imset.R - a suite of imset functions for R

Jit{ Vomlel and Milan Studeny

September 5, 2007

1 Using the imset suite within R

R is a language and environment for statistical computing and graphics. It provides
a wide variety of statistical and graphical techniques, and is highly extensible. R is
available as Free Software under the terms of the Free Software Foundation’s GNU
General Public License in source code form. It compiles and runs on a wide variety
of UNIX platforms, Windows and MacOS. See http://www.r-project.org/.

imset.R is a suite of functions in R for integer valued multisets (imsets) of
graphical models. It uses two packages:

e graph - a package that implements some simple graph handling capabilities
that is part of the Bioconductor project and

e ggm - a package from CRAN containing functions for fitting Gaussian Markov
models.

To install a package start R and use the Package menu. For both of the two required
packages repeat the following procedure. First, select the repository - CRAN for
gegm and Bioconductor for graph, respectively. Second, select Install package(s)
item in the Package menu and select the required package. It will be installed in
your system automatically.

The imset.R suite is available as a single file imset.R at

http://staff.utia.cas.cz/vomlel/imset/.

Dowload the file and save it into a working directory of your machine. To use the
imset suite within R, first, start the R console, change directory to the directory,
where the file imset.R is located, and type source("imset.R"). Now, you are
ready to use the functions from the imset.R suite.

Next we will provide a brief description of functions provided in the imset.R
suite. For a detailed exposition to the theory of imsets, see the book by Mi-
lan Studeny [2]. For a description of the conversion functions, see the paper by
Milan Studeny and Jifi Vomlel [1], which is also available on line at http://
staff.utia.cas.cz/vomlel/msjvO4ex.ps. The implmented learning algorithms
are described in [4], which is also available on-line at http://staff.utia.cas.cz/
vomlel/cze-jap-2007.pdf.

2 Functions for graphical models

DAG(seq)

This is a function of the ggm package. For a detailed description see the manual of
this package: http://cran.r-project.org/doc/packages/ggm.pdf. Symbol seq
stands for a sequence of model formulas. We give an example of such a formula for
an acyclic directed graph (DAG).

Example 1. D=DAG(b~a+c+d,a~c+d)

This command defines a DAG consisting of four nodes - a, b, ¢, d, where node b has
three parents - a, ¢, and d and node a has two parents - ¢ and d. Nodes ¢ and d
have no parents.

The output graph is represented by its adjacency matrix. The columns of ad-
jaceny matrix correspond to nodes and rows to their parents, i.e., since node b
(with index 1) has node a (with index 2) as its parent therefore D[[2,1]1]1==1, but
D[[1,2]]'=1.

drawGraph (amat, coor=NULL)

This is a function of the ggm package. For a detailed description see the manual of
this package: http://cran.r-project.org/doc/packages/ggm.pdf. Citing from
the description in the ggm manual: ”The function plots the graph with a initial
positioning of the nodes, as specified by coor and remains in a waiting state. The
position of each node can be shifted by pointing and clicking (with the first mouse
button) close to the node. When the mouse button is pressed the node which is
closer to the selected point is moved to that position. Thus, one must be careful to
click closer to the selected node than to any other node. The nodes can be moved
to any position by repeating the previous operation. The adjustment process is
terminated by pressing any mouse button other than the first. At the end of the
process, the function returns invisibly the coordinates of the nodes. The coordinates
may be used later to redisplay the graph.”

Example 2. newCoor=drawGraph (D)
This function plots graph D at default positions. The nodes can be moved by
clicking the mouse. Their new coordinates are returned in newCoor.

essentialGraph(amat)

It creates the esential graph (represented by its adjacency matrix) of a DAG repre-
sented by an adjacency matrix amat.

Example 3. E=essentialGraph(D)

This command provides the essential graph E of graph D. The esential graph E has
four directed edges: ¢ — a,d — a,c — b,d — b, and one undirected edge a — b. For
each undirected edge, in this example it is the edge between node a (with index 2)
and node b (with index 1), it holds that both entries in the adjacency matrix of E
are one, i.e., D[[1,2]]1==1 and D[[2,1]]==1.

egToDAG (amat)

This creates a DAG from the equivalence class of DAGs represented by the essential
graph (represented by its adjacency matrix amat).

Example 4. F=egToDAG(E)

This command provides a DAG F from the equivalence class of DAGs represented
by the essential graph E. One can observe that F = D but note that, generally, this
graph need not equal to the original graph that generated E. The graph with edge
a — b reversed would be also a correct result. However, the original graph and the
result always belong to the same equivalence class.

chainComps (amat)

It constructs chain components of a chain graph (e.g. an essential graph) represented
by its adjacency matrix. The output is an integer vector representing a partition of
the set of nodes.

Example 5. CC=chainComps (E)
For the essential graph of directed graph from Example 1 it returns vector 1,1, 2, 3.

chainCompList (amat)

It returns the list of chain components of a chain graph represented by its adjacency
matrix.

Example 6. CL=chainCompList (E)
For the essential graph of directed graph from Example 1 it returns list of chain
components {a, b}, {c}, {d}.

closChainCompI(i,amat)

It creates a closure graph of a chain component i of an essential graph. Graphs are
represented by their adjacency matrices.

Example 7. CL=closChainCompI(1,E)
For the essential graph of directed graph from Example 1 it returns the closure
graph of chain component {a, b}, which is the complete graph over nodes a, b, ¢, d.

closChainComps (amat)

It creates the list of closure graphs of all chain components of an essential graph.
Graphs are represented by their adjacency matrices.

3 Imsets

In this section we describe functions for imsets. We use the hash function available
in R for addressing variables in an environment, which makes the retrieval of imset
values more efficient. What we actually do is that for each imset we create a new
environment (with the hash option being true):

cacheImset=new.env(hash=TRUE)

This environment is used for storing values of the corresponding imset. Each set
has associated a unique natural number (an index), which represents the name of
corresponding variable in the environment.

getIndex(vars,subset)
This function computes index of a given set, i.e. a subset of variables vars, where
vars are all variables of the imset.

getSet(vars,ind)

This function finds for a given index ind the corresponding set, vars are all variables
of the imset.

imsIndep(cacheImset,vars,Q,R,Z,sign)

This function adds (if sign is +1) to or subtratcts (if sign is -1) from the imset
cacheImset the imset for the conditional independence statement < @Q, R|Z >

Example 8. imsIndep(cacheImset,c("a","b","c","d"),"a","b",c("c","d"),+1)
This adds the elementary imset of the conditional independence statement
< {CL}, {b}|{cv d} >, which is ims = 6{a,b,c,d} + 6{c,d} - 5{a,c,d} - 6{b,c,d}~

printIms=function(cacheImset,vars)
This function prints imset cacheImset in a compact form.

Example 9. Assume cacheImset given in Example 8.
printImset(cacheImset,c("a","b","c","d")) gives:

{abcd}=1
{cadl}=1
{acd}=-1
{bcdl}=-1

On the left hand side of each equation there is a set of the imset and on the right
hand side the corresponding value.

setIms(vars,set,v,cacheImset)

This function sets value of the set in imset cacheImset to v, if the set already has
a non-zero value then it adds v to it. vars are all variables of the imset.

Example 10. Assume cacheImset given in Example 8.
setIms(c("a","b","c","d"),c("c","d"),-1,cacheImset)

adds —1 to the value for set {c,d} since the value was already non-zero. It means
that the resulting imset is d{4p,c.a} = Ofa,c,d} — Ofb,c,d}-

getIms(vars,set,cachelmset)

This function provides value of the set in imset cacheImset, vars are all variables
of the imset.

Example 11. Assume cacheImset given in Example 8.
getIms (c("a" , np" , nen , "d") C (nen , "d") , cacheImset)
provides the value for the set {c,d}, which is 1.

copylms(cacheImset,vars,cachelmset?2)

This function makes a copy of imset cacheImset into cacheImset2, which means
that we actually create a new environment with the same variables and values as
the original one. vars are all variables of the imset.

getImsVars(cacheImset,vars)

This function provides the union of sets for which the imset is non-zero. The input
list of variables (vars) provides the reference for addressing imset sets. Of course,
they need not be equivalent, but the vars is the superset of (or equal to) the output.

getDataIms (imsSet,vars,data,vers,cacheDatalmset)

This function reads the value of an imset that represents a data set - we call the
imset data imset. The imset is stored in cacheDataImset. If the value is not
available it computes it and stores it there. For the computation the data set
data is used and for the computation the criteria vers is used. The criteria can
be either the Bayesian Information Criteria (vers="BIC"), Akaike’s Information
Criteria (vers="AIC"), or the log-likelihood (vers="LL"). The data are assumed
to be created by

data=read.table(fileName,header=TRUE,colClasses="factor",sep=",")

where fileName is the name of the file where the data set is stored in the comma
separated format with the first line consisting of the names of the variables.

dotProductIms (cacheImset,cacheDatalmset,nodes,data,vers)

This function computes the scalar product of a standard imset cacheImset and a
data imset cacheDataImset. This function is extensively used during the model
search.

4 Conversion of graphical models to imsets

ims (G, cacheImset,vars)

This function provides in cacheImset the standard imset of an essential graph or
of an acyclic directed graph G, vars are all nodes of the graph (they become the
variables of the imsets).

Example 12. Assume D to be the directed graph from Example 1.
Then ims (D, cacheImset,rownames (D)) computes the imset dp+d;c 4y —0fc} —d1ay-
Note that it would give the same result for the essential graph E of DAG D.

5 Conversion of imsets to graphical models

reconstrComps (cacheImset,vars)

This function constructs from an imset cacheImset (on variables vars) an ordered
list of subsets of nodes (a kind of a hierarchical junction tree), which is a representant
of an equivalence class of DAGs. This function performs the first step for the
reconstruction of the essential graph from its imset.

Example 13. Assume ims3 from Example 12. comps=reconstrComps(ims) gives
the list {{a, b, c,d},{c}, {d}}.
reconstrEssentialGraph (comps)

This function constructs from an ordered list of subsets of nodes an essential graph.
It performs the second step for the reconstruction of the essential graph from its
imset,.

Example 14. Assume comps from Example 13. EG=reconstrEssentialGraph (comps)
gives the essential graph from example 3.

6 Tests

isStandard(cacheImset,vars)

This function tests whether imset cacheImset is a standard imset.

isImsEmpty(cacheImset)

This function tests whether imset cacheImset is empty.

7 Learning essential graphs of Bayesian networks

bestModel(data,initialGraph=emptyGraph(names(data)),
firstGoDown=TRUE, vers="BIC" ,useExtremalOnly=FALSE,
coordinates=c() ,printImsets=FALSE)

This function returns a best essential graph for data found be greedy equivalence
search (using imsets). Data can be read using function read.table, e.g.
d=read.table(fileName,header=TRUE, colClasses="factor",sep=",")
The search starts with the initial graph (the default is the empty graph) and ei-
ther it first goes down in the lattice of imsets, i.e. it first deletes independencies
(it adds edges) in the model (which is the default). When it reaches maximum
in the downwards direction it performs the search in the upwards direction. If
firstGoDown==FALSE the search is first performed upwards and then downwards.
For the search in the inclusion neighbourhood of an essential graph the method
uses the description of the neigbourhood by a tuft [3]. This representation implies
that each essential graph in the neighourhood is visited only once. For the evalua-
tion of the respective change of the criteria the imset representation is used, more
specifically the scalar product of the respective differential imset and data imset is
computed.

Example 15.

data=read.table("abcdef.dat" ,header=TRUE, colClasses="factor",sep=",")
eg=bestModel (data)

gives the best model represented by its essential graph for the data set in abcdef . dat
file.

7.1 Example of an R session

load the imset.R suite of functions
source("imset.R")
the file with the data set - a data set generated
from the well known Chest Clinic Example
fileName="asia-long-names.dat"
data=read.table(fileName,header=TRUE,colClasses="factor",sep=",")
variables of the model - in the alphabetic order
vars=names (data)
ol=order(vars)
vars=vars [o1]
coordinates for the nodes in the graph
dataCoor=c(71.55299, 68.20930,

59.32657, 38.38371,

40.83020, 70.40697,

11.51814, 39.16860,

57.75908, 91.44186,

11.20465, 71.34883,

24.37156, 57.06395,

11.04790, 90.34302)
names of the coordinates
dnames=list(vars,c("x","y"))
matrix of coordinates
coor=matrix(dataCoor,nrow=8,ncol=2,byrow=TRUE,dimnames=dnames)
The learning algorithm uses our coordinates
(otherwise it would place all variables in a cricle)
and prints the imset for each step of the algorithm
(default is no prints).
The output is a best essential graph for the criteria
(default is BIC)
print("learning the model from data",quote=FALSE)
eg=bestMode1(data,coordinates=coor,printImsets=TRUE)

#
#
#
#
#
#

Acknowledgements

This work has been supported by the grant GACR nr. 201/04/0393 and by the
grant nr. 1M0572 of the Ministry of Education of the Czech Republic.

References

[1] M. Studeny and J. Vomlel, Transition between graphical and algebraic rep-
resentatives of Bayesian network models, In Proceeding of the 2nd European
Workshop on Probabilistic Graphical Models (PGM’04), Leiden, the Nether-
lands. http://staff.utia.cas.cz/vomlel/msjv04ex.ps

[2] M. Studeny: Probabilistic Conditional Independence Structures, Springer-
Verlag 2005.

[3] M. Studeny: Characterization of inclusion neighbourhood in terms of the es-
sential graphs. International Journal of Approximate Reasoning 38 (2005), n. 3,
pp- 283-309. ftp://ftp.utia.cas.cz/pub/staff/studeny/char-inc-es.ps

[4] J. Vomlel and M. Studeny. Using imsets for learning Bayesian networks. In
Proceedings of the 10th Czech-Japan Seminar on Data Analysis and Decision
Making under Uncertainty, Liblice, Czech Republic, 2007.

