
Exam Quantum Probability
October 6, 2008

Exercise 1 (A normal operator) Let A be a normal operator defined on some finite
dimensional complex inner product space H. Let abs(z) be the function that assigns to
each complex number z its absolute value abs(z) := |z| and let abs(A) be defined using
the functional calculus for normal operators.

(a) Show that there exists a unitary operator U such that abs(A) = UA.

(b) Show that |〈ψ|A|ψ〉| ≤ 〈ψ|abs(A)|ψ〉 for all ψ ∈ H.

(c) Is it true that |〈ψ|A|ψ〉| = 〈ψ|abs(A)|ψ〉 for all ψ ∈ H?

Exercise 2 (Greenberger-Horne-Zeilinger state) Let H be a 2-dimensional com-
plex inner product space and let {e(1), e(2)} be an orthonormal basis for H. Let X and
Y be the operators on H whose matrices with respect to the basis {e(1), e(2)} are given
by

X =

(
0 1
1 0

)
and Y =

(
0 −i
i 0

)
.

(a) Show that X and Y are hermitian operators with spectra σ(X) = σ(Y ) = {+1,−1}.
In view of (a), there exists orthonormal bases {f(1), f(2)} and {g(1), g(2)} for H such
that

X = |f(1)〉〈f(1)| − |f(2)〉〈f(2)| and Y = |g(1)〉〈g(1)| − |g(2)〉〈g(2)|.

(b) On the product space H ⊗ H ⊗ H, consider the operators M1 := X ⊗ X ⊗ X,
M2 := X ⊗ Y ⊗ Y , M3 := Y ⊗ X ⊗ Y , and M4 := Y ⊗ Y ⊗ X. Show that for each
k = 1, 2, 3, 4, the operator Mk is a hermitian operator with spectrum σ(Mk) = {+1,−1}.
Let Fi be the eigenspace of Mi corresponding to the eigenvalue +1. Show that

F1 = span
{
f(1)⊗ f(1)⊗ f(1) , f(1)⊗ f(2)⊗ f(2),

f(2)⊗ f(1)⊗ f(2) , f(2)⊗ f(2)⊗ f(1)
}
,

F2 = span
{
f(1)⊗ g(1)⊗ g(1) , f(1)⊗ g(2)⊗ g(2),

f(2)⊗ g(1)⊗ g(2) , f(2)⊗ g(2)⊗ g(1)
}
,

F3 = span
{
g(1)⊗ f(1)⊗ g(1) , g(1)⊗ f(2)⊗ g(2),

g(2)⊗ f(1)⊗ g(2) , g(2)⊗ f(2)⊗ g(1)
}
,

F4 = span
{
g(1)⊗ g(1)⊗ f(1) , g(1)⊗ g(2)⊗ f(2),

g(2)⊗ g(1)⊗ f(2) , g(2)⊗ g(2)⊗ f(1)
}
.
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(c) Let ψ be the pure state on H⊗H⊗H given by

ψ := 1√
2

(
e(1)⊗ e(1)⊗ e(1) + e(2)⊗ e(2)⊗ e(2)

)
.

Show that M1ψ = ψ, M2ψ = −ψ, M3ψ = −ψ, and M4ψ = −ψ.

(d) For k = 1, 2, 3, 4, let Pk denote the orthogonal projection on the eigenspace Fk, and
set Qk := 1−Pk. Show that under the state ψ, the observations P1, Q2, Q3, and Q4 each
have probability one.

(e) Consider the observables X1 := X ⊗ 1 ⊗ 1, X2 := 1 ⊗ X ⊗ 1, X3 := 1 ⊗ 1 ⊗ X,
Y1 := Y ⊗ 1 ⊗ 1, Y2 := 1 ⊗ Y ⊗ 1, and Y3 := 1 ⊗ 1 ⊗ Y . Imagine that we prepare our
system in the pure state ψ and then measure the values x1, x2, x3 of the observables
X1, X2, X3. Show that their product x1x2x3 is always +1. Likewise, if we measure the
values x1, y2, y3 of the observables X1, Y2, Y3, then their product x1y2y3 is always −1; if
we measure the values y1, x2, y3 of the observables Y1, X2, Y3, then their product y1x2y3

is always −1; if we measure the values y1, y2, x3 of the observables Y1, Y2, X3, then their
product y1y2x3 is always −1.

(f) Let x1, x2, x3, y1, y2, y3 ∈ {+1,−1} and assume that x1y2y3 = y1x2y3 = y1y2x3 = −1.
Show that x1x2x3 = −1.
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Solutions

Excercise 1 (a) Since A is normal, there exists an orthonormal basis {e(1), . . . , e(n)}
of H such that

A =
n∑

i=1

λi|e(i)〉〈e(i)|,

where λ1, . . . , λn ∈ C are the eigenvalues of A. By the definition of the functional
calculus,

abs(A) =
n∑

i=1

|λi| |e(i)〉〈e(i)|.

Set γi := |λi|λ−1
i if λi 6= 0 and γi := 1 otherwise, and define a linear operator U by

U :=
n∑

i=1

γi|e(i)〉〈e(i)|.

Then U is unitary since |γi| = 1 for all i, and

UA =
( n∑

i=1

γi|e(i)〉〈e(i)|
)( n∑

j=1

λj|e(j)〉〈e(j)|
)

=
∑
ij

γiλj|e(i)〉〈e(i)|e(j)〉〈e(j)| =
∑

i

|λi||e(i)〉〈e(i)|,

where we have used that γiλi = |λi| and 〈e(i)|e(j)〉 = δij.

(b) In coordinates with respect to the basis {e(1), . . . , e(n)}, one has

|〈ψ|A|ψ〉| =
∣∣∑

ij

ψ∗iAijψj

∣∣ =
∣∣∑

i

λi|ψi|2
∣∣ ≤∑

i

|λi| |ψi|2

=
∑
ij

ψ∗i abs(A)ijψj = 〈ψ|abs(A)|ψ〉.

(c) No, this is not true. Take dim(H) = 2 and ψ1 = 1, ψ2 = 1, λ1 = 1, λ2 = −1. Then∣∣∑
i

λi|ψi|2
∣∣ = |1− 1| = 0 < 2 = 1 + 1 =

∑
i

|λi| |ψi|2.

Excercise 2 (a) An operator A is hermitian if and only if its coordinates with respect
to some (and hence every) orthonormal basis satisfy

(Aji)
∗ = Aij.
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In view of this, we see by inspection that the operators X and Y are hermitian. To find
the eigenvalues of X, we must solve

0 = det

(
0− λ 1

1 0− λ

)
= λ2 − 1,

which yields the eigenvalues λ = +1,−1. Likewise, for the operator Y , we solve

0 = det

(
0− λ −i
i 0− λ

)
= λ2 − 1,

which again yields the eigenvalues λ = +1,−1. Alternatively, we may observe that
X2 = 1, which implies that σ(X) ⊂ {+1,−1}. Since X is not a multiple of the identity
operator, we must have σ(X) = {+1,−1}. The same argument applies to Y .

(b) We have Xf(1) = f(1), Xf(2) = −f(2), Y g(1) = g(1), and Y g(2) = −g(2).
Therefore,

M1f(1)⊗ f(1)⊗ f(1) = f(1)⊗ f(1)⊗ f(1),

M1f(1)⊗ f(2)⊗ f(2) = f(1)⊗ (−f(2))⊗ (−f(2))

= (−1)2f(1)⊗ f(2)⊗ f(2) = f(1)⊗ f(2)⊗ f(2),

M1f(2)⊗ f(1)⊗ f(2) = (−f(2))⊗ f(1)⊗ (−f(2)) = f(2)⊗ f(1)⊗ f(2)

M1f(2)⊗ f(2)⊗ f(1) = (−f(2))⊗ (−f(2))⊗ f(1) = f(2)⊗ f(2)⊗ f(1).

On the other hand, we see that

M1f(2)⊗ f(2)⊗ f(2) = (−f(2))⊗ (−f(2))⊗ (−f(2)) = −f(2)⊗ f(2)⊗ f(2),

M1f(1)⊗ f(1)⊗ f(2) = f(1)⊗ f(1)⊗ (−f(2)) = −f(1)⊗ f(1)⊗ f(2),

M1f(1)⊗ f(2)⊗ f(1) = f(1)⊗ (−f(2))⊗ f(1) = −f(1)⊗ f(2)⊗ f(1),

M1f(2)⊗ f(1)⊗ f(1) = (−f(2))⊗ f(1)⊗ f(1) = −f(2)⊗ f(1)⊗ f(1).

It follows that

F1 := span
{
f(1)⊗ f(1)⊗ f(1) , f(1)⊗ f(2)⊗ f(2),

f(2)⊗ f(1)⊗ f(2) , f(2)⊗ f(2)⊗ f(1)
}

and G1 := span
{
f(2)⊗ f(2)⊗ f(2) , f(1)⊗ f(1)⊗ f(2),

f(1)⊗ f(2)⊗ f(1) , f(2)⊗ f(1)⊗ f(1)
}

are eigenspaces of M1 corresponding to the eigenvalues +1,−1, respectively. Since these
eigenspaces are orthogomal and their span is H, it follows that M1 = P1 − Q1, where
P1 is the orthogonal projection on F1 and Q1 is the orthogonal projection on G1. In
particular, this shows that M1 is hermitian with spectrum σ(M1) = {+1,−1}.
The operators M2,M3,M4 go in exactly the same way, where we replace f(1), f(2) by
g(1), g(2) in the right places. Alternatively, if we only want to prove that Mk is hermitian
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with spectrum σ(Mk) = {+1,−1}, then it suffices to check that M∗
k = Mk and M2

k = 1,
while Mk is not a multiple of the identity.

(c) We start by noting that(
0 1
1 0

)(
1
0

)
=

(
0
1

)
and

(
0 1
1 0

)(
0
1

)
=

(
1
0

)
,

which means that Xe(1) = e(2) and Xe(2) = e(1). Similarly(
0 −i
i 0

)(
1
0

)
=

(
0
i

)
and

(
0 −i
i 0

)(
0
1

)
=

(
−i
0

)
which says that Y e(1) = ie(2) and Y e(2) = −ie(1). It follows that

M1ψ = 1√
2

(
(Xe(1))⊗ (Xe(1))⊗ (Xe(1)) + (Xe(2))⊗ (Xe(2))⊗ (Xe(2))

)
= 1√

2

(
e(2)⊗ e(2)⊗ e(2) + e(1)⊗ e(1)⊗ e(1)

)
= ψ,

and

M2ψ = 1√
2

(
(Xe(1))⊗ (Y e(1))⊗ (Y e(1)) + (Xe(2))⊗ (Y e(2))⊗ (Y e(2))

)
= 1√

2

(
i2e(2)⊗ e(2)⊗ e(2) + (−i)2e(1)⊗ e(1)⊗ e(1)

)
= −ψ.

By symmetry between the three subsystems, the operators M3 and M4 go in exactly the
same way as M2.

(d) In (c) we have shown that ψ ∈ F1, ψ ∈ F⊥2 , ψ ∈ F⊥3 , and ψ ∈ F⊥4 . It follows that
〈ψ|P1|ψ〉 = 1, 〈ψ|Q2|ψ〉 = 1, 〈ψ|Q3|ψ〉 = 1, and 〈ψ|Q4|ψ〉 = 1.

(e) Set P := |f(1)〉〈f(1)|, Q := |f(2)〉〈f(2)|, P ′ := |g(1)〉〈g(1)|, and Q′ := |g(2)〉〈g(2)|.
Then, for example, P ⊗ 1 ⊗ 1 corresponds to the observation that the observable X1

takes on the value +1, and P ′⊗Q′⊗Q is the joint observation that Y1 takes on the value
+1, Y2 takes on the value −1, and X3 takes on the value −1, to give another example.
A joint ideal measurement of the observables X1, X2, X3 corresponds to the partition of
the identity {

P ⊗ P ⊗ P , P ⊗Q⊗Q , Q⊗ P ⊗Q , Q⊗Q⊗ P
Q⊗Q⊗Q , Q⊗ P ⊗ P , P ⊗Q⊗ P , P ⊗ P ⊗Q

}
.

Of these eight possible observations, the first four yield the product of values x1x2x3 =
+1. We observe that

P ⊗ P ⊗ P + P ⊗Q⊗Q+Q⊗ P ⊗Q+Q⊗Q⊗ P = P1,

where P1 is the orthogonal projection on the space F1 from part (b). We have shown
in part (d) that P1 has probability one, hence the probabilities of P ⊗ P ⊗ P , P ⊗Q⊗
Q , Q⊗ P ⊗Q, and Q⊗Q⊗ P sum up to one.
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Similarly, a joint ideal measurement of the observables X1, Y2, Y3 corresponds to the
partition of the identity{

P ⊗ P ′ ⊗ P ′ , P ⊗Q′ ⊗Q′ , Q⊗ P ′ ⊗Q′ , Q⊗Q′ ⊗ P ′

Q⊗Q′ ⊗Q′ , Q⊗ P ′ ⊗ P ′ , P ⊗Q′ ⊗ P ′ , P ⊗ P ′ ⊗Q′
}
.

Of these eight possible observations, the last four yield the product of values x1y2y3 =
−1. We observe that

Q⊗Q′ ⊗Q′ +Q⊗ P ′ ⊗ P ′ + P ⊗Q′ ⊗ P ′ + P ⊗ P ′ ⊗Q′ = Q2

where Q2 is the orthogonal projection on the space F⊥2 . We have shown in part (d) that
Q2 has probability one, hence the probabilities of Q⊗Q′⊗Q′ , Q⊗P ′⊗P ′ , P ⊗Q′⊗P ′,
and P ⊗ P ′ ⊗Q′ sum up to one. The other two cases, which correspond to Q3 and Q4,
go in the same way.

(f) This follows from the observation that

−1 = (−1)3 = x1y2y3 · y1x2y3 · y1y2x3 = (y1)
2(y2)

2(y3)
2x1x2x3 = x1x2x3.

Some extra calculations The eigenvectors of X are found by solving(
ψ1

ψ2

)
=

(
0 1
1 0

)(
ψ1

ψ2

)
=

(
ψ2

ψ1

)
and

−
(
ψ1

ψ2

)
=

(
0 1
1 0

)(
ψ1

ψ2

)
=

(
ψ2

ψ1

)
,

which yields the normalized eigenvectors

f(1) :=
1√
2

(
1
1

)
and f(2) :=

1√
2

(
1
−1

)
.

The eigenvectors of Y are found by solving(
ψ1

ψ2

)
=

(
0 −i
i 0

)(
ψ1

ψ2

)
=

(
−iψ2

iψ1

)
and

−
(
ψ1

ψ2

)
=

(
0 −i
i 0

)(
ψ1

ψ2

)
=

(
−iψ2

iψ1

)
,

which yields the normalized eigenvectors

g(1) :=
1√
2

(
1
i

)
and g(2) :=

1√
2

(
1
−i

)
.
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