
Exam Quantum Probability
June 20, 2013

Hints: You may use claims you are supposed to prove in one excercise to solve other
excercises (even if you did not prove such claims).
It may be helpful to recall the following fact (Excercise 1.2.16). Let H be an inner
product space and let A ∈ L(H). Then A ≥ 0 if one (and hence all) of the following
equivalent properties hold:

(i) 〈ψ|A|ψ〉 ≥ 0 for all ψ ∈ H.

(ii) A = B∗B for some B ∈ L(H).

(iii) A is hermitian and all its eigenvalues are nonnegative.

By definition, we write A ≤ B if B − A ≥ 0.

Exercise 1 (Ordering of projections) Let H be an inner product space, let F be
a subspace of H, and let P be the orthogonal projection on F . Recall that P =
P 2 = P ∗ and ‖Pψ‖ ≤ ‖ψ‖ with equality if and only if ψ ∈ F . Similarly, let Q be
the orthogonal projection on some different subspace G. Prove the equivalence of the
following statements.

(i) P ≤ Q

(ii) F ⊂ G

(iii) PQP = P .

For the next excercise, it may be helpful to recall (Proposition 4.1.2) that if P is a
minimal projection in some Q-algebra A, then there exists a pure state ρP on A such
that PAP = ρP (A)P (A ∈ A) and every pure state on A is of this form.

Exercise 2 (States concentrated on observations) Let A be a Q-algebra, let ρ be
a state on A, and let P ∈ A be any projection. Assume that ρ(P ) = 1. Prove that
ρ(A) = ρ(PAP ) (A ∈ A). Hint: prove the statement for pure states first.

Exercise 3 (States with pure marginals) Let A1,A2 be Q-algebras, let ρ be a state
on A1 ⊗A2, and let

ρ1(A1) := ρ(A1 ⊗ 1) and ρ2(A2) := ρ(1⊗ A2)

denote the first and second marginal of ρ, respectively. Assume that ρ1 is a pure state.
Prove that ρ = ρ1 ⊗ ρ2.
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Exercise 4 (Entangled marginal) Let H be a two-dimensional inner product space
with orthonormal basis {e(1), e(2)}. We represent the product algebra L(H)⊗L(H)⊗
L(H) in the canonical way on the product space H ⊗ H ⊗ H. For any state ρ on
L(H)⊗ L(H)⊗ L(H), let

ρ12(A1 ⊗ A2) := ρ(A1 ⊗ A2 ⊗ 1) and ρ23(A2 ⊗ A3) := ρ(1⊗ A2 ⊗ A3)

denote the marginals corresponding to the combination of the first and second, resp.
second and third subsystem. For i = 1, 2, let Pi := |e(i)〉〈e(i)| denote the orthogonal
projection on e(i). Set

ρ(i)(B) :=
ρ
(
(Pi ⊗ 1⊗ 1)B(Pi ⊗ 1⊗ 1)

)
ρ(Pi ⊗ 1⊗ 1)

(
B ∈ L(H)⊗ L(H)⊗ L(H)

)
,

and
ρ′ := p1ρ

(1) + p2ρ
(2) with pi := ρ(Pi ⊗ 1⊗ 1) (i = 1, 2).

Prove that ρ′ and ρ have the same marginal corresponding to the second and third
subsystem, i.e.,

ρ′23 = ρ23.

Now assume that ρ12 is the fully entangled state corresponding to the state vector

ψ =
1√
2

(
e(1)⊗ e(1) + e(2)⊗ e(2)

)
.

Show that ρ23 is not entangled.
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Solutions

Ex 1
We observe that P ≤ Q ⇔ 〈ψ|P |ψ〉 ≤ 〈ψ|Q|ψ〉 for all ψ ∈ H ⇔ 〈Pψ|Pψ〉 ≤ 〈Qψ|Qψ〉
for all ψ ∈ H ⇔ ‖Pψ‖ ≤ ‖Qψ‖ for all ψ ∈ H.
(ii)⇒(i) & (iii): If F ⊂ G, then Pψ ∈ F ⊂ G for all ψ and hence QPψ = Pψ so QP = P .
Now also P = P ∗ = (QP )∗ = P ∗Q∗ = PQ. It follows that ‖Pψ‖ = ‖PQψ‖ ≤ ‖Qψ‖ for
all ψ, so P ≤ Q. Also PQP = PP = P .
(i)&(iii)⇒(ii): If F 6⊂ G, then there exists 0 6= ψ ∈ F , ψ 6∈ G. Now ‖Pψ‖ = ‖ψ‖ > ‖Qψ‖
so P 6≤ Q. Also ‖PQPψ‖ = ‖PQψ‖ ≤ ‖Qψ‖ < ‖ψ‖ = ‖Pψ‖ so PQP 6= P .

Ex 2
If ρ is a pure state, then ρ = ρQ for some mininal projection Q. Now ρQ(P ) = 1 implies
QPQ = ρQ(P )Q = Q hence Q ≤ P by Excercise 1. It follows that ρQ(PAP )Q =
QPAPQ = QAQ = ρQ(A)Q and hence ρQ(PAP ) = ρQ(A) for all A ∈ A. A general
state can be written as a convex combination of pure states, ρ =

∑n
k=1 pkρQn with pk > 0

and
∑n

k=1 pk = 1. Now ρ(P ) = 1 implies ρQk
(P ) = 1 for all k and hence by what we

have just proved ρ(PAP ) =
∑n

k=1 pkρQn(PAP ) =
∑n

k=1 pkρQn(A) = ρ(A).

Ex 3
If ρ1 is a pure state, then ρ1 = ρP for some minimal projection P ∈ A1. Now P ⊗ 1
is a projection in A1 ⊗ A2 (though not a minimal one, except in trivial cases) with
the property that ρ(P ⊗ 1) = ρ1(P ) = 1, so Excercise 2 tells us that ρ(A ⊗ B) =
ρ
(
(P ⊗ 1)(A ⊗ B)(P ⊗ 1)

)
= ρ(PAP ⊗ B) = ρ

(
(ρP (A)P ) ⊗ B

)
= ρP (A)ρ(P ⊗ B) =

ρP (A)ρ
(
(P ⊗ 1)(1⊗B)(P ⊗ 1)

)
= ρP (A)ρ(1⊗B) = ρ1(A)ρ2(B).

Alternative solution (Tibor Mach): Let A1 ∈ A1 be arbitrary and let P2 ∈ A2 be a
projection. Assume that p := ρ(1⊗ P2) satisfies 0 < p < 1. Then

ρ1(A1) = ρ(A1 ⊗ 1) = ρ
(
A1 ⊗

(
P2 + (1− P2)

))
= ρ(A1 ⊗ P2) + ρ

(
A1 ⊗ (1− P2)

)
= p

ρ(A1 ⊗ P2)

ρ(1⊗ P2)
+ (1− p)

ρ
(
A1 ⊗ (1− P2)

)
ρ
(
1⊗ (1− P2)

) ,
where we have used that 1− p = ρ

(
1⊗ (1− P2)

)
. Now

A1 7→
ρ(A1 ⊗ P2)

ρ(1⊗ P2)
and A1 7→

ρ
(
A1 ⊗ (1− P2)

)
ρ
(
1⊗ (1− P2)

)
are states on A1, and we have just shown that ρ1 can be written as a nontrivial convex
combination of these states. Since ρ1 is pure, we conclude that they must both be equal
to ρ1. In particular, for any projections P1 ∈ A1 and P2 ∈ A2,

ρ1(P1) =
ρ(P1 ⊗ P2)

ρ(1⊗ P2)
,

which shows that
ρ1(P1)ρ2(P2) = ρ(P1 ⊗ P2).

3



We claim that this formula holds even if p = 0, 1. Indeed, if p := ρ(1 ⊗ P2) = 0, then
P1 ⊗ P2 ≤ 1⊗ P2 and hence ρ(P1 ⊗ P2) ≤ ρ(1⊗ P2) = 0, so

ρ1(P1)ρ2(P2) = ρ(P1) · 0 = 0 = ρ(P1 ⊗ P2).

If p := ρ(1⊗ P2) = 1, then

ρ1(P1) = ρ(P1 ⊗ 1) = ρ(P1 ⊗ P2) + ρ
(
P1 ⊗ (1− P2)

)
=
ρ(P1 ⊗ P2)

ρ(1⊗ P2)
+ 0.

Thus, we conclude that
ρ1(P1)ρ2(P2) = ρ(P1 ⊗ P2)

for any projections P1 ∈ A1 and P2 ∈ A2. Since the linear span of the projections is
the whole algebra, by linearity, we conclude first that ρ1(A1)ρ2(P2) = ρ(A1 ⊗ P2) for
arbitrary A1 ∈ A1 and for P2 ∈ A2 a projection, and then by the same argument also
remove the assumption that P2 is a projection.

Ex 4
We have

ρ′(1⊗ A2 ⊗ A3)

= ρ
(
(P1 ⊗ 1⊗ 1)(1⊗ A2 ⊗ A3)(P1 ⊗ 1⊗ 1)

)
ρ
(
(P2 ⊗ 1⊗ 1)(1⊗ A2 ⊗ A3)(P2 ⊗ 1⊗ 1)

)
= ρ(P1 ⊗ A2 ⊗ A3) + ρ(P1 ⊗ A2 ⊗ A3) = ρ(1⊗ A2 ⊗ A3).

In fact, this just says that performing a measurement on the first subsystem has no
effect on the other two subsystems, which we already knew.

In view of this, to show ρ23 is not entangled, it suffices to prove that ρ′23 is not entangled.

Here ρ′23 = p1ρ
(1)
23 + p2ρ

(2)
23 , so it suffices to show that ρ

(i)
23 i = 1, 2 are not entangled. Let

ρ
(i)
2 (A2) := ρ(i)(1⊗ A2 ⊗ 1)

denote the marginal of ρ(i) corresponding to the second subsystem only. We observe
that

ρ
(i)
2 (Pi) =

ρ
(
(Pi ⊗ 1⊗ 1)(1⊗ Pi ⊗ 1)(Pi ⊗ 1⊗ 1)

)
ρ(Pi ⊗ 1⊗ 1)

=
ρ(Pi ⊗ Pi ⊗ 1)

ρ(Pi ⊗ 1⊗ 1)
=
ρ12(Pi ⊗ Pi)

ρ12(Pi ⊗ 1)
=
〈ψ|Pi ⊗ Pi|ψ〉
〈ψ|Pi ⊗ 1|ψ〉

.

Here
〈ψ|P1 ⊗ 1|ψ〉= 1

2
〈e(1)⊗ e(1)|P1 ⊗ 1|e(1)⊗ e(1)〉

+1
2
〈e(1)⊗ e(1)|P1 ⊗ 1|e(2)⊗ e(2)〉

+1
2
〈e(2)⊗ e(2)|P1 ⊗ 1|e(1)⊗ e(1)〉

+1
2
〈e(2)⊗ e(2)|P1 ⊗ 1|e(2)⊗ e(2)〉

= 1
2
〈e(1)⊗ e(1)|e(1)⊗ e(1)〉+ 0

+1
2
〈e(2)⊗ e(2)|e(1)⊗ e(1)〉+ 0

= 1
2
.
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and similarly

〈ψ|P1 ⊗ P1|ψ〉= 1
2
〈e(1)⊗ e(1)|P1 ⊗ P1|e(1)⊗ e(1)〉

+1
2
〈e(1)⊗ e(1)|P1 ⊗ P1|e(2)⊗ e(2)〉

+1
2
〈e(2)⊗ e(2)|P1 ⊗ P1|e(1)⊗ e(1)〉

+1
2
〈e(2)⊗ e(2)|P1 ⊗ P1|e(2)⊗ e(2)〉

= 1
2
〈e(1)⊗ e(1)|e(1)⊗ e(1)〉+ 0 + 0 + 0 = 1

2
,

which shows that

ρ(1)(P1) = 1
2
/1
2

= 1 and similarly ρ(2)(P2) = 1.

By Excercise 2, it follows that for any A ∈ L(H),

ρ
(i)
2 (A) = ρ

(i)
2 (PiAPi) = ρ

(i)
2

(
ρPi

(A)Pi

)
= ρPi

(A)ρ
(i)
2 (Pi) = ρPi

(A),

which shows that ρ
(i)
2 = ρPi

is a pure state. By Excercise 3, it follows that ρ
(i)
23 = ρ

(i)
2 ⊗ρ

(i)
3 .
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