
Decomposition of probability tables

representing Boolean functions
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Abstract

We apply tensor rank-one decomposition (Savicky and Vomlel, 2005)
to conditional probability tables representing Boolean functions. We present
a numerical algorithm that can be used to find a minimal tensor rank-one
decomposition together with the results of the experiments performed us-
ing the proposed algorithm.

We will pay special attention to a family of Boolean functions that are
common in probabilistic models from practice - monotone and symmetric
Boolean functions. We will show that these functions can be better de-
composed than general Boolean functions, specifically, rank of their corre-
sponding tensor is lower than average rank of a general Boolean function.

1 Introduction

Probabilistic graphical models are a powerful family of models for reasoning
under uncertainty. In these models conditional independence relations between
model variables are exploited so that the computations can be performed ef-
ficiently. Diverse methods were developed for efficient computations in these
models. Probably the best known is in the junction tree propagation (Jensen
et al., 1990).

The efficiency of the computations can be further improved if internal struc-
ture of conditional probability tables (CPTs) is taken into account. Again,
different techniques for exploiting the internal structure were proposed. Some
of these techniques concentrate on special class of models, for example, in-
dependence of causal influence (or causal independence) models (Heckerman
and Breese, 1994; Takikawa and D’Ambrosio, 1999; Zhang and Poole, 1996;
Lucas, 2005), context specific independence (Boutilier et al., 1996), logical con-
straints (Darwiche, 2002), and functional dependence (Vomlel, 2002).

In this paper we apply the tensor rank-one decomposition (Savicky and
Vomlel, 2005) to CPTs representing Boolean functions. The basic idea is to
decompose a probability table into a series of tables, such that the table that is
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the sum of the series is equal to the original table. Each table in the series has
the same domain as the original table but can be expressed as a product of one-
dimensional tables. Entries in tables are allowed to be any real number, i.e., they
can be also negative numbers. The possibility of having negative numbers, in
contrary to a multiplicative decomposition, opens new possibilities for compact
representation of probability tables. In order to have the decomposition as
compact as possible we search for a shortest series.

It is convenient to formally specify the task using the tensor terminology.
Assume variables Xi, i ∈ N ⊂ N each variable Xi taking values (a value of Xi

will be denoted xi) from a finite set Xi. Let for any A ⊆ N the symbol xA

denotes a vector of the values (xi)i∈A, where for all i ∈ A: xi is a value from
Xi.

Definition 1 Tensor
Let A ⊂ N . Tensor ψ over A is a mapping

×i∈AXi 7→ R .

The cardinality |A| of the set A is called tensor dimension.

Note that every probability table can be looked upon as a tensor. Tensor
ψ over A is an (unconditional) probability table if for every xA it holds that
0 ≤ ψ(xA) ≤ 1 and

∑
xA ψ(xA) = 1. Tensor ψ is a conditional probability table

(CPT) if for every xA it holds that 0 ≤ ψ(xA) ≤ 1 and if there exists B ⊂ A
such that for every xB it holds

∑
xA\B

ψ(xB , xA\B) = 1.
Next, we will recall the basic tensor notion. If |A| = 1 then tensor is a vector.

If |A| = 2 then tensor is a matrix. The outer product ψ ⊗ ϕ of two tensors
ψ : ×i∈AXi 7→ R and ϕ : ×i∈BXi 7→ R, A∩B = ∅ is a tensor ξ : ×i∈A∪BXi 7→ R
defined for all xA∪B as

ξ(xA∪B) = ψ(xA) · ϕ(xB) .

Now, let ψ and ϕ are defined on the same domain ×i∈AXi. The sum ψ + ϕ
of two tensors is tensor ξ : ×i∈AXi 7→ R such that

ξ(xA) = ψ(xA) + ϕ(xA) .

Definition 2 Tensor rank (H̊astad, 1990)
Tensor of dimension |A| has rank one if it is an outer product of |A| vectors.
Rank of tensor ψ is the minimal number of tensors of rank one that sum to ψ.
Rank of tensor ψ will be denoted as rank(ψ).

Remark Note that standard matrix rank is a special case of tensor rank (for
|A| = 2).

Now, we are ready to formalize the task of decomposition of a probability
table into a shortest series of tables that are product of one-dimensional tables.
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Definition 3 Tensor rank-one decomposition
Assume a tensor ψ over A. A series of tensors {%b}r

b=1 such that

• for b = 1, . . . , r: rank(%b) = 1, i.e.,

%b = ⊗i∈A ϕb,i ,

where ϕb,i, i ∈ A are vectors and

• ψ =
∑r

b=1 %b

is called tensor rank-one decomposition of ψ.

Note that from the definition of tensor rank it follows that for r ≥ rank(ψ) such
a series always exists. The decomposition is minimal if there is no shorter series
satisfying two conditions of Definition 3.

Example 1 Let ψ : {0, 1} × {0, 1} × {0, 1} 7→ R be(
(1, 2)T (2, 4)T

(2, 4)T (4, 9)T

)
.

This tensor has rank two since

ψ = (1, 2)⊗ (1, 2)⊗ (1, 2) + (0, 1)⊗ (0, 1)⊗ (0, 1)

and there are no three vectors whose outer product is equal to ψ. �

2 Symmetric Boolean functions

We will pay a special attention to a family of Boolean functions that are com-
mon in probabilistic models from practice - monotone and symmetric Boolean
functions. In Section 4 we will see that Boolean functions from this family can
be better decomposed than general Boolean functions, i.e. the rank of their cor-
responding tensors is lower than the average rank of a general Boolean function.

Let X = {0, 1}m and x be a vector from X . By |x| we will denote the number
of non-zero values of vector x. We define ordering of elements of X by a binary
relation ≤ defined for every x, y ∈ X as x ≤ y if |x| ≤ |y|.

Definition 4 Boolean function f : X 7→ {0, 1} is monotone, if for all x, y ∈ X
it holds that if x ≤ y then f(x) ≤ f(y).

Remark In the literature there exist different definitions of monotonicity due
to the fact that one may define the binary relation ≤ differently. For example, ≤
can be defined for all x = (x1, . . . , xm) ∈ X and y = (y1, . . . , ym) ∈ X as: x ≤ y
if i ∈ {1, . . . ,m} : xi ≤ yi, which is called the canonical ordering (Wegener,
1987).
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Definition 5 Boolean function f : X 7→ {0, 1} is symmetric, if for all x ∈ X :
f(x) = c|x|.

Definition 6 Boolean threshold function is a Boolean function f such that

f(x) =
{

0 if |x| < t
1 if |x| ≥ t.

where t ∈ {0, . . . ,m+ 1} is the threshold value.

Note that if t = 0 then it corresponds to the true function, if t = m+ 1 it is the
false function, if t = 1 then it is the or function, and if t = m then it is the and
function.

Proposition 1 Boolean function f is monotone and symmetric if and only if
it is a Boolean threshold function.

Proof
(1) monotonicity & symmetry ⇒ threshold
If ∀x ∈ X : f(x) = 0 or if ∀x ∈ X : f(x) = 1 then f corresponds to the threshold
function with t = m+ 1 and t = 0, respectively. Otherwise, for any symmetric
monotone Boolean function we can find xt ∈ X such that

f(x) =
{

0 if x < xt

1 if x ≥ xt.

Since x < xt ⇐⇒ |x| < |xt| and x ≥ xt ⇐⇒ |x| ≥ |xt| we can define t = |xt|.
Observe that the Boolean threshold function with this threshold is equivalent
to the original Boolean function f .
(2) threshold ⇒ monotonicity & symmetry
It is easy to check that every threshold function is symmetric and monotone. 2

Note that not all symmetric Boolean function are monotone. Next we present
an example of such a function.

Example 2 Let ft+1 be the Boolean threshold function with threshold t + 1
and ft+2 be the Boolean threshold function with threshold t+ 2. Then for any
t ∈ {1,m−1} the function gt(x) = ft+1(x)−ft+2(x) is an example of symmetric
function that is not monotone. Since this function indicates whether exactly t
values of x are non-zero we will refer to this function as exactly-t function. �

3 Numerical algorithm

Definition 7 Tensor rank-one approximation
Assume a tensor ψ and an integer s ≥ 1. A tensor rank-one approximation
of length s is a series {%b}s

b=1 of rank-one tensors %b that is a tensor rank-one
decomposition of a tensor ψ̂ with rank(ψ̂) = s.
If ψ̂ minimizes

∑
x(ψ(x) − ψ̂(x))2 we say that it is a best tensor rank-one ap-

proximation of length s.
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Note that if s = rank(ψ) then the minimal value of
∑

x(ψ(x) − ψ̂(x))2 is
zero and a best tensor rank-one approximation of length s is also a minimal
tensor rank-one decomposition of ψ. Therefore, we can search numerically for
a minimal tensor rank-one decomposition by solving the task from Definition 7
starting with s = 1 and then incrementing s by one until

∑
x(ψ(x)− ψ̂(x))2 is

sufficiently close to zero.

We performed tests with several gradient methods. The best performance
was achieved with Polak-Ribière conjugate gradient method that used the New-
ton method in one dimension. We performed initial experiments for tensors
corresponding to the exclusive-or and or functions of two parent binary vari-
ables. For these functions we know the tensor rank is two (Savicky and Vomlel,
2005) therefore we could verify whether for s = 2 the algorithm found a tensor
rank-one decomposition of these tensors.

The initial values of the algorithm were random numbers from interval
[−1,+1]. We started the algorithm from ten different starting points to avoid
getting stuck in a local minima. Figures 1 and 2 illustrate the convergence using
three sample runs. The displayed values are values of

∑
x(ψ(x)− ψ̂(i)(x))2, i =

1, 2, . . . as they change with the progress of the algorithm. We can see rapid
convergence to the global minima in this example.
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Figure 1: The values
∑

x(ψ(x)− ψ̂(i)(x))2 for the xor function.
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Figure 2: The values
∑

x(ψ(x)− ψ̂(i)(x))2 for the or function.

4 Results

The final experiments aimed at a numerical computation of rank of tensors
corresponding to the threshold function, the exactly-t function, and randomly
generated general Boolean functions.

We used the Polak-Ribière conjugate gradient method described in Section 3.
For each s = 1, 2, . . . we searched for the best tensor rank-one approximation
of length s until we found an approximation that was sufficiently closed to
the tensor of a given Boolean function (we restarted the algorithm from ten
different randomly generated starting points). As a stopping criteria we used
the condition ∑

x

(ψ(x)− ψ̂(i)(x))2 < 10−5 .

The lowest value of s for which the above condition was met we regarded to be
the rank of the tensor of the given Boolean function.

In Table 1 the rank of the threshold Boolean functions with threshold t is
compared with the average rank and the rank interval of randomly generated
Boolean functions. We performed the comparisons for m = 2, 3, 4, 5. We com-
puted the average value of tensor rank of fifty randomly generated Boolean
functions. The values in brackets define the interval containing all rank values.
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Note that this does not mean that there are no Boolean functions with lower or
higher rank, it only means that they were not present in our random sample.
In Table 2 we present similar comparisons for the exactly-t function.

Table 1: Rank of the threshold Boolean function with threshold t compared
with the average rank and the rank interval of randomly generated Boolean
functions (rnd).

t 0 1 2 3 4 5 6 rnd
m = 2 1 2 2 1 1 1 1 1.92 [1, 2]
m = 3 1 2 3 2 1 1 1 2.78 [2, 3]
m = 4 1 2 3 3 2 1 1 3.94 [3, 5]
m = 5 1 2 3 4 3 2 1 6.62 [5, 8]

Table 2: Rank of the exactly-t function compared with the average rank and
the rank interval of randomly generated Boolean functions (rnd).

t 0 1 2 3 4 5 6 rnd
m = 2 2 2 2 1 1 1 1 1.92 [1, 2]
m = 3 2 3 3 2 1 1 1 2.78 [2, 3]
m = 4 2 3 4 3 2 1 1 3.94 [3, 5]
m = 5 2 3 4 4 3 2 1 6.62 [5, 8]

From the tables we can see that the rank of the threshold Boolean functions
(for m > 3) and also the exactly-t Boolean functions (for m > 4) is lower than
rank of a randomly generated Boolean functions. The lower the rank the more
compact is the tensor rank-one decomposition (as defined in Section 1), which
implies that the computations in these models can be performed more efficiently,
see (Vomlel, 2002; Savicky and Vomlel, 2005).

5 Conclusions

We applied the tensor rank-one decomposition to the conditional probability
tables representing Boolean functions. Using a numerical algorithm we have
shown that the conditional probability tables of some commonly used Boolean
function (threshold, exactly-t) can be nicely decomposed since their rank is
lower than the average rank of a random Boolean function. This allows for
more efficient computations when the probabilistic model contains conditional
probability tables representing these functions.
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