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The game of Minesweeper



Bayesian network for the game of Minesweeper

?

? ?

`

Y X1

X3 X2

P(Y = `|X1 = x1,X2 = x2,X3 = x3) =

{
1 if ` = x1 + x2 + x3

0 otherwise.

P(Xi) =
r

s · t− o
r is the number of mines, o is the number of observations
s, t are the dimensions of the game grid.
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Bayes rule for updating probabilities

• Assume we observe Y = `.

• We compute by Bayes rule

P(X1 = x1,X2 = x2,X3 = x3|Y = `)

=
P(Y = `|X1 = x1,X2 = x2,X3 = x3) ·

∏3
i=1 P(Xi = xi)

P(Y = `)

∝ P(Y = `|X1 = x1,X2 = x2,X3 = x3)

• This is a probability table over 3 binary variables X1,X2,X3:

P(Y = `|X1 = x1,X2 = x2,X3 = x3)

=

{
1 if x1 + x2 + x3 = `
0 otherwise.

= ψ(X1 = x1,X2 = x2,X3 = x3) .
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Tensors of `-out-of-k functions
We can visualize probability table ψ as a tensor (for ` = 1):

(
0
1

) (
1
0

)
(

1
0

) (
0
0

)


In this talk all tensors are functions from {0, 1}k to real numbers.

We are interested in tensors of `-out-of-k functions f`(x1, . . . , xk),
where:

• ` is the observed state of Y and

• k is the number of binary variables - parents of Y.

f`(x1, . . . , xk) =

{
1 if ` =

∑k
i=1 xi

0 otherwise.

In our example ` = 1 and k = 3.



Tensors of `-out-of-k functions
We can visualize probability table ψ as a tensor (for ` = 1):

(
0
1

) (
1
0

)
(

1
0

) (
0
0

)


In this talk all tensors are functions from {0, 1}k to real numbers.
We are interested in tensors of `-out-of-k functions f`(x1, . . . , xk),
where:

• ` is the observed state of Y and

• k is the number of binary variables - parents of Y.

f`(x1, . . . , xk) =

{
1 if ` =

∑k
i=1 xi

0 otherwise.

In our example ` = 1 and k = 3.



Tensors of `-out-of-k functions
We can visualize probability table ψ as a tensor (for ` = 1):

(
0
1

) (
1
0

)
(

1
0

) (
0
0

)


In this talk all tensors are functions from {0, 1}k to real numbers.
We are interested in tensors of `-out-of-k functions f`(x1, . . . , xk),
where:

• ` is the observed state of Y and

• k is the number of binary variables - parents of Y.

f`(x1, . . . , xk) =

{
1 if ` =

∑k
i=1 xi

0 otherwise.

In our example ` = 1 and k = 3.



Tensors of `-out-of-k functions
We can visualize probability table ψ as a tensor (for ` = 1):

(
0
1

) (
1
0

)
(

1
0

) (
0
0

)


In this talk all tensors are functions from {0, 1}k to real numbers.
We are interested in tensors of `-out-of-k functions f`(x1, . . . , xk),
where:

• ` is the observed state of Y and

• k is the number of binary variables - parents of Y.

f`(x1, . . . , xk) =

{
1 if ` =

∑k
i=1 xi

0 otherwise.

In our example ` = 1 and k = 3.



Combining information

?

? ?

0 ?

? ?

1
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ξ(X1, . . . ,X6) = ψ(X1, . . . ,X3) ·ϕ(X1,X2,X4, . . . ,X6)



Combining information

X1

X3

X6

X5X4X2

ξ(X1, . . . ,X6) = ψ(X1, . . . ,X3) ·ϕ(X1,X2,X4, . . . ,X6)

Total table size is 23 + 25 = 8 + 32 = 40.



A more efficient way of combining information

X2X3

X6

X5X4

X1

ξ(X1, . . . ,X6) = ψ1(X1) · . . . ·ψ3(X3)

·ϕ1(X1,X2,X4, . . . ,X6)



A more efficient way of combining information

X2X3

X6

X5X4

X1

ξ(X1, . . . ,X6) = ψ1(X1) · . . . ·ψ3(X3)

·ϕ1(X1,X2,X4, . . . ,X6)

Total table size is 3 · 2 + 25 = 6 + 32 = 38.



An even more efficient way of combining information

X6

X2X3

X1

X5X4

B2

ξ(X1, . . . ,X6) =
∑
B2

ψ1(X1) · . . . ·ψ3(X3)

·ϕ1(B2,X1) ·ϕ2(B2,X2) ·ϕ4(B2,X4) . . .ϕ6(B2,X6)



An even more efficient way of combining information

X6

X2X3

X1

X5X4

B2

ξ(X1, . . . ,X6) =
∑
B2

ψ1(X1) · . . . ·ψ3(X3)

·ϕ1(B2,X1) ·ϕ2(B2,X2) ·ϕ4(B2,X4) . . .ϕ6(B2,X6)

Since B is binary the total table size is 3·2+5·22 = 6+20 = 26.



Tensor rank

We have just seen that

ϕ1(X1,X2,X4, . . . ,X6)

=
∑
B2

ϕ1(B2,X1) ·ϕ2(B2,X2) ·ϕ4(B2,X4) . . .ϕ6(B2,X6) .

But there is no way we can write

ϕ1(X1,X2,X4, . . . ,X6) = ϕ1(X1) ·ϕ2(X2) ·ϕ4(X4) . . .ϕ6(X6)

What is the minimal number of states of a variable B so that it
holds that

ψ(X1, . . . ,Xk) =
∑
B

k∏
i=1

ψi(B,Xi) ?

This number is called the rank of tensor ψ.
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Symmetric rank of tensors of `-out-of-k functions

• Generally, finding the rank of a tensor is NP-hard.

• However, tensors of `-out-of-k functions define a restricted
class of tensors.

• These tensors are all symmetric. A tensor ψ is symmetric if
ψ(X1 = x1, . . . ,Xk = xk) = ax1+...+xk

where
a = (a0, . . . ,ak) is a vector of real numbers.

• The symmetric rank of tensor ψ is the minimum number of
symmetric tensors of rank one that sum up to ψ.

Theorem

The symmetric rank of a tensor representing an `-out-of-k function
(for 0 < ` < k) is at least max{`+ 1,k− `}.



Symmetric rank of tensors of `-out-of-k functions

• Generally, finding the rank of a tensor is NP-hard.

• However, tensors of `-out-of-k functions define a restricted
class of tensors.

• These tensors are all symmetric. A tensor ψ is symmetric if
ψ(X1 = x1, . . . ,Xk = xk) = ax1+...+xk

where
a = (a0, . . . ,ak) is a vector of real numbers.

• The symmetric rank of tensor ψ is the minimum number of
symmetric tensors of rank one that sum up to ψ.

Theorem

The symmetric rank of a tensor representing an `-out-of-k function
(for 0 < ` < k) is at least max{`+ 1,k− `}.



Symmetric rank of tensors of `-out-of-k functions

• Generally, finding the rank of a tensor is NP-hard.

• However, tensors of `-out-of-k functions define a restricted
class of tensors.

• These tensors are all symmetric. A tensor ψ is symmetric if
ψ(X1 = x1, . . . ,Xk = xk) = ax1+...+xk

where
a = (a0, . . . ,ak) is a vector of real numbers.

• The symmetric rank of tensor ψ is the minimum number of
symmetric tensors of rank one that sum up to ψ.

Theorem

The symmetric rank of a tensor representing an `-out-of-k function
(for 0 < ` < k) is at least max{`+ 1,k− `}.



Symmetric rank of tensors of `-out-of-k functions

• Generally, finding the rank of a tensor is NP-hard.

• However, tensors of `-out-of-k functions define a restricted
class of tensors.

• These tensors are all symmetric. A tensor ψ is symmetric if
ψ(X1 = x1, . . . ,Xk = xk) = ax1+...+xk

where
a = (a0, . . . ,ak) is a vector of real numbers.

• The symmetric rank of tensor ψ is the minimum number of
symmetric tensors of rank one that sum up to ψ.

Theorem

The symmetric rank of a tensor representing an `-out-of-k function
(for 0 < ` < k) is at least max{`+ 1,k− `}.



Symmetric rank of tensors of `-out-of-k functions

• Generally, finding the rank of a tensor is NP-hard.

• However, tensors of `-out-of-k functions define a restricted
class of tensors.

• These tensors are all symmetric. A tensor ψ is symmetric if
ψ(X1 = x1, . . . ,Xk = xk) = ax1+...+xk

where
a = (a0, . . . ,ak) is a vector of real numbers.

• The symmetric rank of tensor ψ is the minimum number of
symmetric tensors of rank one that sum up to ψ.

Theorem

The symmetric rank of a tensor representing an `-out-of-k function
(for 0 < ` < k) is at least max{`+ 1,k− `}.



Border rank of tensors of `-out-of-k functions

Definition (Border rank)

The border rank of a tensor A is

min{r : ∀ε > 0 ∃ tensor E : ||E|| < ε, rank(A+ E) = r} ,

where || · || is any norm.

Theorem (Upper bound of the border rank)

The border rank of a tensor A(`,k) representing an `-out-of-k
function is at most min{`+ 1,k− `+ 1}.
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Tensor approximations

Given a symmetric tensor representing an `-out-of-k function our
goal is to find another symmetric tensor:

• of the same order and the same dimensions

• having symmetric rank at most r = min{`+ 1,k− `+ 1}

• that is a good approximation of the original tensor.

We used a kind of stochastic hill-clibing algorithm.
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Tensor approximations - example

The tensor for
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)
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) (
0
0

)


∼
−0.19

exp(−15.75)
(1, exp(−15.75))⊗ . . .⊗ (1, exp(−15.75))

+
1.19

exp(−13.90)
(1, exp(−13.90))⊗ . . .⊗ (1, exp(−13.90))

=


(

2.33 · 10−10

1.0

) (
1.0

1.07 · 10−6

)
(

1.0
1.07 · 10−6

) (
1.07 · 10−6

9.96 · 10−13

)

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Tensor with noisy inputs
In the real world there is usually a noise that modifies functional
relations between variables.

Tensor N(`,k,p,q) represents an `-out-of-k function with noisy
inputs if it holds for (i1, . . . , ik) ∈ {0, 1}k that

N(`,k,p,q)i1,i2,...,ik

=
∑

(j1,j2,...,jk)∈{0,1}k

Aj1,j2,...,jk(`,k) ·
k∏

n=1

Min,jn(p,q) ,

where Aj1,j2,...,jk(`,k) represents the (exact) `-out-of-k function,
Min,jn(p,q) are elements of matrix M(p,q) defined by

Min,jn(p,q) =


q if jn = 0 and in = 0
1 − q if jn = 1 and in = 0
1 − p if jn = 0 and in = 1
p if jn = 1 and in = 1

0 < p 6 1, 0 < q 6 1 are parameters of the input noise.
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Experiments

We performed experiments with the game of Minesweeper for the
20× 20 grid size.

We used a random selection of fields to be played and we assumed
we never hit any of fifty mines during the game.
At each of 350 steps of the game we created a Bayesian network

1. the standard method consisting of moralization and
triangulation steps and

2. the tensor rank-one decomposition applied to CPTs with
number of parents higher than three (for CPTs with less than
four parents we used the moralization) followed by the
triangulation step.

In both networks we then used the lazy propagation method of
Madsen and Jensen with the computations performed with lists of
tables over the junction trees.
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Results of experiments
Numerical experiments reveal that we can get a gain in the order
of two magnitudes but at the expense of a certain loss of precision.
See Figure.
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Figure: Results of the experiments for the game of Minesweeper on the
20× 20 grid.


