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Pod Vodárenskou věž́ı 4, Prague 8, Czechia

2 Faculty of Management,
University of Economics, Prague
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Abstract. In this paper we study the problem of student knowledge
level estimation. We use probabilistic models learned from collected data
to model the tested students. We propose and compare experimentally
several different Bayesian network models for the score prediction of stu-
dent’s knowledge. The proposed scoring algorithm provides not only the
expected value of the total score but the whole probability distribution
of the total score. This means that confidence intervals of predicted total
score can be provided along the expected value. The key that enabled
efficient computations with the studied models is a newly proposed in-
ference algorithm based on the CP tensor decomposition, which is used
for the computation of the score distribution. The proposed algorithm is
two orders of magnitude faster than a state of the art method. We report
results of experimental comparisons on a large dataset from the Czech
National Graduation Exam in Mathematics. In this evaluation the best
performing model is an IRT model with one continuous normally dis-
tributed skill variable related to all items by the graded response models.
The second best is a multidimensional IRT model with an expert struc-
ture of items-skills relations and a covariance matrix for the skills. This
model has a higher improvement with larger training sets and seems to
be the model of choice if a sufficiently large training dataset is available.

Keywords: Bayesian networks · Educational Testing · Score Prediction
· Efficient Probabilistic Inference · Multidimensional IRT · CP tensor
decomposition.

1 Introduction

In this paper we study the problem of student knowledge level estimation. For
this problem we use probabilistic models learned from collected data. When a
model is applied to testing a particular student the model is updated by items
answered by the tested student so far and the updated model is used to select the
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next item to be answered by the tested student. This concept is often referred
as computerized adaptive testing (CAT), see, e.g. [11, 20].

In their seminal work [2] Almond and Mislevy pointed out that the students
can be modelled well using Bayesian networks [14, 9, 10]. This idea was further
elaborated in [19, 1]. All probabilistic models studied in this paper can be con-
sidered Bayesian networks (BNs) in a broader sense.

The paper is organized as follows. In Section 2 we describe probabilistic mod-
els that can be used to model student knowledge. In Section 3 we explain how
the probabilistic inference with these models can be performed. Section 4 repre-
sents the main theoretical contribution of the paper, which is an efficient method
for the score computation based on the CP tensor decomposition. In Section 5,
which presents the main experimental contribution of the paper, we report re-
sults of experimental comparisons using a large dataset from the Czech National
Graduation Exam in Mathematics. The results are summarized in Section 6.

2 Models

We will model the problem using models sharing four groups of variables:

– Skills (in some models called Factors), denoted S1, . . . , Sm are unobserved
(hidden) variables used to specify student abilities (skills). They will be
either binary variables, discrete ordinal variables, or continuous variables
depending on the model used.

– Items (also called Questions or Tasks), denoted X1, . . . , Xn will be discrete
ordinal variables whose states correspond to the number of points received
for the answer. We will assume the states (points) are from a set of integers
{0, 1, . . . , z − 1}. When testing a particular student we will estimate their
probability distributions using the collected evidence.

– Answered items are a subset of copies of items X1, . . . , Xn. An answered item
is observed for the currently tested student. Answered item corresponding to
an item Xi, i ∈ {1, . . . , n} is denoted X ′i. Conditional probability of each X ′i
given the skills is by definition the same as for their corresponding item Xi.
The answered items are used to propagate collected evidence to the model3.

– The total score node, denoted Y , which represents the total sum of scores
from all questions4. The values of Y are all possible total sums of items’
values of X1, . . . , Xn. For example, if all items are binary (taking values 0
and 1) then Y has n+ 1 values (0, 1, . . . , n).

3 For each answered item X ′i its corresponding item Xi is generally still uncertain.
Items Xi represent certain type of a question or a task that can be repeated and
the result need not to be the same for the same student, i.e., we estimate student’s
skills and admit mistakes even if he/she has required skills and vice versa.

4 The score we estimate is not the score the tested student gets at the end of the
current test but in another test of the same type. Of course, the model can also
provide the estimate of the test score in the current test – in this case, another score
node, say Y ′, would have nodes X ′i as its parents instead. In this case all methods
would necessarily have the zero score prediction error at the end of the test.
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The general structure of all models will be similar albeit they will differ by the
number of skill variables, by the type of skill variables, and by a possible direct
dependence among skills represented in the model. In Figure 1 and Figure 2 we
give examples of two types of considered models.

The BN model in Figure 1 has three independent skills. These skills influence
scores of items. It is assumed that for each item a domain expert decided which
skills are relevant. In the model of Figure 1 skill S1 influences item X1, skill S2

influences both X2 and X3 items, and skill S3 also influences both items X2 and
X3 but also item X4. The items X1, X2, X3, and X4 are never observed while
items X ′1, X ′2, X ′3, and X ′4 represent observed items and are included in the
model only if they are observed. If they are not observed then they are omitted
from the model since they represent barren variables.

S1 S2

X′1 X′2 X′3 X′4

Y

S3

X1 X2 X4X3

Fig. 1. An expert BN model with independent skills

Another BN model is presented in Figure 2. This differs from the BN model
in Figure 1 in two aspects. First, in this models all items are related to all skills.
Second, the skills are dependent. Typically, this model would be learned from
collected data without using expert knowledge.

The models discussed above can be combined. For example, expert knowledge
of relations of items to skills from the BN model of Figure 1 can be used to reduce
the number of edges in the BN model of Figure 2.

In this paper we will compare following models:

– An expert model with independent skills (Figure 1 type). Skills are repre-
sented by ordinal variables with three states. Items are related to their par-
ent skills by general conditional probability tables restricted by monotonicity
conditions [5]. The model parameters will be learned using restricted gradient
method [15]. This model will be referred as rgrad. We should note that other
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Y

S2

X1 X2 X4X3

S1

X′1 X′2 X′3 X′4

Fig. 2. A BN model with dependent skills related to all items

methods for learning conditional probability tables satisfying monotonicity
conditions could be also used, e.g. the isotonic regression EM by Masegosa
et al. [12]. We decided to report results of the restricted gradient method in
this paper since it provided best results in preliminary experiments [16].

– A model with one continuous skill variable related to all items. The skill
variable is assumed to have Gaussian distributions and items are related
to the skill node by the graded response models (GRMs) [17]. This model
belongs to the well-known family of IRT models and, thus, it will be referred
as irt.

– An expert model with the same structure as rgrad but the skill variables are
continous, each having the Gaussian distributions and the items are related
to skills by GRMs as in IRT. This model can be considered as an example
of a multidimensional IRT [8] with the zero covariance among skills (often
called factors in IRT). Therefore it will be referred as mirt-cov0.

– An expert model with the same structure as rgrad with continous skill vari-
ables which differs from mirt-cov0 only by including relation between skills
represented by multidimensional Gaussian distribution with a covariance
matrix allowing nonzero non-diagonal elements. This model will be referred
as mirt-cov1.

– The last group of models has the structure of model from Figure 2, i.e., all
items are related to all skills and the skills are dependent. It is a straightfor-
ward generalization of irt to more skills (factors). Skills are assumed to have
multidimensional Gaussian distribution with the covariance matrix allowing
nonzero non-diagonal elements. Depending on the number of factors these
models will be referred as mirt-2F, mirt-3F, and mirt-4F, respectively.

The model parameters of the IRT and the multidimensional IRT models will be
learned using algorithms implemented in the R mirt package [4].
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The joint probability distribution of these models is defined by their structure
represented by directed acyclic graph and their conditional probability distribu-
tions of each node given its parents as:

P (Y |X1, . . . , Xn) ·
n∏

i=1

P (Xi|pa(Xi)) ·
n∏

i=1

P (X ′i|pa(X ′i)) ·
m∏
j=1

P (Sj |pa(Sj)) .

3 Probabilistic Inference

Models introduced in Section 2 will be used to estimate the probability distribu-
tion of the total score given the items answered so far. We will use symbol I to
denote the set of indexes of already answered items X ′i. To simplify notation we
will use symbol e to denote the evidence collected so far, i.e., e = {X ′i = x′i}i∈I .

The probability distribution of the total score given evidence e is (in case of
discrete skill nodes) computed as:

P (Y |e) =
∑

X1,...,Xn

∑
S1,...,Sm

P (Y,X1, . . . , Xn, S1, . . . , Sm|e) .

For the continuous skill nodes the integrals are used instead of the summation.
Using the general structure of the model this can be rewritten as:

P (Y |e) =
∑

X1,...,Xn

∑
S1,...,Sm

P (Y |X1, . . . , Xn) ·Q(X1, . . . , Xn, S1, . . . , Sm|e)

where

Q(X1, . . . , Xn, S1, . . . , Sm|e) =

n∏
i=1

P (Xi|pa(Xi)) ·R(S1, . . . , Sm|e)

R(S1, . . . , Sm|e) ∝
∏
i∈I

P (X ′i = x′i|pa(X ′i)) ·
m∏
j=1

P (Sj |pa(Sj))

and the conditional probability distribution

P (Y = y|X1 = x1, . . . , Xn = xn) =

{
1 if y =

∑n
i=1 xi

0 otherwise

is deterministic and represents the distribution of the total sum of items’ values.
In all considered models the values of items are dependent through the skills.

Therefore we cannot sum out the skills for each item independently and then
compute the probability distribution of the total sum. On the other hand, if a
skill configuration is fixed, say it is a vector s = (s1, . . . , sm), then items become
independent. This means that for each configuration of skills we can write

Q(X1, . . . , Xn, S1 = s1, . . . , Sm = sm|e) =

n∏
i=1

P (Xi|s) ·R(s|e) .
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Using the above formula and denoting by x the vector (x1, . . . , xn), by X =
×n

i=1Xi the set of all configurations of x, and by S the set of all configurations
of all skills we get:

P (Y |e) =
∑
s∈S

(∑
x∈X

P (Y |X1 = x1, . . . , Xn = xn) ·
n∏

i=1

P (Xi = xi|s)

)
·R(s|e) .

In case of continuous skill nodes we will approximate the integrals over skills
by a sufficiently large finite set of skill configurations s = (s1, . . . , sm) chosen so
that they cover well the space of skill values. For this purpose, we will use Halton
sequences [6] in m dimensions to generate points in the Cartesian product S of
skills’ state spaces5. Although these sequences are deterministic, they are of low
discrepancy, i.e. they cover well the space S. Thus, we can write:

P (Y |e) =
∑
s∈S

P (Y |s) ·R(s|e) , where (1)

P (Y |s) =
∑
x∈X

P (Y |X1 = x1, . . . , Xn = xn) ·
n∏

i=1

P (Xi = xi|s) . (2)

Now, the only remaining obstacle for efficient inference is the conditional dis-
tribution P (Y |X1 = x1, . . . , Xn = xn), which can be very large since, typically,
the models contain tens to hundreds of items. An efficient transformation of this
distribution will be the topic of the next section.

4 Efficient Inference Method for the Score Computation

In this section we present a computationally efficient method that will be used
to compute the probability distribution of the total score. It is based on the CP
tensor decomposition [7, 3] and can be also viewed as an application of Discrete
Fourier Transformation (DFT). As we will show latter it is several orders of
magnitude faster than a standard probabilistic inference approach based on,
so called, parent divorcing [13]. The proposed method is especially useful for
discrete random variables that have a large number of parents. This is the case
of our case study since the total score variable has 37 discrete valued parents.

We assume each of n items takes values (points) from the set {0, 1, . . . , z−1}.
Therefore the maximum possible total score is n(z − 1) and the total number
of states of Y is6 k = 1 + n(z − 1). In the derivation of our algorithm we will
exploit Theorem 3 and its proof given in [18]. From this result it follows that for
all y, x1, . . . , xn we can write7:

P (Y = y|X1 = x1, . . . , Xn = xn)

5 In order to use the same formula for both discrete and continuous skills we will use
S to denote the set of skill configurations also in the continuous case.

6 Please, note we include also the state 0.
7 Please, note that the upper index m of αm

j , j = 1, . . . , k. represents the power of αj .
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=

k∑
b=1

αx1

b · . . . · α
xn

b · βb,y =

k∑
b=1

αx1+...+xn

b · βb,y , (3)

where α1, . . . , αk are pairwise distinct real or complex numbers and values of
βb,y are solutions of the system of linear equations

Y = AX , (4)

where Y is the k×k identity matrix, A is the k×k Vandermonde matrix defined
by a vector α = (α1, . . . , αk) as

A =
{
αj
i

}k,k−1

i=1,j=0
=


α0
1 α0

2 . . . α0
k

α1
1 α1

2 . . . α1
k

. . .

α
(k−1)
1 α

(k−1)
2 . . . α

(k−1)
k

 ,

and X is the matrix defined as

X = {βb,y}k,k−1b=1,y=0 =


β1,0 β1,1 . . . β1,k−1

β2,0 β2,1 . . . β1,k−1

. . .

βk,0 βk,1 . . . βk,k−1

 .

Using the standard notation for probability tables we can write the equation (3)
in a compact form as

P (Y |X1, . . . , Xn) =
∑
B

P (Y,B) ·
n∏

i=1

P (Xi, B) , (5)

where for all values b, xi, y of variables B,Xi, Y , respectively, it holds:

P (Y = y,B = b) = βb,y and P (Xi = xi, B = b) = αxi

b .

To achieve a good numerical stability for large dimensional problems (i.e., with
high values of n) it is wise to use complex valued coefficients α1, . . . , αk. We
define them as the complex numbers from the unit circle (roots of unity) in the
space of complex numbers, i.e., for j = 1, . . . , k:

αj = exp

(
j · 2πi

k

)
, (6)

where i is the imaginary unit, satisfying the equation i2 = −1. This brings
also a very nice benefit since, in this case, the solution of the system of linear
equations (4) is well-known:

X =
1

k
·AT ,

where AT denotes the transpose of A and AT denotes the matrix with complex
conjugated entries of AT .
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Remark 1. Vandermonde matrix A with entries specified by equation (6) is ac-
tually the Discrete Fourier Transformation (DFT) matrix.

Now we are ready to specify the final step of the probabilistic inference
discussed in Section 3. In formula (2) we replace the conditional probability
distribution of Y by the expression specified by formula (5)

P (Y |s) =
∑
x∈X

∑
b∈{1,...,k}

P (Y,B = b) ·
n∏

i=1

P (Xi = xi, B = b) ·
n∏

i=1

P (Xi = xi|s)

=
∑

b∈{1,...,k}

P (Y,B = b) ·
n∏

i=1

∑
xi∈Xi

P (Xi = xi, B = b) · P (Xi = xi|s)

=
∑

b∈{1,...,k}

βb,y ·
n∏

i=1

∑
xi∈Xi

αxi

b · P (Xi = xi|s) .

s c o r e ← f unct ion (P)
{

z ← nrow (P)
n ← nco l (P)
k ← 1+n∗ ( z−1)
a lpha ← complex ( modulus=1, argument =(1: k )∗2∗ p i /k )
A ← outer ( a lpha , seq (0 , k−1) , ’ ˆ ’ )
X ← (1/k ) ∗ t (Conj (A) )
v ← rep (1 , k )
f o r ( i i n 1 : n ){

v ← v ∗ crossprod ( t (A [ , 1 : z ] ) , P [ , i ] )
}
y ← drop (Re( crossprod ( t (X) , v ) ) )
re tu rn ( y )

}

Fig. 3. Scoring algorithm for a given skill configuration

In Figure 3 we present8 the algorithm for the total score computation for a
given skill configuration s. The algorithm input is specified in z × n matrix9 P
defined by distributions P (Xi|s) so that the element of jth row and ith column

8 We we use the notation of R, in which we implemented the algorithm and which
we believe is self-explanatory. The functions outer and crossprod implement the
outer and the matrix products, respectively. The third argument of outer gives the
function to use on the outer products, in this case it is the exponentiation.

9 The number of rows z is the maximum item value computed over all items plus one.
If a value is impossible then the corresponding matrix entry is set to zero.
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of matrix P corresponds to the value P (Xi = j|s) of distribution P (Xi|s). The
output y of the algorithm is P (Y |s) – the probability distribution of the total
score for the given s.

Proposition 1. The algorithm presented in Figure 3 computes the probability
distribution of the total score P (Y |s) in O((nz)2) time.

Proof. The most computationally demanding steps of the algorithm are the ma-
trix products crossprod. The first matrix product is repeated n times in the for
loop of the algorithm and it is applied to a matrix with dimensions k × z and
a vector of length z, which requires kz multiplications and additions. Since the
cross product is repeated n times and k = nz the overall complexity of this step
is O((nz)2). The second matrix product is applied to a matrix with dimensions
k × k and a vector of length k, which implies the overall complexity of this
step is also O((nz)2). Remaining steps of the algorithm have a lower complexity
therefore the computational complexity of the algorithm is O((nz)2).

To estimate the total score of a particular student the scoring algorithm
given a skill configuration s is repeated for each configuration s of student’s
skills, which can be thousands or more. Therefore, the complexity of the scor-
ing algorithm represents an important issue. The complexity of the presented
algorithm is quadratic with respect to the number of possible total scores.

In Figure 4 we compare the computational CPU time of the presented scoring
algorithm based on the CP tensor decomposition with the state of the art method
– the parent divorcing method [13]. In the figure the horizontal axis corresponds
to the number of items that are parents of the score node. The items corresponds
to items from the model of the Czech National Graduation Exam in Mathematics
described in Section 5. They are added one by one in the ascending order. Most
items have two states only, but some of them have more than two states (the
maximum is four). The vertical axis corresponds to the total CPU time of one
thousand of actual computations of the score for the given number of items10.
We can see that the scoring algorithm based on the CP tensor decomposition is
two orders of magnitude faster than the parent divorcing method.

In Figure 5 the computational CPU time of the presented scoring algorithm
based on the CP tensor decomposition. The vertical axis corresponds to the
average CPU time of one computation of the score for the given number of
items. This time the scale is linear to better reveal the quadratic computational
complexity of the algorithm.

5 Experimental model comparisons

In this section we report results of experimental comparisons performed using a
large dataset from the Czech National Graduation Exam in Mathematics. This
dataset contains answers from more than 20,000 students who took this test

10 Please, note the vertical axis has a logarithmic scale.
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Fig. 4. Comparisons of the total computational time of 1000 computations of the scor-
ing algorithms using the logarithmic time scale.
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Fig. 5. The average computational time (in milliseconds) of the scoring algorithm based
on the CP tensor decomposition using the linear time scale.
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in the year 2015. We randomly selected training subsets of different sizes and a
testing subset consisting of answers of 100 students11. The test contains 37 items,
most of them scored with either 0 or 1 point, the highest number of points for
one item is 3. The expert model contains 8 skill nodes and is described in [15].

Model comparisons are presented in Figure 6. We evaluate the score predic-
tion quality during adaptive tests performed for each of 100 students from the
testing set. The criteria used for evaluation was the average absolute difference of
the expected score computed by each model and the true score. The items were
selected for each student using an adaptive criteria. To get comparable results
we used the same sequence of items for all models. The sequence was established
using the rgrad model with the expected information gain criteria12.

From the plots we can clearly see that the best performing algorithm is irt
for both sizes of the training dataset13. The second best performing algorithm
was mirt-COV1. This is the algorithm that uses the expert structure for items-
skills relations and includes relations between skills. It is important to note that
the improvement with larger training set is larger for mirt-COV1 than for irt.
Generally, more complex models seem to require more training data than irt to
achieve better performance. Also, expert models that do not represent depen-
dence between skills (mirt-COV0 and rgrad) have worse performance than the
corresponding expert model representing this dependence (mirt-COV1 ). This
indicates that the current expert model rgrad could be probably improved by
including such dependencies explicitly in the model. Finally, from models with
more than one skill those that have the expert structure for items-skills relations
perform better than those that have not.

Since the scoring algorithm provides not only the expected value of the total
score but the whole probability distribution of the total score it can be used
to provide confidence intervals of predicted total score as well. In Figure 7 we
present an example of 95% confidence interval for one student from the testing
set using the irt model learned from 160 students’ records from training data.

6 Discussion

In this paper we presented an experimental comparison of different Bayesian
network models for score prediction during an adaptive test of student’s knowl-
edge. The key that enabled efficient computation was a new inference algorithm
used for computation of the score distribution. We are not aware of any other
work that would compare several diverse student models as those discussed in
this paper on a real data.

11 Of course, the selection process ensured that the datasets were disjoint.
12 Albeit the item sequences might slightly differ for different models we do not ex-

pect this has a significant impact on models’ performance. The score prediction is
independent of the order of items in the sequence if the items are the same.

13 All claims about algorithms’ performance were verified using the Wilcoxon rank test
with significance level 0.01. Actually, the probability of the alternative hypothesis
was always lower than 10−15.
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Fig. 6. Model comparisons for the training set consisting of 160 and 640 students,
respectively.
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Fig. 7. Expected total score and 95% confidence interval for one student from the
testing set.

The models presented in this paper were tested solely with respect to their
ability to predict the total score. It should be noted that another important task
in educational testing is skill analysis. For example, the estimation of the level
of student’s skills plays an important role in intelligent tutoring systems. Only
some of the tested models contain skills with a comprehensible interpretation. In
rgrad, mirt-cov0, and mirt-cov1 experts created the model structures with such
an interpretation in mind. On the other hand, skills in models mirt-2F, mirt-3F,
and mirt-4F are truly hidden variables and do not have any clear interpretation.
In the specific case of the irt model the skill node can be interpreted as a general
ability to answer/solve the modeled items.

Since the data used in our study do not provide information about pres-
ence/absence of skills of a student we cannot test directly models’ skill prediction
quality. However, we can assume that skill and total score prediction quality are
related. We expect that best score prediction models with expert-identified skills
can be used also as good skill analysis models.
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