unitary since $\left|\gamma_{i}\right|=1$ for all i , and

$$
\begin{aligned}
& U A=\left(\sum_{i=1}^{n} \gamma_{i}|e(i)\rangle\langle e(i)|\right)\left(\sum_{j=1}^{n} \lambda_{j}|e(j)\rangle\langle e(j)|\right) \\
& \quad=\sum_{i j} \gamma_{i} \lambda_{j}|e(i)\rangle\langle e(i) \mid e(j)\rangle\langle e(j)|=\sum_{i}\left|\lambda_{i}\right||e(i)\rangle\langle e(i)|,
\end{aligned}
$$

where we have used that $\gamma_{i} \lambda_{i}=\left|\lambda_{i}\right|$ and $\langle e(i) \mid e(j)\rangle=\delta_{i j}$.
(b) In coordinates with respect to the basis $\{e(1), \ldots, e(n)\}$, one has

$$
\begin{aligned}
& |\langle\psi| A| \psi\rangle\left.\left|=\left|\sum_{i j} \psi_{i}^{*} A_{i j} \psi_{j}\right|=\left|\sum_{i} \lambda_{i}\right| \psi_{i}\right|^{2}\left|\leq \sum_{i}\right| \lambda_{i}| | \psi_{i}\right|^{2} \\
& \quad=\sum_{i j} \psi_{i}^{*} \operatorname{abs}(A)_{i j} \psi_{j}=\langle\psi| \operatorname{abs}(A)|\psi\rangle .
\end{aligned}
$$

(c) No, this is not true. Take $\operatorname{dim}(\mathcal{H})=2$ and $\psi_{1}=1, \psi_{2}=1, \lambda_{1}=1, \lambda_{2}=-1$. Then

$$
\left.\left.\left|\sum_{i} \lambda_{i}\right| \psi_{i}\right|^{2}\left|=|1-1|=0<2=1+1=\sum_{i}\right| \lambda_{i}| | \psi_{i}\right|^{2} .
$$

Excercise 2 (a) An operator A is hermitian if and only if its coordinates with respect to some (and hence every) orthonormal basis satisfy

$$
\left(A_{j i}\right)^{*}=A_{i j} .
$$

In view of this, we see by inspection that the operators X and Y are hermitian. To find the eigenvalues of X, we must solve

$$
0=\operatorname{det}\left(\begin{array}{cc}
0-\lambda & 1 \\
1 & 0-\lambda
\end{array}\right)=\lambda^{2}-1
$$

which yields the eigenvalues $\lambda=+1,-1$. Likewise, for the operator Y, we solve

$$
0=\operatorname{det}\left(\begin{array}{cc}
0-\lambda & -i \\
i & 0-\lambda
\end{array}\right)=\lambda^{2}-1,
$$

which again yields the eigenvalues $\lambda=+1,-1$. Alternatively, we may observe that $X^{2}=1$, which implies that $\sigma(X) \subset\{+1,-1\}$. Since X is not a multiple of the identity operator, we must have $\sigma(X)=\{+1,-1\}$. The same argument applies to Y.
(b) We have $X f(1)=f(1), X f(2)=-f(2), Y g(1)=g(1)$, and $Y g(2)=-g(2)$. Therefore,

$$
\begin{aligned}
M_{1} f(1) \otimes f(1) \otimes f(1) & =f(1) \otimes f(1) \otimes f(1), \\
M_{1} f(1) \otimes f(2) \otimes f(2) & =f(1) \otimes(-f(2)) \otimes(-f(2)) \\
& =(-1)^{2} f(1) \otimes f(2) \otimes f(2)=f(1) \otimes f(2) \otimes f(2), \\
M_{1} f(2) \otimes f(1) \otimes f(2) & =(-f(2)) \otimes f(1) \otimes(-f(2))=f(2) \otimes f(1) \otimes f(2) \\
M_{1} f(2) \otimes f(2) \otimes f(1) & =(-f(2)) \otimes(-f(2)) \otimes f(1)=f(2) \otimes f(2) \otimes f(1) .
\end{aligned}
$$

On the other hand, we see that

$$
\begin{aligned}
& M_{1} f(2) \otimes f(2) \otimes f(2)=(-f(2)) \otimes(-f(2)) \otimes(-f(2))=-f(2) \otimes f(2) \otimes f(2), \\
& M_{1} f(1) \otimes f(1) \otimes f(2)=f(1) \otimes f(1) \otimes(-f(2))=-f(1) \otimes f(1) \otimes f(2), \\
& M_{1} f(1) \otimes f(2) \otimes f(1)=f(1) \otimes(-f(2)) \otimes f(1)=-f(1) \otimes f(2) \otimes f(1), \\
& M_{1} f(2) \otimes f(1) \otimes f(1)=(-f(2)) \otimes f(1) \otimes f(1)=-f(2) \otimes f(1) \otimes f(1) .
\end{aligned}
$$

It follows that

$$
\begin{aligned}
& \mathcal{F}_{1}:=\operatorname{span}\{f(1) \otimes f(1) \otimes f(1), f(1) \otimes f(2) \otimes f(2), \\
& f(2) \otimes f(1) \otimes f(2), f(2) \otimes f(2) \otimes f(1)\} \\
\text { and } \quad \mathcal{G}_{1} & :=\operatorname{span}\{f(2) \otimes f(2) \otimes f(2), f(1) \otimes f(1) \otimes f(2), \\
& f(1) \otimes f(2) \otimes f(1), f(2) \otimes f(1) \otimes f(1)\}
\end{aligned}
$$

are eigenspaces of M_{1} corresponding to the eigenvalues $+1,-1$, respectively. Since these eigenspaces are orthogomal and their span is \mathcal{H}, it follows that $M_{1}=P_{1}-Q_{1}$, where P_{1} is the orthogonal projection on \mathcal{F}_{1} and Q_{1} is the orthogonal projection on \mathcal{G}_{1}. In particular, this shows that M_{1} is hermitian with spectrum $\sigma\left(M_{1}\right)=\{+1,-1\}$.
The operators M_{2}, M_{3}, M_{4} go in exactly the same way, where we replace $f(1), f(2)$ by $g(1), g(2)$ in the right places. Alternatively, if we only want to prove that M_{k} is hermitian
with spectrum $\sigma\left(M_{k}\right)=\{+1,-1\}$, then it suffices to check that $M_{k}^{*}=M_{k}$ and $M_{k}^{2}=1$, while M_{k} is not a multiple of the identity.
(c) We start by noting that

$$
\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\binom{1}{0}=\binom{0}{1} \quad \text { and } \quad\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\binom{0}{1}=\binom{1}{0}
$$

which means that $X e(1)=e(2)$ and $X e(2)=e(1)$. Similarly

$$
\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right)\binom{1}{0}=\binom{0}{i} \quad \text { and } \quad\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right)\binom{0}{1}=\binom{-i}{0}
$$

which says that $Y e(1)=i e(2)$ and $Y e(2)=-i e(1)$. It follows that

$$
\begin{aligned}
& M_{1} \psi=\frac{1}{\sqrt{2}}((X e(1)) \otimes(X e(1)) \otimes(X e(1))+(X e(2)) \otimes(X e(2)) \otimes(X e(2))) \\
& \quad=\frac{1}{\sqrt{2}}(e(2) \otimes e(2) \otimes e(2)+e(1) \otimes e(1) \otimes e(1))=\psi
\end{aligned}
$$

and

$$
\begin{aligned}
& M_{2} \psi=\frac{1}{\sqrt{2}}((X e(1)) \otimes(Y e(1)) \otimes(Y e(1))+(X e(2)) \otimes(Y e(2)) \otimes(Y e(2))) \\
& \quad=\frac{1}{\sqrt{2}}\left(i^{2} e(2) \otimes e(2) \otimes e(2)+(-i)^{2} e(1) \otimes e(1) \otimes e(1)\right)=-\psi
\end{aligned}
$$

By symmetry between the three subsystems, the operators M_{3} and M_{4} go in exactly the same way as M_{2}.
(d) In (c) we have shown that $\psi \in \mathcal{F}_{1}, \psi \in \mathcal{F}_{2}^{\perp}, \psi \in \mathcal{F}_{3}^{\perp}$, and $\psi \in \mathcal{F}_{4}^{\perp}$. It follows that $\langle\psi| P_{1}|\psi\rangle=1,\langle\psi| Q_{2}|\psi\rangle=1,\langle\psi| Q_{3}|\psi\rangle=1$, and $\langle\psi| Q_{4}|\psi\rangle=1$.
(e) Set $P:=|f(1)\rangle\langle f(1)|, Q:=|f(2)\rangle\langle f(2)|, P^{\prime}:=|g(1)\rangle\langle g(1)|$, and $Q^{\prime}:=|g(2)\rangle\langle g(2)|$. Then, for example, $P \otimes 1 \otimes 1$ corresponds to the observation that the observable X_{1} takes on the value +1 , and $P^{\prime} \otimes Q^{\prime} \otimes Q$ is the joint observation that Y_{1} takes on the value $+1, Y_{2}$ takes on the value -1 , and X_{3} takes on the value -1 , to give another example. A joint ideal measurement of the observables X_{1}, X_{2}, X_{3} corresponds to the partition of the identity

$$
\begin{aligned}
& \{P \otimes P \otimes P, P \otimes Q \otimes Q, Q \otimes P \otimes Q, Q \otimes Q \otimes P \\
& Q \otimes Q \otimes Q, Q \otimes P \otimes P, P \otimes Q \otimes P, P \otimes P \otimes Q\}
\end{aligned}
$$

Of these eight possible observations, the first four yield the product of values $x_{1} x_{2} x_{3}=$ +1 . We observe that

$$
P \otimes P \otimes P+P \otimes Q \otimes Q+Q \otimes P \otimes Q+Q \otimes Q \otimes P=P_{1}
$$

where P_{1} is the orthogonal projection on the space \mathcal{F}_{1} from part (b). We have shown in part (d) that P_{1} has probability one, hence the probabilities of $P \otimes P \otimes P, P \otimes Q \otimes$ $Q, Q \otimes P \otimes Q$, and $Q \otimes Q \otimes P$ sum up to one.

Similarly, a joint ideal measurement of the observables X_{1}, Y_{2}, Y_{3} corresponds to the partition of the identity

$$
\begin{gathered}
\left\{P \otimes P^{\prime} \otimes P^{\prime}, P \otimes Q^{\prime} \otimes Q^{\prime}, Q \otimes P^{\prime} \otimes Q^{\prime}, Q \otimes Q^{\prime} \otimes P^{\prime}\right. \\
\left.Q \otimes Q^{\prime} \otimes Q^{\prime}, Q \otimes P^{\prime} \otimes P^{\prime}, P \otimes Q^{\prime} \otimes P^{\prime}, P \otimes P^{\prime} \otimes Q^{\prime}\right\}
\end{gathered}
$$

Of these eight possible observations, the last four yield the product of values $x_{1} y_{2} y_{3}=$ -1 . We observe that

$$
Q \otimes Q^{\prime} \otimes Q^{\prime}+Q \otimes P^{\prime} \otimes P^{\prime}+P \otimes Q^{\prime} \otimes P^{\prime}+P \otimes P^{\prime} \otimes Q^{\prime}=Q_{2}
$$

where Q_{2} is the orthogonal projection on the space \mathcal{F}_{2}^{\perp}. We have shown in part (d) that Q_{2} has probability one, hence the probabilities of $Q \otimes Q^{\prime} \otimes Q^{\prime}, Q \otimes P^{\prime} \otimes P^{\prime}, P \otimes Q^{\prime} \otimes P^{\prime}$, and $P \otimes P^{\prime} \otimes Q^{\prime}$ sum up to one. The other two cases, which correspond to Q_{3} and Q_{4}, go in the same way.
(f) This follows from the observation that

$$
-1=(-1)^{3}=x_{1} y_{2} y_{3} \cdot y_{1} x_{2} y_{3} \cdot y_{1} y_{2} x_{3}=\left(y_{1}\right)^{2}\left(y_{2}\right)^{2}\left(y_{3}\right)^{2} x_{1} x_{2} x_{3}=x_{1} x_{2} x_{3} .
$$

Some extra calculations The eigenvectors of X are found by solving

$$
\binom{\psi_{1}}{\psi_{2}}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\binom{\psi_{1}}{\psi_{2}}=\binom{\psi_{2}}{\psi_{1}}
$$

and

$$
-\binom{\psi_{1}}{\psi_{2}}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\binom{\psi_{1}}{\psi_{2}}=\binom{\psi_{2}}{\psi_{1}}
$$

which yields the normalized eigenvectors

$$
f(1):=\frac{1}{\sqrt{2}}\binom{1}{1} \quad \text { and } \quad f(2):=\frac{1}{\sqrt{2}}\binom{1}{-1} .
$$

The eigenvectors of Y are found by solving

$$
\binom{\psi_{1}}{\psi_{2}}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right)\binom{\psi_{1}}{\psi_{2}}=\binom{-i \psi_{2}}{i \psi_{1}}
$$

and

$$
-\binom{\psi_{1}}{\psi_{2}}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right)\binom{\psi_{1}}{\psi_{2}}=\binom{-i \psi_{2}}{i \psi_{1}}
$$

which yields the normalized eigenvectors

$$
g(1):=\frac{1}{\sqrt{2}}\binom{1}{i} \quad \text { and } \quad g(2):=\frac{1}{\sqrt{2}}\binom{1}{-i} .
$$

