
Exam Markov Chains
May 16, 2012

In a small patch of forest there grow N trees. Some of them are spruce (in Czech: smrk),
which we denote by 0, while the others fir (in Czech: jedle) denoted by 1. At the end of
each year, one tree dies and is replaced at the beginning of the next year by a seedling
from one of the other trees. Let (Ik, Jk)k≥1 be i.i.d. random variables that are uniformly
distributed on the set {

(i, j) : 1 ≤ i, j ≤ N, i 6= j
}
.

Let z ∈ {0, 1}N be deterministic and let Z = (Zk)k≥0 be the stochastic process defined
inductively by Z0 = z and

Zk+1(i) :=

{
Zk(Jk+1) if i = Ik+1,

Zk(i) otherwise.

We interpret Zk(i) as the species of the i-th tree in the k-th year. Further, Ik is the
number of the tree that died in the previous year and that is replaced in the k-th year
by a seedling whose parent is the Jk-th tree in the forest. We set x :=

∑N
i=1 z(i) and let

Xk :=
N∑

i=1

Zk(i) (k ≥ 0).

denote number of fir threes in year k.

Problem 1 Prove that Z = (Zk)k≥0 is a Markov chain.

Problem 2 Prove that X = (Xk)k≥0 is a Markov chain. Is X autonomous?

Problem 3 (a) Prove that there exists a random variable X∞ such that

Xk −→
k→∞

X∞ a.s.

(b) Prove that P
[
X∞ ∈ {0, N}

]
= 1.

(c) Determine the function

h(x) := Px
[

lim
k→∞

Xk = N
]

(0 ≤ x ≤ N).

Problem 4 Let P be the transition kernel of the Markov chain Z and let f : {0, 1}N →
R be the function

f(z) :=
1

N(N − 1)

N∑
i=1

N∑
j=1

z(i)
(
1− z(j)

)
,

which is the probability that of two trees chosen at random (without replacement), the
first one is a fir tree and the second one a spruce. Calculate Pf .

Problem 5 Show that the limit

g(x) := lim
n→∞

(
1− 2/(N(N − 1))

)−nPx
[
0 < Xn < N

]
(0 ≤ x ≤ N)

exists and calculate g up to a multiplicative constant. What would need to be done to
determine the constant?



Solutions

Problem 1 Obvious, since Z is defined by a random mapping representation.

Problem 2 X is indeed an autonomous Markov chain (as a function of Z) since

P
[
Xk+1 = x

∣∣Zk

]
=


Xk

N

N −Xk

N − 1
if x = Xk − 1,

N −Xk

N

Xk

N − 1
if x = Xk + 1,

and one minus these probabilities if x = Xk. In particular, these probabilities depend
on Zk only through Xk.

Problem 3 (a) Let (FZ
k )k≥0 be the filtration generated by Z. We observe that

E
[
Xk+1 | FZ

k ] = Xk,

which proves that X is a martingale. Since X is moreover bounded, it follows that Xk

converges a.s. as k →∞.

(b) The state space of X is {0, . . . , N}, which is finite. There are two traps, 0 and
N , while all other states are equivalent. Since the equivalence class {1, . . . , N − 1} is
not a closed set (it is possible get out of this set), while recurrent equivalence classes
are always closed, it follows that all states in this set must be transient. Since the
state space is finite, this implies that the process must eventually end up in one of the
traps. Alternatively, this follows from the principle “what can happen must eventually
happen”.

(c) Since X is a bounded martingale, it is certainly uniformly integrable so its a.s. limit
is also its L1-limit. In particular,

h(x) = Px[X∞ = N ] = N−1Ex[X∞] = N−1x (0 ≤ x ≤ N).

Problem 4 Let (I ′, J ′) be uniformly distributed on the set of all (i, j) with 0 ≤ i, j ≤ N
and i 6= j, independent of the (Ik, Jk)k≥1 that define Z. Define

I ′′ :=

{
J1 if I ′ = I1,
I ′ otherwise,

and likewise

J ′′ :=

{
J1 if J ′ = I1,
J ′ otherwise.

In other words, (I ′, J ′) are trees sampled at random from the forest in year one and I ′′

(resp. J ′′) is either the tree I ′ (resp. J ′) or its parent in the year zero. Then

Pf(z) =
∑
z′

P (z, z′)f(z′) = Ez
[
f(Z1)

]
= Pz

[
Z1(I

′) = 1, Z2(J
′) = 0

]
= P

[
z(I ′′) = 1, z(J ′′) = 0

]
= P

[
z(I ′′) = 1, z(J ′′) = 0

∣∣ I ′′ 6= J ′′
]
P
[
I ′′ 6= J ′′

]
= f(z)

(
1− 2/(N(N − 1))

)
,
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where we have used that P
[
I ′′ = J ′′

]
= 2/(N(N − 1)) and that (I ′′, J ′′), conditionally

on the event I ′′ 6= J ′′, is equally distributed with (I ′, J ′).

Alternatively, we may note that if x :=
∑N

i=1 z(i), then

f(z) =
x(N − x)

N(N − 1)
=: f ′(x)

is a function of x only. It follows that

Ez
[
f(Z1)

]
= Ex

[
f ′(X1)

]
= f ′(x) +

x(N − x)

N(N − 1)

(
f ′(x+ 1)− f ′(x)

)
+
x(N − x)

N(N − 1)

(
f ′(x− 1)− f ′(x)

)
= f ′(x) +

x(N − x)

N(N − 1)

((x+ 1)(N − x− 1)

N(N − 1)
− x(N − x)

N(N − 1)

)
+
x(N − x)

N(N − 1)

((x− 1)(N − x+ 1)

N(N − 1)
− x(N − x)

N(N − 1)

)
= f ′(x) +

x(N − x)

N(N − 1)

((N − x)− x− 1

N(N − 1)
+
x− (N − x)− 1

N(N − 1)

)
= f ′(x)

(
1− 2

N(N − 1)

)
=
(
1− 2/(N(N − 1))

)
f(z).

Problem 5 Let P ′ denote the transition kernel of X. We conclude from the solution
of the previous problem that P ′f ′ = αNf

′, where f ′ is defined above and αN :=
(
1 −

2/(N(N − 1))
)
. In particular, since f ′ is positive on the set {1, . . . , N − 1}, this is the

right Perron Frobenius eigenfunction of the retriction of P ′ to this set. It follows from
results proved in the lecture notes that the limit

g(x) := lim
n→∞

α−1
N Px[0 < Xn < N ] (0 ≤ x ≤ N)

exists for all 0 < x < N where g is the right Perron Frobenius eigenfunction normalized
such that ∑

x

η(x)g(x) = 1,

where η is the left eigenvector normalized such that
∑

x η(x) = 1. Thus g = cf ′ for some
c > 0 where we would need to find the left Perron Frobenius eigenfunction to determine
the constant c. (Note that g(x) = 0 = cf ′(x) trivially for x = 0, N .)
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