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Abstract

These are lecture notes for a sequence of lectures given at the Seminar on stochastic
evolution equations held October-December 2010 at the Institute of Information Theory
and Automation of the ASCR (ÚTIA) in Prague. They are based on a series of papers
by Cox, Durrett, Merle and Perkins on the convergence of rescaled sparse voter models to
super-Brownian motion.
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1 A bit of Markov process theory

1.1 Generators and the martingale problem

Let X = (Xt)t≥0 be a Markov process with finite state space S that jumps from x to y with
rate r(x, y). Let Pt(x, y) denote the transition probabilities of X, i.e., Pt(x, y) is the probability
that Xt = y given that we start the process in X0 = x. For any function f : S → R, we define

Ptf(x) :=
∑
y∈S

Pt(x, y)f(y). (1.1)

Then (Pt)t≥0 is a semigroup of linear operators acting on the finite dimensional space of real
functions on S. We have Pt = etG, where

Gf(x) :=
∑
y∈S

r(x, y)
(
f(y)− f(x)

)
. (1.2)

is the generator of X. In particular, Pt = 1 + tG+O(t2) so

Ex[f(Xt)] = Ptf(x) = f(x) + tGf(x) +O(t2) as t→ 0, (1.3)

where Ex denotes expectation with respect to the law of the process started from X0 = x.
It is not hard to prove that if X is a Markov process with jump rates r(x, y) (and arbitrary

initial law), then for each f : S → R, the process

Mf
t := f(Xt)−

∫ t

0
dsGf(Xs) (1.4)

is a martingale with respect to the filtration generated by (Xt)t≥0. Conversely, any S-valued
stochastic process with this property is a Markov process with jump rates r(x, y). Formula
(1.4) is described in words by saying that the process X solves the martingale problem for the
operator G.

1.2 Covariances and quadratic variation

Recall that if M = (Mt)t≥0 and N = (Nt)t≥0 are square integrable martingales with right-
continuous sample paths, then there exists a unique predictable, nondecreasing process 〈M,N〉
with right-continuous sample paths, starting at zero, such that

MtNt − 〈M,N〉t (1.5)

is a martingale. We call 〈M,N〉 the predictable covariation process of M and N . In particular,
〈M〉 := 〈M,M〉 is called the predictable quadratic variation process of M . One has

4〈M,N〉 = 〈M +N,M +N〉 − 〈M −N,M −N〉. (1.6)

If X is a Markov process as in the pervious section and Mf ,Mg are martingales as in (1.4),
then

〈Mf ,Mg〉t =
∫ t

0
dsΓ(f, g)(Xs), (1.7)
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where
Γ(f, g) = G(fg)− fGg − gGf =

∑
y∈S

r(x, y)
(
f(y)− f(x)

)(
g(y)− g(x)

)
. (1.8)

The function Γ(f, g) here also appears in the well-known covariance formula:

Cov
(
f(Xt), g(Xt)

)
= Cov

(
Ptf(X0), Ptf(X0)

)
+
∫ t

0
dsE

[
Γ(Psf, Psg)(Xt−s)

]
. (1.9)

1.3 Continuous martingales and Itô’s formula

We say that a process V is of bounded variation if

sup
n∑
k=1

|Vtk − Vtk−1
| <∞ (t > 0), (1.10)

where the supremum is over all partitions 0 = t0 < · · · < tn = t of [0, t]. By definition, a
semimartingale is a process X = (Xt)t≥0 that can be written as

Xt = Mt + Vt (t ≥ 0), (1.11)

where M is a right-continuous square integrable martingale and V is a continuous adapted
process of bounded variation, starting at zero. Since continuous adapted processes are pre-
dictable, such a decomposition is unique. For any two continuous semimartingales X,Y , one
has

〈X,Y 〉t = lim
n→∞

n∑
k=1

(Xtnk
−Xtnk−1

)(Ytnk − Ytnk−1
) (t ≥ 0). (1.12)

where the limit is in probability and 0 = tn0 < · · · < tnn = t is a sequence of increasingly fine
partitions of [0, t], such that supnk=1 |tnk − tnk−1| → 0.1 If X is a continuous semimartingale and
Y is a continuous process of bounded variation, then 〈X,Y 〉t = 0 (t ≥ 0). In particular, one
has

〈X,Y 〉t = 〈M,N〉t when Xt = Mt + Vt, Yt = Nt +Wt (1.13)

and V,W are continuous process of bounded variation.
Local semimartingales are defined similarly to semimartingales, in the usual way. Stochas-

tic integrals w.r.t. (continuous) semimartingales are well-defined and yield again (continuous)
semimartingales. If ~X = X1, . . . , Xn are continuous local semimartingales and f : Rn → R
is twice continuously differentiable, then f( ~X) is again a continuous local semimartingale. In
fact, Itô’s formula says that

f
(
~Xt

)
= f

(
~X0

)
+

n∑
i=1

∫ t

0
( ∂
∂xi f)( ~Xs) dXi

s + 1
2

n∑
i,j=1

∫ t

0
( ∂2

∂xi∂xj f)( ~Xs) d〈Xi, Xj〉s. (1.14)

1If X and Y are square integrable martingales but their sample paths are not continuous, then the limit in
(1.12) also exists, is denoted by [X, Y ]t, and is called the covariation process of X and Y . Also in this case, it
is true that XtYt − [X, Y ]t is a martingale, but in general [X, Y ] 6= 〈X, Y 〉 and [X, Y ] need not be predictable.
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2 Branching particle systems and super-Brownian motion

2.1 Branching particle systems

Let N (Zd) be the space of finite counting measure on Zd; equivalently, we may view an element
of N (Zd) as a function ρ : Zd → N such that |ρ| :=

∑
x∈Zd ρ(x) <∞. Let p : Zd → [0, 1] be a

probability distribution on Zd satisfying

(i) p(x) = p(−x),
(ii)

∑
x xixjp(x) = σ2δij ,

(iii)
∑

x |x|3p(x) <∞
(iv) {x : p(x) > 0} generates Zd.

(2.1)

Let (ρt)t≥0 be a Markov process with values in N (Zd) (and cadlag sample paths) defined by
the following jump rates:

ρ 7→ ρ− δx + δy with rate p(y − x)ρ(x),
ρ 7→ ρ+ δx with rate bρ(x),
ρ 7→ ρ− δx with rate d′ρ(x),

(2.2)

where b, d′ ≥ 0 are constants. If we interpret ρt(x) as the number of particles at site x at time
t, then this says that particles jump from x to y with rate p(y − x), particles branch into two
new particles with rate b, and particles die with rate d′.

Note from this description of the process that there is no interaction between the particles.
In particular, it is easy to see that our process has the branching property: if (ρ′t)t≥0 and
(ρ′′t )t≥0 are independent realizations of the process, started in initial states ρ′0, ρ

′′
0, then

ρt := ρ′t + ρ′′t (t ≥ 0) (2.3)

is a Markov process with the same dynamics as ρ′t and ρ′′t , started in ρ′0 + ρ′′0.
Branching particle systems are ‘linear’ interacting particle systems, in the following sense.

Let (St)t≥0 be the semigroup of a branching particle system on Zd with jump kernel p, branch-
ing rate b and death rate d′. Let (Pt)t≥0 be the semigroup of a random walk on Zd that jumps
from x to y with rate p(y − x). For each bounded φ : Zd → R, define a ‘linear’ function
lφ : N (Zd)→ R by

lφ(ρ) :=
∑
x∈Zd

ρ(x)φ(x). (2.4)

Then St maps linear functions into linear functions, and in fact:

Stlφ = le(b−d′)tPtφ
(t ≥ 0). (2.5)

In view of this, the random walk that jumps from x to y with rate p(y − x) is called the
underlying motion of the branching particle sytem.

Setting φ = 1 in (2.5) show that the expected total mass |ρt| :=
∑

x ρt(x) satisfies

E
[
|ρt|
]

= e(b−d
′)tE
[
|ρ0|
]

(t ≥ 0). (2.6)

In fact, the total mass process (|ρt|)t≥0 is an autonomous Markov proces with values in N,
that jumps

n 7→ n+ 1 with rate b,

n 7→ n− 1 with rate d′.
(2.7)
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The process is called subcritical, critical or supercritical depending on whether b < d′, b = d′,
or b > d′. It turns out that the subcritical and critical processes, started in a finite initial state,
die out almost surely, while the supercritical process has a positive probability to survive.

Branching particle system can also be defined for infinite initial states. In this case, the
long-time behavior of the critical process is more subtle. It turns out that in dimensions 1 and
2 the process still dies out but in dimensions 3 and more there exist nontrivial invariant laws.

2.2 Super Brownian motion

Let M(Rd) be the space of finite measures on Rd, equipped with the topology of weak con-
vergence. For µ ∈M(Rd) and f a measurable real function on Rd, we adopt the notation

µ(f) :=
∫
µ(dx)f(x). (2.8)

Recall that the Laplacian ∆ is the differential operator defined by

∆φ(x) :=
d∑
i=1

∂2

∂xi
2φ(x) (x ∈ Rd). (2.9)

By definition, super-Brownian motion is the unique M(Rd)-valued Markov process (Xt)t≥0

with continuous sample paths such that for each φ ∈ C3
b(Rd) (the space of three times contin-

uously differentiable functions on φ : Rd → R such that φ and its derivatives up to third order
are bounded), the process

Mt(φ) := Xt(φ)−
∫ t

0
dsXs

(
1
2σ

2∆φ+ βφ) (2.10)

is a continuous, square integrable martingale with quadratic variation process

〈M(φ)〉t =
∫ t

0
dsXs(γφ2). (2.11)

We call the nonnegative contants σ2 the diffusion constant, β the growth rate, and γ the
activity (or branching rate) of the process.

Super Brownian motion is very much like a continuum analogue of a branching particle
system and in fact occurs a the scaling limits of such sytems, as we will see below. Many
of the elementary properties of super-Brownian motion are analogous to those of branching
particle systems. In particular, super-Brownian motion has the branching property, it is a
linear system (with a Brownian underlying motion) and its total mass process (|Xt|)t≥0 is
an autonomous Feller diffusion, i.e., it is equal in law to the unique solution (Ft)t≥0 of the
stochastic differential equation

dFt = βFt dt+
√
γFt dBt. (2.12)

Super Brownian motion is called subcritical, critical or supercritical depending on whether
β < 0, β = 0 or β > 0. Its long-time behavior is similar to that of branching particle systems.

To give the reader a feeling why (2.10) and (2.11) might be enough to characterize a
Markov process, we note that if f : Rn → R is twice continuously differentiable, then by Itô’s
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formula (1.14):

f
(
Xt(φ1), . . . , Xt(φn)

)
= f

(
X0(φ1), . . . , X0(φn)

)
)

+
n∑
i=1

∫ t

0
( ∂
∂xi
f)
(
Xs(φ1), . . . , Xs(φn)

)
dXs(φi)

+1
2

n∑
i,j=1

∫ t

0
( ∂2

∂xi∂xj
f)
(
Xs(φ1), . . . , Xs(φn)

)
d〈X(φi), X(φj)〉s,

(2.13)

where by (1.6) and (2.11),

〈X(φi), X(φj)〉t =
∫ t

0
dsXs(γφiφj). (2.14)

Using moreover (2.10) we see that

f
(
Xt(φ1), . . . , Xt(φn)

)
= f

(
X0(φ1), . . . , X0(φn)

)
)

+
n∑
i=1

∫ t

0
( ∂
∂xi
f)
(
Xs(φ1), . . . , Xs(φn)

)
Xs(1

2∆φi + βφi)ds

+1
2

n∑
i,j=1

∫ t

0
( ∂2

∂xi∂xj
f)
(
Xs(φ1), . . . , Xs(φn)

)
Xs(γφiφj)ds

+stochastic integral w.r.t. Ms(φi).

(2.15)

It follows that as t→ 0,

Eρ
[
f
(
Xt(φ1), . . . , Xt(φn)

)]
= f

(
ρ(φ1), . . . , ρ(φn)

)
)

+t
n∑
i=1

( ∂
∂xi
f)
(
ρ(φ1), . . . , ρ(φn)

)
ρ
(

1
2σ

2∆φi + βφi)

+1
2 t

n∑
i,j=1

( ∂2

∂xi∂xj
f)
(
ρ(φ1), . . . , ρ(φn)

)
ρ(γφiφj) +O(t2).

(2.16)

By (1.3), this means that from (2.10) and (2.11) we can deduce the action of the generator of
super-Brownian motion on smooth functions of the form ρ 7→ f

(
ρ(φ1), . . . , ρ(φn)

)
.

2.3 Scaling limits of branching particle systems

Theorem 1 (Scaling limit of branching particle sytems) Let εn, δn be positive con-
stants, converging to zero. Let (ρnt )t≥0 be branching particle systems on Zd with jump kernel
p, branching rate bn, and death rate d′n. Assume that

ε−2
n (bn − d′n) −→

n→∞
β and δnε

−2
n (bn + d′n) −→

n→∞
γ. (2.17)

Define M(Rd)-valued processes (Xn
t )t≥0 by

Xn
ε2nt

:= δn
∑
x∈Zd

ρnt (x)δεnx (t ≥ 0). (2.18)

Assume that Xn
0 ⇒ X0 for some X0 ∈ M(Rd) and let (Xt)t≥0 be the super-Brownian motion

with this initial state and diffusion constant σ2, growth rate β and activity γ. Then

P
[
(Xn

t )t≥0 ∈ ·
]

=⇒
n→∞

P
[
(Xt)t≥0 ∈ ·

]
. (2.19)

6



Remarks By (2.17), we have (bn − d′n)/(bn + d′n) ∼ δn → 0 as n→∞, so we in the limit we
are looking at near-critical branching. For given β 6= 0, γ > 0, and bn, d

′
n, the scaling factors

εn, δn are up to asymptotic equivalence uniquely determined by (2.17). If β = 0, then we have
one free scaling parameter in our choice of εn, δn. This is reflected in the fact that for any
a > 0, critical super-Brownian motion is invariant under a simultaneous scaling of space by a,
time by a2, and mass by a2.

Sketch of the proof For φ ∈ C3
b(Rd) and ε > 0, we define a linear function f ε,δφ : N (Zd)→ R

by
f ε,δφ (ρ) := δ

∑
x∈Zd

ρ(x)φ(εx). (2.20)

Let G be the generator of a branching particle system on Zd with jump kernel p, branching
rate b, and death rate d′ and let Γ(f, g) be defined as in (1.8). Then ε−2G is the generator of
the process with time speeded up by a factor ε−2 and

ε−2Gf ε,δφ (ρ) = δε−2
∑
x,y

p(y − x)ρ(x)
(
φ(εy)− φ(εx)

)
+ δε−2(b− d′)

∑
x

ρ(x)φ(εx)

= δ
∑
x

ρ(x)
(

1
2∆εφ(εx) + ε−2(b− d′)φ(εx)

)
.

(2.21)

Speeding up time by a factor ε−2 means that we also must multiply Γ(f, g) from (1.8) by a
factor ε−2. Then

ε−2Γ(f ε,δφ , fε,δφ )(ρ)

= δ2ε−2
∑
x,y

p(y − x)ρ(x)
(
φ(εy)− φ(εx)

)2 + δ2ε−2(b+ d′)
∑
x

ρ(x)
(
φ(εx)

)2
= δ

∑
x

ρ(x)
(
δRε(φ)(εx) + δε−2(b+ d′)(φ(εx))2

)
,

(2.22)

where we have defined

∆εφ(x) := 2ε−2
∑
z∈Zd

p(z)
(
φ(x+ εz)− φ(x)

)
,

Rεφ(x) := ε−2
∑
z∈Zd

p(z)
(
φ(x+ εz)− φ(x)

)2
.

(2.23)

It follows that

Mn
t (φ) := Xn

t (φ)−
∫ t

0
dsXn

s

(
1
2∆εnφ+ ε−2

n (bn − d′n)φ
)

(2.24)

is a square integrable martingale with predictable quadratic variation process

〈Mn(φ)〉t =
∫ t

0
dsXn

s

(
δnRεn(φ) + δnε

−2
n (bn + d′n)φ2

)
. (2.25)

Since φ is three times continuously differentiable, it is not hard to check that

∆εnφ −→n→∞ σ2∆φ and δnRεn(φ) −→
n→∞

0, (2.26)

Taking into account (2.17), this “proves” the theorem.
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2.4 The log-Laplace semigroup

Although this will not be needed in the remainder of these lectures, in this section, we elaborate
a bit on the question how to prove existence and uniqueness of super-Brownian motion and
introduce an important tool in its study, which is its log-Laplace semigroup.

It turns out that there exists a nonlinear semigroup (Ut)t≥0, acting on nonnegative mea-
surable functions f : R→ R, such that if (Xt)t≥0 is super-Brownian motion started in X0 = ρ,
then

E ρ
[
e−Xt(f)] = e−ρ(Utf) (t ≥ 0). (2.27)

To understand this on a heuristic level, assume that ρ = ε
∑n

i=1 δxi and let Xi be the process
started in Xi

0 = εδxi . Then, by the branching property,

E ρ
[
e−Xt(f)] = E

[ n∏
i=1

e−X
i
t(f)] =

n∏
i=1

E
[
e−X

i
t(f)] = e−ρ(Utf), (2.28)

where we have defined

Utf(x) := −ε−1 log E εδx
[
e−Xt(f)] (x ∈ R, t ≥ 0). (2.29)

Assuming continuity of the expression in (2.27), one ‘deduces’ from this that the semigroup of
super-Brownian motion maps ‘multiplicative’ functions of the form ρ 7→ e−ρ(f) into functions
of the same form again, only with f replaced by a different function, which we call Utf .

Some more heuristic calculations convince us that ut(x) := Utf(x) solves the semilinear
Cauchy problem {

∂
∂tut = 1

2∆ut + βut − γu2
t (t ≥ 0),

u0 = f.
(2.30)

On a more formal level, the arguments go the other way around. One first proves that
the Cauchy problem (2.30) has a unique solution (in an appropriate sense) and then uses
the martingale problem for X to show that (2.27) holds, which then implies the branching
property. This argument then shows that solutions to the martingale problem (2.10)–(2.11)
are unique. Existence of solutions to this martingale problem can be proved by discrete
approximation, for example as in Section 2.3.

3 Convergence of sparse voter models

3.1 Voter models

Let {0, 1}Zd
be the space of all functions η : Zd → {0, 1} and let p be a probability distribution

on Zd satisfying (2.1). By definition, the voter model on Zd with invasion rates p(y−x) is the
Markov process (ηt)t≥0 with state space {0, 1}Zd

that evolves according to the jump rates

η 7→ η + δy with rate p(y − x)1{η(y)=0, η(x)=1}

η 7→ η − δy with rate p(y − x)1{η(y)=1, η(x)=0}.
(3.1)

We may interpret ηt(x) as the type of the organism living at time t at site x. Another way of
expressing (3.1) is that with rate p(y − x), the site y adopts the type of the site x (which has
no effect if both sites have the same type).
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Voter models are linear systems in the sense that if (St)t≥0 is the semigroup of a voter
model, (Pt) is the semigroup of the random walk with jump kernel p, and lφ is a linear function
as in (2.4), then

Stlφ = lPtφ (t ≥ 0). (3.2)

We may construct a voter model by means of a graphical representation, where for each
ordered pair of sites (x, y), at times chosen according to an independent Poisson point process
with intensity p(y − x), we draw an arrow from x to y meaning that at this time, the site y
adopts the type of the site x. By following these arrows back in time, we can find out where
the type of a given site at a given time originates from. Let Rx,ts be the unique ‘ancestor’ at
time t− s of the organism living at time t at site x. Then

ηt(x) := ηt−s(Rx,ts ) (x ∈ Zd, 0 ≤ s ≤ t). (3.3)

For fixed t > 0, the collection of Zd-valued processes (Rx,ts )x∈Zd

0≤s≤t is a Markov process which
evolves in such a way that at times chosen according to a Poisson point process with intensity
p(x − y), all processes that are at the position x jump to the position y. In particular, for
any x 6= y, the processes Rx,t and Ry,t behave as independent random walks with jump rates
p(x− y) untill the time

τ(x, y) = τt(x, y) := inf{s ≥ 0 : Rx,ts = Ry,ts } (3.4)

and from that time onwards they move together as one random walk. Thus, (Rx,ts )x∈Zd

0≤s≤t is
a system of coalescing random walks with jump rates p(x − y). We note that in (3.4), for
convenience, we have extended our processes (Rx,ts )x∈Zd

0≤s≤t to all s ≥ 0. Since the law of τt(x, y)
does not depend on t, we sometimes drop the subscript t.

The behavior of a voter model depends on the dimension. Note that the difference Rx,ts −
Ry,ts between two coalescing random walks with jump rates p(x − y) is a random walk with
jump rates 2p(x− y) and absorption in the origin. Our assumptions on p in (2.1) imply that
such a random walk is recurrent in dimensions 1 and 2 but transient in dimensions d ≥ 3.
This implies that in dimensions 1 and 2, regardless of the initial state, for any x 6= y:

P[ηt(x) 6= ηt(x)] = P[η0(Rx,tt ) 6= η0(Ry,tt )] ≤ P[Rx,tt 6= Ry,tt ] = P[τ(x, y) > t] −→
t→∞

0. (3.5)

This sort of behavior is described by saying that the model clusters.
On the other hand, in dimensions d ≥ 3, if we start the process in an initial law such that

the (η0(x))x∈Zd are i.i.d. with P[η0(x) = 1] = θ ∈ (0, 1), then, for any x 6= y,

P[ηt(x) 6= ηt(x)] = 2θ(1− θ)P[τ(x, y) > t]

= 2θ(1− θ)P[τ0(x, y) > t] −→
t→∞

2θ(1− θ)P[τ0(x, y) =∞] > 0
(3.6)

Using this, it is not hard to prove that for each 0 < θ < 1, the process has an invariant law in
which both types coexist a.s. and the intensity of ones is θ.

3.2 Convergence in recurrent dimensions

The following interesting theorem was proved in [CDP00].
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Theorem 2 (Scaling limit of sparse voter models in transient dimensions) Let εn
be positive constants, converging to zero and set δn := ε2n. Let (ηnt )t≥0 be voter models on Zd
(d ≥ 3), with invasion rates p satisfying (2.1). Define M(Rd)-valued processes (Xn

t )t≥0 by

Xn
ε2nt

:= δn
∑
x∈Zd

ηnt (x)δεnx (t ≥ 0). (3.7)

Assume that Xn
0 ⇒ X0 for some X0 ∈ M(Rd) and let (Xt)t≥0 be the super-Brownian motion

with this initial state and diffusion constant σ2, growth rate zero and activity

γ := 2
∑
z∈Zd

p(z)P[τ(0, z) =∞], (3.8)

where τ(x, y) is the first meeting time of two independent random walks with kernel p started
from x and y. Then

P
[
(Xn

t )t≥0 ∈ ·
]

=⇒
n→∞

P
[
(Xt)t≥0 ∈ ·

]
. (3.9)

Idea of the proof Since the number of particles is of order δ−1
n = ε−2

n while the number of
lattice points per unit of space is (εn)−d, the assumption d ≥ 3 implies that we are looking at
sparse systems, i.e., systems where only a small fraction of the sites is of type one. As a result,
because of the transience of random walk, particles should not feel each other’s presence too
much and effectively behave as if they were independent.

Sketch of the proof Define linear functions f ε,δφ as in (2.20). Repeating our earlier calcula-
tions, but for the new generator, we find that

ε−2Gf ε,δφ (η) = δε−2
∑
x,y

p(y − x)η(x)(1− η(y))φ(εy)

+δε−2
∑
x,y

p(y − x)(1− η(x))η(y)(−φ(εy))

= δε−2
∑
x,y

p(y − x)
(
η(x)− η(y)

)
φ(εy)

= δε−2
∑
x,y

p(y − x)η(x)
(
φ(εy)− φ(εx)

)
.

(3.10)

where in the last step we have split our sum into two terms and changed the summation order
in one term using the symmetry of p. Similarly

ε−2Γ(f ε,δφ , fε,δφ )(η) = δ2ε−2
∑
x,y

p(y − x)η(x)(1− η(y))φ(εy)2

+δ2ε−2
∑
x,y

p(y − x)(1− η(x))η(y)φ(εy)2

= δ2ε−2
∑
x,y

p(y − x)1{η(x)6=η(y)}φ(εy)2

= δ2ε−2
∑
x,y

p(y − x)η(x)(1− η(y))
(
φ(εx)2 + φ(εy)2

)
.

(3.11)

We note that the expression in (3.10) is linear in η, reflecting the ‘linear’ property of voter
models in (3.2), but the expression in (3.11) is not linear in η. It follows from (3.10) and (3.11)
that

Mn
t (φ) := Xn

t (φ)−
∫ t

0
dsXn

s

(
1
2∆εnφ

)
(3.12)
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is a square integrable martingale with predictable quadratic variation process

〈Mn(φ)〉t = δ2nε
−2
n

∫ t

0
ds
∑
x,y

p(y − x)ηn
ε−2
n s

(x)
(
1− ηn

ε−2
n s

(y)
)(
φ(εx)2 + φ(εy)2

)
. (3.13)

The proof now proceeds by using (3.12) and (3.13) plus some additional information to show
that the laws of the processes (Xn

t )t≥0 are tight. Once this is proved, by going to a subsequence
if necessary, we may assume that they converge weakly to the law of a process X. We are done
if we can show that (for each subsequence), X is a super-Brownian motion with parameters
as in the theorem. By taking the limit in (3.12), we see in the same way as in the proof of
Theorem 1 that

Mt(φ) := Xt(φ)−
∫ t

0
dsXs

(
1
2σ

2∆εnφ
)

(3.14)

is a square integrable martingale. We claim that its quadratic variation process is given by

〈M(φ)〉t =
∫ t

0
dsXs

(
γφ2

)
. (3.15)

This will follow by taking the limit in (3.13) provided we show that the quantity in (3.13) can
be approxiated by

〈Mn(φ)〉t ≈ δn
∫ t

0
ds
∑
x

ηn
ε−2
n s

(x)γφ(εx)2. (3.16)

As a first step, using the facts that δn = ε2n and φ(εx)2 + φ(εy)2 ≈ 2φ(εx)2 if x and y are a
distance of order one from each other, we may approximate the quantity in (3.13) by

δn

∫ t

0
ds
∑
x,y

p(y − x)ηn
ε−2
n s

(x)
(
1− ηn

ε−2
n s

(y)
)
2φ(εx)2. (3.17)

Choose
1� tn � ε−2

n as n→∞. (3.18)

Using voter model duality, we may rewrite the quantity in (3.17) as

2δn
∫ t

0
ds
∑
x,y

φ(εx)2p(y − x)ηn
ε−2
n s−tn

(Rx,ε
−2
n s

tn )
(
1− ηn

ε−2
n s−tn

(Ry,ε
−2
n s

tn )
)
. (3.19)

Let
P

(2)
t (x, y;x′, y′) = P

[
Rx,0t = x′, Ry,0t = y′

]
. (3.20)

We claim that

P
(2)
t (x, y;x′, y′)≈P[τ(x, y) <∞]Pt(x, x′)1{x′=y′}

+P[τ(x, y) =∞]Pt(x, x′)Pt(y, y′) as t→∞,
(3.21)

which comes from the fact that if two random walks started close to each other coalesce
somewhere during a large time interval [0, t], then with high probability this coalescence takes
place at the beginning of the time interval and any motion during this beginning phase is
irrelevant for where the random walks, coalesced or not, end up at the end of the time interval.
Let (Fnt )t≥0 denote the filtration generated by (ηnt )t≥0.
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Using this, it can be shown that in (3.19) one is allowed to make the following approxima-
tions

ηn
ε−2
n s

(x)
(
1− ηn

ε−2
n s

(y)
)
≈ E

[
ηn
ε−2
n s

(x)
(
1− ηn

ε−2
n s

(y)
) ∣∣Fε−2

n s−tn
]

=
∑
x′,y′

P
(2)
tn (x, y;x′, y′)ηn

ε−2
n s−tn

(x′)
(
1− ηn

ε−2
n s−tn

(y′)
)

≈ P[τ(x, y) =∞]
∑
x′,y′

Ptn(x, x′)Ptn(y, y′)ηn
ε−2
n s−tn

(x′)
(
1− ηn

ε−2
n s−tn

(y′)
)

= P[τ(x, y) =∞]
[∑

x′

Ptn(x, x′)ηn
ε−2
n s−tn

(x′)

−
∑
x′,y′

Ptn(x, x′)Ptn(y, y′)ηn
ε−2
n s−tn

(x′)ηn
ε−2
n s−tn

(y′)
]
.

(3.22)

Here the first term on the right-hand side in the square brackets gives a contribution to the
quantity in (3.19) of

2δn
∫ t

0
ds
∑
x,y

φ(εx)2p(y − x)P[τ(x, y) =∞]
∑
x′

Ptn(x, x′)ηn
ε−2
n s−tn

(x′)

= γδn

∫ t

0
ds
∑
x

φ(εx)2
∑
x′

Ptn(x, x′)ηn
ε−2
n s−tn

(x′)

≈ γδn
∫ t

0
ds
∑
x

φ(εx)2ηn
ε−2
n s

(x′) =
∫ t

0
dsXn

s (γφ),

(3.23)

which converges to the quantity in (3.15).
The second term on the right-hand side in the square brackets gives a contribution to the

quantity in (3.19) of

2δn
∫ t

0
ds
∑
x,y

φ(εx)2p(y − x)P[τ(x, y) =∞]
∑
x′,y′

Ptn(x, x′)Ptn(y, y′)ηn
ε−2
n s−tn

(x′)ηn
ε−2
n s−tn

(y′).

(3.24)
We need to argue that this term is small in the limit. The intuition for this is that since tn � 1,
the points x′ and y′ are typically so far from each other that ηn

ε−2
n s−tn

(x′) and ηn
ε−2
n s−tn

(y′) are
free of short-distance correlations, so we are asking for the simultaneous occurrence of two sites
of type one for unrelated reasons. But since our voter models are sparse, the simultaneous
occurrence of two ones should be a much rarer event than the occurrence of a single one, hence
the quantity in (3.24) should be aymptotically smaller than the quantity in (3.23).

To make this intuition a bit more precise, we observe that

E
[∑
x′,y′

Ptn(x, x′)Ptn(y, y′)ηn
ε−2
n s−tn

(x′)ηn
ε−2
n s−tn

(y′)
]

= E
[∑
x′,y′

Ptn(x, x′)Ptn(y, y′)ηn0 (Rx
′,ε−2

n s−tn
ε−2
n s−tn

)ηn0 (Ry
′,ε−2

n s−tn
ε−2
n s−tn

))
]

≈
∑
x′,y′

Pε−2
n s(x, x

′)Pε−2
n s(y, y

′)ηn0 (x′)ηn0 (y′),

(3.25)

where in the last step we have used that x′ and y′ are typically so far from each other that
random walks started there do not coalesce. It follows that the expectation of the quantity in
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(3.24) is approximately given by

2δn
∫ t

0
ds
∑
x,y

φ(εx)2p(y − x)P[τ(x, y) =∞]
∑
x′,y′

Pε−2
n s(x, x

′)Pε−2
n s(y, y

′)ηn0 (x′)ηn0 (y′)

≤ 2‖φ‖2∞ δn
∫ t

0
ds
∑
x,y

p(y − x)
∑
x′,y′

Pε−2
n s(x, x

′)Pε−2
n s(y, y

′)ηn0 (x′)ηn0 (y′)

≈ 2‖φ‖2∞ δn
∫ t

0
ds
∑
x

∑
x′,y′

Pε−2
n s(x, x

′)Pε−2
n s(x, y

′)ηn0 (x′)ηn0 (y′)

= 2‖φ‖2∞ δn
∫ t

0
ds
∑
x′,y′

P2ε−2
n s(x

′, y′)ηn0 (x′)ηn0 (y′).

(3.26)

Let Qt(x, y) denote the transition density of a Brownian motion with speed σ2. Then we may
approximate the quantity in (3.26) by

2‖φ‖2∞ δn
∫ t

0
ds
∑
x′,y′

εdnQ2s(εnx′, εny′)ηn0 (x′)ηn0 (y′)

= 2‖φ‖2∞ δ−1
n εdn

∫ t

0
ds
∫
Xn

0 (dx)
∫
Xn

0 (dy)Q2s(x, y).

(3.27)

Since δn = ε2n this is a quantity of order εd−2
n , which tends to zero by our assumption that

d ≥ 3.

3.3 Convergence in dimension two

In our sketch of the proof of Theorem 2, we have used several times that the dimension d
is strictly larger than 2. It may therefore seem that Theorem 2 cannot be generalized to
dimension two. On closer inspection, however, the only fact about coalescing random walks
in dimensions d ≥ 3 that we have essentially used is the fact that if t is large, then two
walkers, started at a distance of order one of each other, with high probability either coalesce
at the beginning of the time interval [0, t], or they do not coalesce at all during this whole
interval. This fact is still true in dimension two. In fact, it is known that in dimension two,
the coalescence time in (3.4) has the asymptotics∑

z

p(z)P[τ(0, z) ≥ t] ∼ 2πσ2

log t
as t→∞. (3.28)

More generally, for each fixed x, y, one has P[τ(x, y) > t] ∼ c/ log t for some constant c > 0.
Since the logarithm is a slowly varying function, this implies that P[τ(x, y) ≤ εt | τ(x, y) ≤
t] → 1 as t → ∞ for each ε > 0. In light of this, the following theorem, due to [CDP00],
should perhaps not come as a total surprise.

Theorem 3 (Scaling limit of sparse voter models in dimension two) Let εn be positive
constants, converging to zero and set δn := ε2n log(ε−2

n ). Let (ηnt )t≥0 be voter models on Z2

with invasion rates p satisfying (2.1). Define M(R2)-valued processes (Xn
t )t≥0 by

Xn
ε2nt

:= δn
∑
x∈Z2

ηnt (x)δεnx (t ≥ 0). (3.29)
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Assume that Xn
0 ⇒ X0 for some X0 ∈ M(R2) and let (Xt)t≥0 be the super-Brownian motion

with this initial state and diffusion constant σ2, zero growth rate and activity γ = 4πσ2. Then

P
[
(Xn

t )t≥0 ∈ ·
]

=⇒
n→∞

P
[
(Xt)t≥0 ∈ ·

]
. (3.30)

Remark Since the number of particles is of order δ−1
n = ε−2

n / log(ε−2
n ) while the number of

lattice points per unit of space is ε−2
n , our voter models are sparse in the limit n→∞.

Sketch of the proof The proof of Theorem 2 carries over without a change up to formulas
(3.12) and (3.13), and by taking the limit in (3.12) we deduce (3.14) just as in dimensions
d ≥ 3. (Note that this argument is insensitive to the precise choice of δn.) The approximation
of (3.13) with (3.17) also remains valid in dimension two, but from this point on we need to
be more careful.

In the two-dimensional case, the approximation (3.21) needs to be modified to

P
(2)
t (x, y;x′, y′)≈P[τ(x, y) < t]Pt(x, x′)1{x=x′}

+P[τ(x, y) ≥ t]Pt(x, x′)Pt(y, y′) as t→∞,
(3.31)

which is justified by the fact that with high probability, coalescence either takes place at the
beginning of the interval [0, t], or not at all during this interval (even though the walkers will
a.s. eventually coalesce).

Arguing in the same way as in the proof of Theorem 2, in analogy with (3.23), one then
finds that the quantity in (3.17) can be approximated by

2δ2nε
−2

∫ t

0
ds
∑
x,y

φ(εx)2p(y − x)P[τ(x, y) ≥ tn]
∑
x′

Ptn(x, x′)ηn
ε−2
n s−tn

(x′). (3.32)

(The preconstant here is different from the one in (3.23), which was derived using the fact
that δn = ε−2

n in dimensions d ≥ 3.) Since the logarithm is a slowly varying function, by
(3.28), we can choose tn � ε−2

n but still large enough such that
∑

y p(y − x)P[τ(x, y) ≥ tn] is
asymptotically equivalent to∑

y

p(y − x)P[τ(x, y) ≥ ε−2
n ] ∼ 2πσ2

log(ε−2
n )

as n→∞. (3.33)

Inserting this into (3.32), using the fact that δn = ε2n log(ε−2
n ), the proof then proceeds as

in the higher-dimensional case. The main work is to show that the term in (3.24) can be
neglected, but this follows from the fact that we have chosen tn large enough to get rid of
local correlations and from the sparseness of our voter models, just as in dimensions d ≥ 3.

4 Convergence of Neuhauser-Pacala models

4.1 Neuhauser-Pacala models

In [NP99], Neuhauser and Pacala introduced a model for the spatial distribution of two closely
related species. Let p be a probability distribution on Zd satisfying (2.1) and assume moreover
that

(v) p(0) = 0. (4.1)
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The Neuhauser-Pacala model with invasion rates p(y − x) and competition rates 0 ≤ α0, α1 is
the Markov process (ξt)t≥0 with state space {0, 1}Zd

that evolves according to the jump rates

ξ 7→ ξ + δx with rate
(
f0(x, ξ) + α0f0(x, ξ)

)
f1(x, ξ)

ξ 7→ ξ + δx with rate
(
f0(x, ξ) + α0f0(x, ξ)

)
f1(x, ξ),

(4.2)

where
fi(x, ξ) :=

∑
y

p(y − x)1{ξ(y)=i} (i = 0, 1) (4.3)

denotes the local frequency of type i in the neighborhood of the site x. We may interpret
the rates in (4.2) as follows: an individual belonging to species i dies with a rate that is
proportional to the number of individuals of its own species living nearby and αi times the
number of individuals of the other species living nearby. After an individual dies, it is replaced
by the offspring of a randomly chosen individual living nearby. We call αi the competition
rate experienced by individuals of species i due to competition with individuals of the other
species. Note that the competition rate experienced by individuals due to competition with
their own species is one. The biologically relevant case is αi ≤ 1, i.e., individuals experience
less competitition from the other species than from their own, due to their only partially
overlapping biological niches.

If α0 = α1 = 1, then the model in (4.2) is a voter model. In particular, there exist no
invariant laws in which the two species coexist if the dimension is one or two but there exist
coexisting invariant laws in dimensions d ≥ 3. On the other hand, assuming moreover that
p(−1)+p(1) < 1 in dimension one, Neuhauser and Pacala proved that if α0 = α1 is sufficiently
close to zero, then there exist such coexisting invariant laws in any dimension.

It is believed (but not proved) that in the symmetric case α = α0 = α1, if there exists a
coexisting invariant law for some value of α, then there exists a coexisting invariant law for
all α′ < α. It is moreover believed (but not proved except in the case p(−1) + p(1) = 1) that
in dimension d = 1, if α is sufficiently close to one, then the model has no coexisting invariant
laws. On the oter hand, due to the work of Cox, Merle and Perkins [CP05, CP07, CP08,
CMP10], it is now rigorously known that in dimensions d ≥ 2, if α is sufficiently close to
one, then the model has a coexisting invariant law. If one assumes that the conjectured (but
unproven) monotonicity in α is correct, then this implies that in dimensions d ≥ 2, coexistence
is possible for any α < 1 (and in dimensions d ≥ 3 even for α = 1). Thus: in dimensions
two and more, even the smallest difference in ecological niches is sufficient to allow species to
coexist, but in dimension one species need to be sufficiently different to be able to coextist.

4.2 Convergence in transient dimensions

The following theorem is proved in [CP05] and then used in [CP07] to prove coexistence of
Neuhauser-Pacala models in dimensions d ≥ 3 for α0, α1 sufficiently close to each other and
close to one.

Theorem 4 (Sparse Neuhauser-Pacala models in transient dimensions) Let εn be
positive constants, converging to zero and set δn := ε2n. Let (ηnt )t≥0 be Neuhauser-Pacala
models on Zd (d ≥ 3), with invasion rates p satisfying (2.1) and (4.1) and competition rates

αni = 1 + θiε
2
n (i = 0, 1), (4.4)
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where θ0, θ1 ∈ R. Define M(Rd)-valued processes (Xn
t )t≥0 by

Xn
ε2nt

:= δn
∑
x∈Zd

ηnt (x)δεnx (t ≥ 0). (4.5)

Assume that Xn
0 ⇒ X0 for some X0 ∈ M(Rd) and let (Xt)t≥0 be the super-Brownian motion

with this initial state and diffusion constant σ2, growth rate

β= θ0
∑
z,z′

p(z)p(z′)P[τ(0, z) = τ(0, z′) =∞, τ(z, z′) <∞]

−θ1
∑
z,z′

p(z)p(z′)P[τ(0, z) = τ(0, z′) =∞]
(4.6)

and activity
γ := 2

∑
z∈Zd

p(z)P[τ(0, z) =∞], (4.7)

where τ(x, y) is defined in (3.4). Then

P
[
(Xn

t )t≥0 ∈ ·
]

=⇒
n→∞

P
[
(Xt)t≥0 ∈ ·

]
. (4.8)

Remarks The biologically relevant case is θ0, θ1 ≤ 0. In particular, if θ0 = θ1 < 0, then,
since P[τ(z, z′) < ∞| τ(0, z) = τ(0, z′) = ∞] < 1, the growth parameter β in (4.6) is strictly
positive. This reflects the fact that we are looking at models in which organisms of species 1
are sparse and the dynamics of the Neuhauser-Pacala model give an advantage to types that
are locally in the minority.

Sketch of the proof The proof is similar to the proof of Theorem 2 and in fact yields the
latter as a special case when θ0 = θ1 = 0. We may rewrite the rates in (4.2) as

ξ 7→ ξ + δx with rate f1(x, ξ) + εθ0f1(x, ξ)2

ξ 7→ ξ + δx with rate f0(x, ξ) + εθ1f0(x, ξ)2.
(4.9)

Writing our generator as GNP = Gvot + ε2Gθ, in the generator calculation (3.10), we get an
additional term of the form

Gθf
ε,δ
φ (ξ) = δθ0

∑
x,y,z

p(y − x)p(z − x)(1− ξ(x))ξ(y)ξ(z)φ(εx)

−δθ1
∑
x,y,z

p(y − x)p(z − x)ξ(x)(1− ξ(y))(1− ξ(z))φ(εx).
(4.10)

This yields two extra terms in the compensator of Xn(φ) (compare (3.12)) of the form

δnθ0

∫ t

0
ds
∑
x,y,z

p(y − x)p(z − x)(1− ξn
ε−2
n s

(x))ξn
ε−2
n s

(y)ξn
ε−2
n s

(z)φ(εnx)

−δnθ1
∫ t

0
ds
∑
x,y,z

p(y − x)p(z − x)ξn
ε−2
n s

(x)(1− ξn
ε−2
n s

(y))(1− ξn
ε−2
n s

(z))φ(εnx).
(4.11)
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Let P (3)
t (x, y, x;x′, y′, z′) denote the transition probabilities of three coalescing random walks.

We claim that (compare (3.21))

P
(3)
t (x, y, x;x′, y′, z′)≈P[τ(x, y) <∞, τ(x, z) <∞]Pt(x, x′)1{x′=y′=z′}

+P[τ(x, y) <∞, τ(x, z) =∞]Pt(x, x′)Pt(z, z′)1{x′=y′}
+P[τ(x, z) <∞, τ(x, y) =∞]Pt(x, x′)Pt(y, y′)1{x′=z′}
+P[τ(y, z) <∞, τ(x, y) =∞]Pt(x, x′)Pt(y, y′)1{y′=z′}
+P[τ(x, y) = τ(y, z) = τ(z, x) =∞]Pt(x, x′)Pt(y, y′)Pt(z, z′).

(4.12)
We choose 1� tn � ε−2

n and approximate (4.11) by looking a bit back in time. This yields

δnθ0

∫ t

0
ds
∑
x,y,z

φ(εnx)p(y − x)p(z − x)

×
{

P[τ(y, z) <∞, τ(x, y) =∞]
∑
x′,y′

Pt(x, x′)Pt(y, y′)(1− ξnε−2
n s−tn

(x′))ξn
ε−2
n s−tn

(y′)

+ P[τ(x, y) = τ(y, z) = τ(z, x) =∞]
∑
x′,y′,z′

Pt(x, x′)Pt(y, y′)Pt(z, z′)

×(1− ξn
ε−2
n s−tn

(x′))ξn
ε−2
n s−tn

(y′)ξn
ε−2
n s−tn

(z′)
}

−δnθ1
∫ t

0
ds
∑
x,y,z

φ(εnx)p(y − x)p(z − x)

×
{

P[τ(y, z) <∞, τ(x, y) =∞]
∑
x′,y′

Pt(x, x′)Pt(y, y′)ξnε−2
n s−tn

(x′)(1− ξn
ε−2
n s−tn

(y′))

+ P[τ(x, y) = τ(y, z) = τ(z, x) =∞]
∑
x′,y′,z′

Pt(x, x′)Pt(y, y′)Pt(z, z′)

×ξn
ε−2
n s−tn

(x′)(1− ξn
ε−2
n s−tn

(y′))(1− ξn
ε−2
n s−tn

(z′))
}
.

(4.13)
We now use the sparsity of ones, which says that if we look at ite x′, y′, z′ that are sufficiently
far apart, then given that at least one of these positions is of type one, the other two sites are
with hight probability of type zero. Skipping the more careful arguments used to justify this
in previous sections, we simply approximate our formulas by

δnθ0

∫ t

0
ds
∑
x,y,z

φ(εnx)p(y − x)p(z − x)P[τ(y, z) <∞, τ(x, y) =∞]
∑
y′

Pt(y, y′)ξnε−2
n s−tn

(y′)

−δnθ1
∫ t

0
ds
∑
x,y,z

φ(εnx)p(y − x)p(z − x)P[τ(x, z) = τ(x, y) =∞]
∑
x′

Pt(x, x′)ξnε−2
n s−tn

(x′)

≈ δnβ
∫ t

0
ds
∑
x

ξn
ε−2
n s

(x)φ(εnx) =
∫ t

0
dsXn

s (βφ),

(4.14)
which explains the extra drift compared to the pure voter model case. The expression for the
quadratic variation also gets extra terms but one can show that these are small in the limit.
The arguments using the sparsety of ones become technically more demanding than in the
pure voter case since duality is no longer available, even though it is still approximately true
on suitably chosen intermediate time scales.
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4.3 Convergence in dimension two

In [CP08], Theorem 4 is generalized to dimension 2, but the groth parameter of the limiting
super-Brownian motion is not strong enough there to conclude that coexistence holds for
α0, α1 sufficiently close to each other and close to one. This difficulty is overcome in [CMP10]
where a more subtle convergence statement is proved that we formulate now.

In dimension two, one has the asymptotics (compare (3.28))

(i)
∑
z

p(z)P[τ(0, z) ≥ t] ∼
t→∞

2πσ2

log t
,

(ii)
∑
z,z′

p(z)p(z′)P[τ(0, z) ≥ t, τ(z, z′) < t] ∼
t→∞

λ

log t
,

(iii)
∑
z,z′

p(z)p(z′)P[τ(0, z) ∧ τ(0, z′) ∧ τ(z, z′) ≥ t] ∼
t→∞

κ

(log t)3
,

(4.15)

where 0 < λ, κ < ∞ are constants, depending on p. (In fact (i) and (iii) imply (ii) with
0 < λ < 2πσ2.)

The following result is proved in [CMP10].

Theorem 5 (Sparse Neuhauser-Pacala models in transient dimensions) Let εn be
positive constants, converging to zero. Let (ηnt )t≥0 be Neuhauser-Pacala models on Z2 with
invasion rates p satisfying (2.1) and (4.1) and competition rates

αni = 1− ε2n(log(ε−2
n ))3 + θiε

2
n log(ε−2

n ) (i = 0, 1), (4.16)

where θ0, θ1 ∈ R. Define M(R2)-valued processes (Xn
t )t≥0 by

Xn
ε2nt

:= ε2n log(ε−2
n )

∑
x∈Z2

ηnt (x)δεnx (t ≥ 0). (4.17)

Assume that Xn
0 ⇒ X0 for some X0 ∈ M(R2) and let (Xt)t≥0 be the super-Brownian motion

with this initial state and diffusion constant σ2, growth rate β = κ + λ(θ0 − θ1) and activity
γ = 4πσ2. Then

P
[
(Xn

t )t≥0 ∈ ·
]

=⇒
n→∞

P
[
(Xt)t≥0 ∈ ·

]
. (4.18)

Remarks Contrary to Theorem 4, this theorem is only concerned with the case α0, α1 < 1.
Note that (log(ε−2

n ))3 � log(ε−2
n ), so the distance between α0 and α1 is much smaller than the

distance between either of them and 1. This subtle way of approaching the point (α0, α1) =
(1, 1) is necessary in order to obtain the contribution κ to the drift, which is essential to obtain
a supercritical process in the symmetric case α0 = α1. To see where this difficulty arises from,
recall from the remarks below Theorem 4 that to obtain a positive growth rate in the symmetric
case α0 = α1, it was essential that

∑
z,z′ p(z)p(z

′)P[τ(z, z′) <∞| τ(0, z) = τ(0, z′) =∞] < 1.
On the other hand (4.15) (i) and (iii) imply that in two dimensions∑

z,z′

p(z)p(z′)P[τ(z, z′) < t | τ(0, z) ∧ τ(0, z′) ≥ t] −→
t→∞

1, (4.19)

whence we cannot expect a positive drift due to this effect.

Sketch of the proof One needs to adapt the proof of Theorem 4 in the same spirit as how we
modified the proof of Theorem 2 to obtain Theorem 3. A difficulty is that in the calculation
of the growth rate, the leading order terms cancel and one has to go to the next order. To
spare the reader, we skip the details.
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