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ABSTRACT.In this paper we discuss the process of building a joint probability distribution from
an input set of low-dimensional probability distributions. Since the solution of the problem for
a consistent input set of probability distributions is known we concentrate on a setup where
the input probability distributions are inconsistent. In this case the iterative proportional fitting
procedure (IPFP), which converges in the consistent case, tends to come to cycles. We propose a
new algorithm that converges even in inconsistent case. Theimportant property of the algorithm
is that it can be efficiently implemented exploiting decomposability of considered distributions.

KEYWORDS:Probabilistic models, Iterative proportional fitting, Knowledge integration, Incon-
sistent data

1. Introduction

In this paper we discuss the process of integrating contradicting data using the
framework of classical probability. We defineknowledge integrationas a process of
building a joint probability distributionQ from a set of low-dimensional probability
distributionsP = {P1, . . . , Pk}, k ∈ N and from aninitial joint probability distribu-
tionQ0. To model a chosen domain we will use discrete random variablesXi indexed
by natural numbers fromV = {1, . . . , n} ⊂ N. Each low-dimensional probability
distributionPj , j = 1, . . . , k is defined on variables{Xℓ}ℓ∈Ej

, Ej ⊆ V . Knowledge
integrationshould yield a joint probability distributionQ(X1, . . . , Xn) that would
embody available knowledge about the chosen domain. The general problem of the
construction of probability distributions with given marginals has a long history start-
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ing with the papers by Hoeffding [HOE 40], Fréchet [FRE 51], Kellerer [KEL 64],
and Vorobev [VOR 62].

If there exists a probability distributionQ(X1, . . . , Xn) whose marginals equal
to low-dimensional probability distributionsPi ∈ P , i = 1, . . . , k then we say that
probability distributions in setP areconsistent. Otherwise we say that they areincon-
sistent.

EXAMPLE 1. — In Table 1 we give an example (borrowed from [JIR 95b]) of an
input set of three distributionsP = {P1(X1, X2), P2(X2, X3), P3(X1, X3)}.

Table 1. Input set of distributions{P1, P2, P3}

Pj , j = 1, 2 Xj+1 = 0 Xj+1 = 1 P3 X3 = 0 X3 = 1

Xj = 0 1
2 − ε ε X3 = 0 ε 1

2 − ε

Xj = 1 ε 1
2 − ε X3 = 1 1

2 − ε ε

If ε = 4
20 then there exist probability distributionsQ(X1, X2, X3) whose marginals

equal to probability distributionsP1, P2, andP3. For example, the probability dis-
tribution given in Table 2 has its corresponding marginals equal toP1, P2, andP3.
Therefore the probability distributions in setP are consistent.

Table 2. Joint probability distributionQ(X1, X2, X3)

X2 = 0 X2 = 1

Q X3 = 0 X3 = 1 X3 = 0 X3 = 1

X1 = 0 3
20

3
20

1
20

3
20

X1 = 1 3
20

1
20

3
20

3
20

If ε = 3
20 then there does not exist any distributionQ(X1, X2, X3) whose marginals

equal to probability distributionsP1, P2, andP3, i.e., the probability distributions in
setP are inconsistent.

We will use small letterxi to denote a value of variableXi. The set of all possible
values of variableXi will be denotedXi. We will useX to denote multidimen-
sional random variable(X1, . . . , Xn), x will denote a value ofX andX the set of all
values ofX . For a setA ⊆ V the symbolXA denotes the multidimensional vari-
able{Xi}i∈A, xA denotes a value ofXA, andQA denotes the marginal distribution
of Q on variablesXA,i.e., QA(xA) =

∑
x′:x′A=xA Q(x′). Recall, that each low-

dimensional probability distributionPj , j = 1, . . . , k from P is defined on variables
XEj , Ej ⊆ V .

DEFINITION 2. — Let P,Q be two probability distributions. If{x ∈ X, P (x) >
0} ⊇ {y ∈ X, Q(y) > 0} thenP is dominated byQ (denoted asP ≪ Q).
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REMARK 3. — In the sequel it will be convenient to have defined0 · log 0 = 0 and
0 · log 0

0 = 0.

REMARK 4. — To simplify the notation we will omit the setX of values ofX in the
symbol for summation

∑
x∈X

and write
∑

x instead.

The rest of the paper will be organized as follows. We briefly introduce the in-
formation theoretical approach to knowledge integration in Section 2. In Section 3
we describe the iterative proportional fitting procedure (IPFP). In Section 4 we will
define theI-aggregate - a criteria that measures the distance between the marginals of
a joint distribution and the distributions of an input set. In Section 5 we propose a new
algorithm that can be considered to be a generalization of IPFP for inconsistent data.
We conclude the paper by a discussion of the properties of theproposed algorithm and
by presenting two experiments. The proofs of the lemmas and the theorem are in the
appendix.

2. The information theoretical approach to knowledge integration

The probability distribution given in Table 2 has its marginals equal toP1, P2, P3

defined in Table 1 forε = 4
20 . However, this is not the only distribution defined for

three binary variablesX1, X2, X3 having its corresponding marginals equal toP1, P2,

andP3. There is a whole class of probability distributions that have this property.Sj

will denote the set of probability distributions having their marginal equal to proba-
bility distributionPj , i.e.,Sj = {Q : QEj = Pj}. S or SE will be used to denote the
set of distributions having their marginals equal to probability distributions from the
input setP , i.e.,SE = {Q : QE1 = P1, . . . , Q

Ek = Pk}. It means thatSE = ∩k
j=1Sj .

For practical reasons, only one representative of the wholeclassSE is often cho-
sen. A criterion that is most often used is Shannon entropy - an information measure
introduced by Shannon in [SHA 48].

DEFINITION 5. — Entropy

H(P ) = −
∑

x∈X

P (x) logP (x)

The selection of the distribution that maximizes Shannon entropy can be justified
by the fact that from all distributions in the classSE this distribution contains least
additional information (see [HÁJ 92], Chapter 3.3). The principle of maximum en-
tropy was first introduced as an inference procedure by Jaynes [JAY 57]. Shore and
Johnson [SHO 80, JOH 83] prove there are four natural principles that determine that
the function that should be maximized must be the Shannon entropy function. Also,
Paris and Vencovská [PAR 90] showed that the maximum entropyinference process
is the only inference process that satisfies natural principles of independence and con-
sistency.



4 Journal of Applied Non-Classical Logics. Volume xx – n◦ y/2003

A generalization of the maximum entropy principle to cases when an estimateP
of the unknown true distribution is known is the principle ofminimum cross-entropy.
Cross-entropy was introduced by Kullback and Leibler [KUL 51] as a divergence mea-
sure of two probability distributions. It is also known under several other names:
Kullback-Leibler divergence, relative information, andI-divergence. We will refer to
it asI-divergence.

DEFINITION 6. — I-divergence

I(P ‖ Q) =





∑
x∈X

P (x) log
P (x)
Q(x)

if P ≪ Q

+∞ if P 6≪ Q

REMARK 7. — I-divergenceis not generally symmetric.I(P ‖ Q) ≥ 0 with equal-
ity only if P andQ are identical. IfT is acompact setandP ∈ T then the function
I(P ‖ ·) is continuous and strictly convex inP .

In contrast toI-divergence, total variancesatisfies themeasure properties.

DEFINITION 8. — Total variance

|P −Q| =
∑

x∈X

|P (x) −Q(x)| .

I-divergence can be used to provide an upper bound on total variance. The follow-
ing lemma is due to Kullback [KUL 66].

LEMMA 9. — If P,Q are two probability distributions then the following inequality
holds:

|P −Q| ≤ 2
√
I(P ‖ Q) [1]

I-divergence geometry, studied by Csiszár [CSI 75] andČencov [̌CEN 82] is an
effective instrument enabling us to study iterative procedures based on the operations
of I-projections to a set of probability distributionsQ. I-projection will be the core
operation used in both iterative methods discussed in Section 3 and in Section 5.

DEFINITION 10. — Q⋆ is anI-projection of a probability distributionP to a set of
probability distributionsQ if for all Q ∈ Q it holds that

I(Q ‖ P ) ≥ I(Q⋆ ‖ P ) .

We will useπ(P,Q) to denoteI-projection ofP to Q.

If the setQ is convex and compact1 then there is a unique distributionQ⋆ ∈ Q
that maximizesI(Q ‖ P ). Minimization of I-divergence is strongly related to the

1. Note thatSE is a convex and compact set.
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principle of maximum entropy. We will later show (in Lemma 15) that under certain
restrictions on probability distributionP the I-projection ofP to SE corresponds to
the distribution that has the maximal entropy from all distributions inSE .

LetQ be a probability distribution such thatPj ≪ QEj . I-projection ofQ to the
setSj can be computed [CSI 75] as

π(Q,Sj)(x) =






0, for QEj (xEj ) = 0,

Q(x)
Pj(x

Ej )
QEj (xEj )

, for QEj (xEj ) > 0.
[2]

3. Iterative proportional fitting procedure

In case of a consistent input set the knowledge integration task can be solved by
means of theIterative Proportional Fitting Procedure(IPFP), also known as the It-
erative Proportional Scaling. IPFP dates back to 1940. It was proposed by W. E.
Deming and F. F. Stephan [DEM 40] as a procedure for adjustment of frequencies in
contingency tables.

In each step of the iterative proportional fitting procedure(IPFP) anI-projection of
the distribution from previous step to a setSj , j = 1, . . . , k is computed. Projections
are repeated until a convergence is reached2. A formal definition follows.

DEFINITION 11. — LetQ(0)(X1, . . . , Xn) be an initial probability distribution such

that for all its marginalsQEj

(0) it holds thatPj ≪ Q
Ej

(0) for j = 1, . . . , k. IPFP is the
following algorithm:

for i = 0, 1, 2, . . .
for j = 1, . . . , k

Q(i·k+j) = π(Q(i·k+j−1),Sj),

REMARK 12. — If the input set containsk strictly positive distributions and the
initial probability distribution is strictly positive then we can see (from formula [2])
that each step of IPFP corresponds to

Q(i·k+j) = Q(i·k+j−1) ·
P

Ej

j

Q
Ej

(i·k+j−1)

.

This makes IPFP an attractive procedure since it can be easily implemented.

The notion offactorizationwill play an important role in the characterization of
the resulting distribution.

2. k consecutive stepsi · k + 1, . . . , (i+ 1) · k will be referred as acycle.
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DEFINITION 13. — Probability distributionQ factorizes with respect to setE =
{E1, . . . , Ek} if there exist nonnegative functionsφEi

: X
Ei 7→ R

+, i = 1, 2, . . . , k
(called potentials) such that for allx ∈ X

Q(x) =
∏

Ei∈E

φEi
(xEi) .

The set of all distributions factorizing with respect to setE will be denotedRE .
Generally, it does not hold that if all probability distributions computed in a finite
number of steps of IPFP factorize then also the limit distribution factorizes. Therefore
we will use the closure of setRE , defined as

RE = {P : ∃{Q(i)}
∞
i=1 : Q(i) ∈ RE for i = 1, 2, . . . and lim

i→∞
Q(i) = P} .

LEMMA 14. — If SE 6= ∅ thenSE ∩ RE is unique, i.e., contains exactly one proba-
bility distribution.

The following lemma can be used to characterize the limit probability distribution
of a sequence of probability distributions computed by IPFP. It will be also used to
characterize limit probability distributions of the new procedure proposed in Section 5.

LEMMA 15. — Let E = {E1, . . . , Ek}, Q ∈ RE , and SE = {P : PE1 =
QE1 , . . . , PEk = QEk}. Then

(a) ∀R ∈ RE , Q≪ R =⇒ Q = π(R,SE) and

(b) Q maximimizes entropy from all distributions inSE .

If Q(0) factorizes with respect toE then all probability distributions computed
within a finite number of iterations of IPFP factorize with respect toE as well. Con-
siderQ⋆ that is the limit probability distribution of a sequence of probability distribu-
tions computed by IPFP. SinceQ⋆ ∈ RE from Lemma 15 we know thatQ⋆ maximizes
entropy from all distributions having the marginals{P1, . . . , Pk}.

4. Distance to a given input set

In case of aninconsistentinput set of probability distributions, IPFP tends to come
in cycles. Nevertheless, we wish to get a representative probability distribution even
in the case when the input set is inconsistent. We endeavor tofind an iterative pro-
cedure that converges even forinconsistentinput sets, the marginals of the resulting
distribution should be somehow close to the input distributions and independent of the
ordering of the input low-dimensional distributions.

Empirical observations of Osherson et al. [OSH 97] support the basic idea underly-
ing theknowledge integrationprocess. They argue that a consistent probability model
that is fitted as closely as possible to the inconsistent judgments of an informant will
often be closer to actual relative frequencies than the raw judgments of the informant.
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Assume that to every probability distributionPj from input setP a nonnegative
weightwj is assigned such that

∑k

j=1 wj = 1. The weights can be understood as
credibility weights of the corresponding probability distributions. Alternatively, the
weights can be proportional to the number of data vectors used to estimate the values
of the corresponding probability distribution. If we have no preferences among the
distributions we setwj = 1

k
, j = 1, . . . , k. Recall that byQEj we denote marginal

distribution of a joint probability distributionQ defined on variablesXi, i ∈ Ej , where
Ej ⊆ V is the index set of variables ofPj ∈ P .

In Definition 16 we define anI-aggregate, which will be used to measure the
distance between the marginals of the resulting distribution and the distributions from
the input set.

DEFINITION 16. — LetP = {P1, . . . , Pk} be the input set of distributions,Q be a
joint probability distribution, andwj be nonnegative weights summing up to 1.
I-aggregate is the functional

ψ(Q ‖ P1, . . . , Pk) =

k∑

j=1

wj · I(Pj ‖ QEj ) .

REMARK 17. — SinceI(Pj ‖ QEj ) ≥ 0 with equality iff Pj = QEj it follows that
ψ(Q ‖ P1, . . . , Pk) ≥ 0 with equality iff j = 1, . . . , k : Pj = QEj . It implies that in
case of a consistent input setP = {P1, . . . , Pk} minimization ofI-aggregate ensures
that the resulting distributionQ has the required marginals, i.e.,Q ∈ S.

Generally, theI-aggregate need not be minimized by a unique probability dis-
tribution. If there exists a probability distributionQ that minimize theI-aggregate
then all probability distributions having the same marginals QE , E ∈ E minimize
the corresponding aggregate as well. Furthermore, also distributions having differ-
ent marginalsQE , E ∈ E can be minimizers ofI-aggregate with respect to a given
input setP = {P1, . . . , Pk}. We will denote the set of all probability distribution
minimizing theI-aggregate byT . In case of aconsistent input setP it follows from
Remark 17 thatT = S.

Using the principle of maximal entropy, we will prefer the distribution from set
T that has the maximal entropy, i.e.Q⋆ = argmaxQ∈T H(Q). In the case of a
consistent input setT = S, thereforeQ⋆ is the same as the limit distribution of IPFP.

EXAMPLE 18. — Assume input setP = {P1(X1, X2), P2(X2, X3), P3(X1, X3)}
from Example 1. Takeε = 3

20 . In this case there is no distribution having distributions
from P as its marginals (i.e. no distributionQ havingψ(Q ‖ P1, P2, P3) = 0). We
search for a distribution minimizing theI-aggregate forw1 = w2 = w3 = 1

3 ). We
provide such a distribution in Table 3.
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Table 3. Joint probability distributionQ(X1, X2, X3)

X2 = 1 X2 = 2

Q X3 = 1 X3 = 2 X3 = 1 X3 = 2

X1 = 1 1
6

1
6 0 1

6

X1 = 2 1
6 0 1

6
1
6

5. Iterative minimization of the I-aggregate

Next we will describe a new procedure, which we call GEMA. Thereason for its
name is its similarity to the Generalized Expectation Maximization Algorithm [DEM 77].

Our goal is to find a probability distributionQ that minimize theI-aggregate

ψ(Q ‖ P1, . . . , Pk) =
∑

j=1,...,k

wj · I(Pj ‖ QEj ) .

The main idea of the proposed iterative algorithm is in orderto minimizeψ(Q ‖
P1, . . . , Pk) decrease the value ofψ in the next iteration3, i.e.,

ψ(Q(i·k) ‖ P1, . . . , Pk) − ψ(Q((i+1)·k) ‖ P1, . . . , Pk) ≥ 0 .

LEMMA 19. — Assume an input set{P1, . . . , Pk}. For any two probability distribu-
tionsQ andR such that forj = 1, . . . , k: Pj ≪ QEj ≪ REj it holds that

ψ(R ‖ P1, . . . , Pk) − ψ(Q ‖ P1, . . . , Pk) ≥ I(R̃ ‖ R) − I(R̃ ‖ Q) ,

whereR̃ denotes the result of the application of operator˜ onR defined as

R̃ =

k∑

j=1

wj · π(R,Sj) .

We can apply Lemma 19 withR being the probability distributionQ(i·k) from the
last iterationi · k andQ being the probability distributionQ((i+1)·k) from the current
iteration(i+ 1) · k. If we take aQ((i+1)·k) such that

I(Q̃(i·k) ‖ Q(i·k)) − I(Q̃(i·k) ‖ Q((i+1)·k)) ≥ 0 . [3]

then we are sure that we do not increase the value ofψ in the next iteration(i+ 1) · k.

3. We will later see that one iteration of the proposed algorithm consists ofk steps. To have the
notation ready we index the iterations with multiples ofk.
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For any finite integern we will requireQ(n·k) to factorize4 with respect to a class
E = {E1, . . . , Ek}. We will employ IPFP to meet this requirement. Next we will
show that it suffices to perform one cycle of IPFP to satisfy condition [3].

LEMMA 20. — Let IPFP be initiated with distributionQ(i·k) and the input set consist

of marginals ofQ̃(i·k), i.e. {Q̃E1

(i·k), . . . , Q̃
Ek

(i·k)}. After one cycle of IPFP distribution

Q((i+1)·k) satisfies inequality [3] with equality iff forj = 1, . . . , k: QEj

(i·k) = Q̃
Ej

(i·k).

Thus, each cycle of of the proposed algorithm, which we call GEMA, has two
different phases.

During thefirst phaseI-projections of the distribution from the previous cycle to
setsSj = {Q : QEj = Pj} are computed. Subsequently, the weighted average of the
I-projections is computed.

For the second phase we need to compute marginal distributions from the weighted
average. Observe, that these distributions are necessarily consistent since they are
marginals of a joint probability distribution.

The second phaseconsists ofk consecutive steps of IPFP starting with the dis-
tribution from the previous iteration of GEMA and consequently fitting the marginal
distributions computed in the first phase. A formal definition follows.

DEFINITION 21. — LetQ(0) be an initial joint probability distribution satisfying the
same conditions as the initial joint probability distribution in Definition 11. GEMA is
the following algorithm:

for i = 0, 1, 2, . . .

Q̃(i·k) =
∑k

j=1 wj · π(Q(i·k),Sj); // Sj = {Q : QEj = Pj}
for j = 1, . . . , k

compute the marginal̃QEj

(i·k) of Q̃(i·k);

for j = 1, . . . , k

Q(i·k+j) = π(Q(i·k+j−1),S
′
j); // S′

j = {Q : QEj = Q̃
Ej

(i·k)}

It is easy to compute theI-projections to setsSj , S′
j for j = 1, . . . , k using for-

mula 2. Therefore, similarly as for IPFP, also GEMA can be easily implemented. We
will use an example to show the computations that are performed during one iteration
of GEMA.

4. In this moment we will not provide any justification for thisrequirement. Later we will see
that this requirement is necessary to guarantee the required properties of the new algorithm.
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EXAMPLE 22. — Assume input setP = {P1(X1, X2), P2(X2, X3), P3(X1, X3)}
andw1 = w2 = w3 = 1

3 . In this case one iteration of GEMA consists of the following
steps:

Q̃(i·k) =
1

3
Q(i·k) ·

(
P1

QE1

(i·k)

+
P2

QE2

(i·k)

+
P3

QE3

(i·k)

)

Q((i·k)+1) = Q(i·k) ·
Q̃E1

(i·k)

QE1

(i·k)

Q((i·k)+2) = Q((i·k)+1) ·
Q̃E2

(i·k)

QE2

((i·k)+1)

Q((i·k)+3) = Q((i·k)+2) ·
Q̃E3

(i·k)

QE3

((i·k)+2)

In order to be able to apply previous results we need to show that GEMA does not
introduce “unexpected” zero values into probability distributions.

LEMMA 23. — Let Q(0) be an initial joint probability distribution satisfying the
same conditions as the initial joint probability distribution in Definition 11. Further
let Q(i·k), i = 0, 1, 2, . . . be the distributions computed by GEMA with the input set
{P1, . . . , Pk}. Then fori = 0, 1, 2, . . . andj = 1, . . . , k it holds:

Pj ≪ Q((i+1)·k) ≪ Q(i·k) .

Now we are ready to prove the main result of this paper about the convergence of
GEMA.

THEOREM 24. — Let Q(0) be an initial joint probability distribution satisfying
the same conditions as the initial joint probability distribution in Definition 11 and
{Q(n)}

∞
n=0 be a sequence of probability distributions computed by GEMA. Then the

sequence{ψ(Q(n) ‖ P1, . . . , Pk)}∞n=0 converges.

We used Lemma 15 to characterize the limit probability distribution of a sequence
of probability distributions computed by IPFP. We know thatQ⋆ maximizes entropy
from all distributions fromSE , i.e. from the set of all distributions having the marginals
{P1, . . . , Pk}.

Similarly, we can characterize probability distributionscomputed by GEMA. If
Q(0) factorizes with respect toE then probability distributionsQ(i·k+n) computed
within a finite number of iterations of GEMA factorize with respect to setE . Now,
consider aQ⋆ ∈ RE that is the limit probability distribution of a sequence of probabil-
ity distributions computed by GEMA. Then from Lemma 15 we know thatQ⋆ maxi-
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mizes entropy5 from all distributions having their marginals equal to the marginals of
Q⋆ on the sets that are elements ofE .

REMARK 25. — A simplified version of GEMA could consist of the first phase of
GEMA only6. We could use the same line of reasoning to prove its convergence.
However, typically the distributions computed by this procedure would not factorize
with respect toE and, consequently, the limit distribution would be different.

We tested the behavior of IPFP and GEMA onconsistentandinconsistentversions
of input setP = {P1, P2, P3} defined in Table 1. The plots in Figures 1 and 2 describe
development of one probability value (vertical axis) of joint probability distribution
Q(i) for one combination of values of random variables. Horizontal axis corresponds
to iterationi . We can see that in theconsistentcase both methods converge to the
same value. In theinconsistentcase IPFP oscillates while GEMA converges. We have
observed that, in some cases, the convergence of GEMA near the optimum is quite
slow. For other experiments see [VOM 99].

10 20 30 40 50 60 70 80

0.11

0.12

0.13

0.14

0.15

Figure 1. IPFP (full line) and GEMA (dotted line) applied to the consistent input set
(ε = 4

20 )

The experiments suggests that the resulting distribution does not depend on the
ordering of the input set{P1, . . . , Pk}. Also, the resulting distribution does not seem

5. This provides a justification for the requirement that forn = 0, 1, 2, . . . probability distribu-
tionsQ(n·k) should factorize with respect toE .
6. Such a procedure was originally proposed by F. Matúš (personal communication).



12 Journal of Applied Non-Classical Logics. Volume xx – n◦ y/2003

10 20 30 40 50 60 70 80

0.14

0.15

0.16

0.17

0.18

0.19

0.2

Figure 2. IPFP (full line) and GEMA (dotted line) applied to the inconsistent input
set (ε = 3

20 )

to be influenced by the starting distributions provided it satisfies the conditions for the
initial joint probability distribution given in Definition11 and factorizes with respect
to E .

6. Efficient implementation of GEMA

In the framework of probabilistic modelsfactorizationis used to design computa-
tionally efficient representations of probability distributions.

DEFINITION 26. — SetE of subsets ofV is decomposable if either it has exactly one
element or it is the union of two disjoint decomposable setsE1 andE2 such that there
existE1 ∈ E1 andE2 ∈ E2 so that:

(∪E′∈E1
E′) ∩ (∪E′′∈E2

E′′) = E1 ∩ E2 .

Observe that in GEMA we do not need to haveQ̃(i·k) represented explicitly since

we only need its marginals̃QEn

(i·k), n = 1, . . . , k. We can construct a decompos-
able setC = {C1, . . . , Cm}, Ci ⊆ V, i = 1, . . . ,m such that it holds that for each
Pj(X

Ej ) ∈ P there existsCi ∈ C such thatEj ⊆ Ci. Then, we can use the junction
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tree propagation [JEN 90] withCi ∈ C being the nodes of the junction tree to com-
pute efficiently the marginals̃QEn

(i·k), n = 1, . . . , k. Thus the first phase of GEMA can
be implemented similarly as suggested by Lauritzen [LAU 95]for the EM-algorithm.
The computational complexity of the update by one distributionPj from the input set
is proportional to

∑
Ci∈C |X

Ci |.

Since the second phase of GEMA is equivalent to one cycle of IPFP we can use the
space-saving implementation of IPFP proposed by Jiroušek,see [JIR 91] or [JIR 95a].
The computational complexity of one step of the space-saving implementation of IPFP
is also proportional to

∑
Ci∈C |X

Ci |.

Consequently, the computational complexity of one cycle ofGEMA is propor-
tional tok ·

∑
Ci∈C |X

Ci |, wherek is the number of distributions in the input setP .

7. Conclusions

The proposed algorithm - GEMA - satisfies the original intention to design a
method that is an extension of IPFP for inconsistent input set. We have proved that it
converges also when the input set of probability distributions is inconsistent. We have
proposed to use theI-aggregate to measure how well the marginals of a probability
distribution fits the input probability distributions. Although GEMA tends to mini-
mize this criteria we did not provide any guarantee about itsconvergence to a global
or local minima. The conditions that would guarantee such a convergence should be a
topic of a future research.

An important property of GEMA is that it can be implemented efficiently. It means
that it can be used for computations with probability distributions containing hundreds
or thousands of variables provided the probability distributions have a compact factor-
ized representation.
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A. Proofs

LEMMA 14. — If SE 6= ∅ thenSE ∩ RE is unique, i.e., contains exactly one proba-
bility distribution.

PROOF. — The idea of the proof is the same as of the proof of Lemma 3.14in [LAU 96].
LetQ be a probability distribution fromSE ∩RE . Assume an arbitraryR ∈ SE ∩RE .
We can write7:

R = lim
n→∞

k∏

i=1

ψ
(n)
Ei

and Q = lim
n→∞

k∏

i=1

φ
(n)
Ei

By exploiting the above factorizations we get:

∑

x

R(x) logQ(x) =
∑

x

R(x)

k∑

i=1

log lim
n→∞

φ
(n)
Ei

(xEi)

= lim
n→∞

k∑

i=1

∑

xEi

REi(xEi) log φ
(n)
Ei

(xEi)

= lim
n→∞

k∑

i=1

∑

xEi

QEi(xEi) log φ
(n)
Ei

(xEi)

=
∑

x

Q(x)

k∑

i=1

log lim
n→∞

φ
(n)
Ei

(xEi)

=
∑

x

Q(x) logQ(x) [4]

7. The superscript(n) serves as an index of the sequences of potentials{ψ
(n)
Ei

}∞n=1 and

{φ
(n)
Ei

}∞n=1.
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Similarly, we can get:
∑

x

Q(x) logR(x) =
∑

x

R(x) logR(x) [5]

We will use the following well-known inequality that holds for arbitrary probability
distributionsQ1, Q2

∑

x

Q1(x) logQ2(x) ≤
∑

x

Q1(x) logQ1(x) , [6]

and equality holds iffQ1 = Q2. When [4] and [5] are combined with [6] withR and
Q substituted forQ1 andQ2 we get

∑

x

R(x) logR(x) =
∑

x

Q(x) logR(x) ≤
∑

x

Q(x) logQ(x)

∑

x

Q(x) logQ(x) =
∑

x

R(x) logQ(x) ≤
∑

x

R(x) logR(x) ,

which holds only ifR = Q. Thus we have shown thatSE ∩RE = {Q}. ■

LEMMA 15. — Let E = {E1, . . . , Ek}, Q ∈ RE , and SE = {P : PE1 =
QE1 , . . . , PEk = QEk}. Then

(a) ∀R ∈ RE , Q≪ R =⇒ Q = π(R,SE) and

(b) Q maximimizes entropy from all distributions inSE .

PROOF. — First, observe thatQ ∈ SE ∩RE . From Lemma 14 we know that there is
no other distribution inSE ∩RE thanQ. It suffices to show that∀R ∈ RE , Q≪ R:

π(R,SE ) ∈ SE ∩RE = {Q} .

This can be shown using properties of IPFP proven by Csiszár in [CSI 75]. We can
start IPFP from arbitraryR ∈ RE , Q≪ R and iterate fitting the distributions from the
input set{QE1, . . . , QEk}. We have thatSE 6= ∅. In such a case IPFP converges to a
Q′ ∈ SE ∩ RE . Since this intersection contains only one element we haveQ′ = Q.
Csiszár also proved that IPFP converges toπ(R,SE ). It follows thatQ = π(R,SE).

Now, assumeR to be the uniform probability distribution, i.e.,R(xV ) = c, where
c is a constant such that

∑
xV R(xV ) = 1. Observe that for anyE it holds that

R ∈ RE . Assertion (a) implies that

Q = arg min
S∈SE

I(S ‖ R) = arg min
S∈SE

∑

xV

S(xV ) log
S(xV )

c

= arg max
S∈SE

−
∑

xV

S(xV ) log S(xV ) = arg max
S∈SE

H(S) .

■
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LEMMA 19. — Assume an input set{P1, . . . , Pk}. For any two probability distribu-
tionsQ andR such that forj = 1, . . . , k: Pj ≪ QEj ≪ REj it holds that

ψ(R ‖ P1, . . . , Pk) − ψ(Q ‖ P1, . . . , Pk) ≥ I(R̃ ‖ R) − I(R̃ ‖ Q) ,

whereR̃ denotes the result of the application of operator˜ onR defined as

R̃ =

k∑

j=1

wj · π(R,Sj) .

PROOF. — Since forj = 1, . . . , k: Pj ≪ QEj ≪ REj it holds that

REj (xEj ) = 0 =⇒ QEj(xEj ) = 0 =⇒ Pj(x
Ej ) = 0 .

Also

REj(xEj ) = 0 =⇒ ∀x′V , x′Ej = xEj : R(x′V ) = 0

and similarly forQ. This together with the convention0 log 0
0 = 0 allows to perform

the sum in the following expressions only overxEj : REj (xEj ) > 0. In order to avoid
an extensive notation we will omit this condition in the following.

ψ(R ‖ P1, . . . , Pk) − ψ(Q ‖ P1, . . . , Pk)

= +

k∑

j=1

wj ·
∑

x
Ej

Pj(x
Ej ) · log

Pj(x
Ej )

REj(xEj )

−
k∑

j=1

wj ·
∑

x
Ej

Pj(x
Ej ) · log

Pj(x
Ej )

QEj(xEj )

=

k∑

j=1

wj ·
∑

x
Ej

Pj(x
Ej ) · log

QEj (xEj )

REj (xEj )

=

k∑

j=1

wj ·
∑

x
Ej

Pj(x
Ej ) · log

∑

x
V \Ej

(
Q(xEj , xV \Ej )

REj (xEj )
·
R(xV \Ej | xEj )

R(xV \Ej | xEj )

)

Now we apply Jensen’s inequality

log
∑

i

λixi ≥
∑

i

λi log xi if
∑

i λi = 1
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to obtain

ψ(R ‖ P1, . . . , Pk) − ψ(Q ‖ P1, . . . , Pk)

≥
k∑

j=1

wj ·
∑

x
Ej

Pj(x
Ej ) ·

∑

x
V \Ej

R(xV \Ej | xEj ) · log
Q(xV \Ej , xEj )

R(xEj , xV \Ej )

≥
∑

xV




k∑

j=1

wj · Pj(x
Ej ) ·

R(xV )

REj(xEj )


 · log

Q(xV )

R(xV )

≥
∑

xV

R̃(xV ) · log
Q(xV )

R(xV )
,

≥
∑

xV

R̃(xV ) · log
R̃(xV )

R(xV )
+
∑

xV

R̃(xV ) · log
Q(xV )

R̃(xV )

≥ I(R̃ ‖ R) − I(R̃ ‖ Q) .

■

LEMMA 20. — Let IPFP be initiated with distributionQ(i·k) and the input set consist

of marginals ofQ̃(i·k), i.e. {Q̃E1

(i·k), . . . , Q̃
Ek

(i·k)}. After one cycle of IPFP distribution

Q((i+1)·k) satisfies inequality [3] with equality iff forj = 1, . . . , k: QEj

(i·k) = Q̃
Ej

(i·k).

PROOF. — In each step of IPFP we computeI-projection to a setS, whereS is a
set of all distributions having a given marginal. We can use an analog of Pythagoras’
theorem inI-divergence geometry [CSI 75]. ForP ∈ S and anyQ that has defined
π(Q,S) it holds that

I(P ‖ Q) = I(P ‖ π(Q,S)) + I(π(Q,S) ‖ Q)

See Figure 3 for an example of the theorem applied to the first cycle of IPFP when
there are three distributions in the input set.

In the general case, the analog of “Pythagoras’ theorem” implies that

I(Q̃(i·k) ‖ Q(i·k)) − I(Q̃(i·k) ‖ Q(i·k+1)) = I(Q(i·k+1) ‖ Q(i·k))

I(Q̃(i·k) ‖ Q(i·k+1)) − I(Q̃(i·k) ‖ Q(i·k+2)) = I(Q(i·k+2) ‖ Q(i·k+1))

. . .

I(Q̃(i·k) ‖ Q(i·k+k−1)) − I(Q̃(i·k) ‖ Q(i·k+k)) = I(Q(i·k+k) ‖ Q(i·k+k−1))

The sum all equations gives

I(Q̃(i·k) ‖ Q(i·k)) − I(Q̃(i·k) ‖ Q((i+1)·k))

= I(Q(i·k+1) ‖ Q(i·k)) + . . .+ I(Q((i+1)·k) ‖ Q((i+1)·k−1)) . [7]
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I(Q̃(0) ‖ Q(2)) = I(Q̃(0) ‖ Q(3)) + I(Q(3) ‖ Q(2))

I(Q̃(0) ‖ Q(1)) = I(Q̃(0) ‖ Q(2)) + I(Q(2) ‖ Q(1))

I(Q̃(0) ‖ Q(0)) = I(Q̃(0) ‖ Q(1)) + I(Q(1) ‖ Q(0))

S′
2

Q̃(0)

S′
3

Q(0)

Q(1)

Q(3)

Q(2)

S′
1

Figure 3. The “Pythagoras’ theorem” applied to the first cycle of IPFP with three
distributions in the input set

SinceI-divergence is nonnegative it implies that

I(Q̃(i·k) ‖ Q(i·k)) − I(Q̃(i·k) ‖ Q((i+1)·k)) ≥ 0 ,

where the left hand side equals zero if and only ifQ(i·k) has all its marginalsQEj

(i·k)

for j = 1, . . . , k equal to the corresponding marginals ofQ̃(i·k). Therefore one cycle
of IPFP satisfies condition [3]. ■

LEMMA 23. — Let Q(0) be an initial joint probability distribution satisfying the
same conditions as the initial joint probability distribution in Definition 11. Further
let Q(i·k), i = 0, 1, 2, . . . be the distributions computed by GEMA with the input set
{P1, . . . , Pk}. Then fori = 0, 1, 2, . . . andj = 1, . . . , k it holds:

Pj ≪ Q((i+1)·k) ≪ Q(i·k) .

PROOF. — SincePj ≪ Q(0) it suffices to show forj = 1, . . . , k that

Pj ≪ Q(i·k) =⇒ Pj ≪ Q((i+1)·k) & Q((i+1)·k) ≪ Q(i·k)

We will show it in the same order as GEMA computes these distributions:

π(Q(i·k),Sj)(x) = 0 ⇐⇒ Q(i·k)(x) = 0 ∨ Pj(x
Ej ) = 0

Q̃(i·k)(x) = 0 ⇐⇒ j = 1, . . . , k : π(Q(i·k),Sj)(x) = 0
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and forj = 1, . . . , k it holds that

Q((i·k)+j)(x) = 0 ⇐⇒ Q((i·k)+j−1)(x) = 0 ∨ Pj(x
Ej ) = 0 .

■

THEOREM 15. — Let Q(0) be an initial joint probability distribution satisfying
the same conditions as the initial joint probability distribution in Definition 11 and
{Q(n)}

∞
n=0 be a sequence of probability distributions computed by GEMA. Then the

sequence{ψ(Q(n) ‖ P1, . . . , Pk)}∞n=0 converges.

PROOF. — From Lemmas 19, 20, and 23 we have thatψ(Q(i·k) ‖ P1, . . . , Pk) for
Q(i·k) computed by GEMA is a non-increasing function ofi. It is bounded from below
byψ(Q(i·k) ‖ P1, . . . , Pk) ≥ 0 (see Remark 17). Therefore the sequence of values of
ψ(Q(i·k) ‖ P1, . . . , Pk) of Q(i·k) computed by GEMA converges. ■


