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ABSTRACT.In this paper we discuss the process of building a joint plolits distribution from

an input set of low-dimensional probability distributiorSince the solution of the problem for
a consistent input set of probability distributions is kmowe concentrate on a setup where
the input probability distributions are inconsistent. g case the iterative proportional fitting
procedure (IPFP), which converges in the consistent casels to come to cycles. We propose a
new algorithm that converges even in inconsistent caseiripertant property of the algorithm

is that it can be efficiently implemented exploiting decosapdity of considered distributions.

KEYWORDSProbabilistic models, Iterative proportional fitting, Kmbedge integration, Incon-
sistent data

1. Introduction

In this paper we discuss the process of integrating comtiiadi data using the
framework of classical probability. We defikeowledge integratioms a process of
building ajoint probability distribution@ from a set of low-dimensional probability
distributionsP = { P, ..., P}, k € N and from aninitial joint probability distribu-
tion Qy. To model a chosen domain we will use discrete random vasab] indexed
by natural numbers fromy = {1,...,n} C N. Each low-dimensional probability
distributionP;, j = 1,..., k is defined on variable§X,} e, £/; € V. Knowledge
integration should yield a joint probability distributiod® (X1, ..., X,,) that would
embody available knowledge about the chosen domain. Theragleproblem of the
construction of probability distributions with given mamgls has a long history start-
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ing with the papers by Hoeffding [HOE 40], Fréchet [FRE 51¢llkrer [KEL 64],
and Vorobev [VOR 62].

If there exists a probability distributio@ (X1, ..., X,,) whose marginals equal
to low-dimensional probability distributionB; € P,7 = 1,..., k then we say that
probability distributions in seP areconsistentOtherwise we say that they areon-
sistent

EXAMPLE 1. — In Table 1 we give an example (borrowed from [JIR 95b]) of a
input set of three distributiorf8 = {Pl (Xl, XQ), P (XQ, Xg), Pg(Xl, Xg)}

Table 1. Input set of distributiong P, , P, P5}

Pj,j=12| Xj:1=0 Xj;1=1 Py Xs3=0 Xz=1
X;=0 i-¢ € X3=0 € i-¢
X;=1 € i-¢ Xz=1| +-¢ €

If e = 2% then there exist probability distributiody X1, X, X3) whose marginals
equal to probability distribution®, P,, and P;. For example, the probability dis-
tribution given in Table 2 has its corresponding marginajsas to P, P,, and Ps.
Therefore the probability distributions in sBtare consistent.

Table 2. Joint probability distributionQ (X1, X, X3)

Xo=0 Xo=1
Q X3=0 X3=1 X3=0 X3=1
_ 3 3 1 3
X1=0 20 20 20 20
_ 3 1 3 3
Xi=1 20 % 20 20

Ife = % then there does not exist any distributi@aX;, X2, X3) whose marginals
equal to probability distribution# , P>, and Ps, i.e., the probability distributions in
setP are inconsistent.

We will use small letter:; to denote a value of variablg;. The set of all possible
values of variableX; will be denotedX;. We will use X to denote multidimen-
sional random variableX;, ..., X,,), z will denote a value ofX andX the set of all
values ofX. For a setA C V the symbolX“ denotes the multidimensional vari-
able{X;}ic, 2% denotes a value ok 4, andQ* denotes the marginal distribution
of @ on variablesX,i.e., Q4(z#) = >, ..a_,2 Q(z'). Recall, that each low-
dimensional probability distributio®;, j = 1, ...,k from P is defined on variables
XFEi E; CV.

DEFINITION 2. — Let P, @ be two probability distributions. Ifz € X, P(x) >
0} 2 {y € X,Q(y) > 0} thenP is dominated by) (denoted as® < Q).
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REMARK 3. — In the sequel it will be convenient to have defirtedog0 = 0 and
0-log 2 =0.

REMARK 4. — To simplify the notation we will omit the sé&t of values ofX in the
symbol for summation) ;. and write) _ instead.
zeX

The rest of the paper will be organized as follows. We brigflyaduce the in-
formation theoretical approach to knowledge integratimi$ection 2. In Section 3
we describe the iterative proportional fitting proceduf@=P). In Section 4 we will
define thel-aggregate - a criteria that measures the distance betieenarginals of
a joint distribution and the distributions of an input setSection 5 we propose a new
algorithm that can be considered to be a generalizationF® I®r inconsistent data.
We conclude the paper by a discussion of the properties g@irthigosed algorithm and
by presenting two experiments. The proofs of the lemmaslaatheorem are in the
appendix.

2. The information theoretical approach to knowledge integation

The probability distribution given in Table 2 has its ma@gequal taP;, Py, Ps
defined in Table 1 foe = 2;“0. However, this is not the only distribution defined for
three binary variableX’;, X5, X3 having its corresponding marginals equaFRg P,
andPs. There is a whole class of probability distributions thatéthis propertysS;
will denote the set of probability distributions having ithearginal equal to proba-
bility distribution P;, i.e.,S; = {Q : Q¥ = P;}. S or S¢ will be used to denote the
set of distributions having their marginals equal to praligidistributions from the
inputsetP, i.e.,S¢ = {Q : Q¥ = P1,...,Q" = B.}. Itmeansthafs = N}_,S;.

For practical reasons, only one representative of the wtlaksSe is often cho-
sen. A criterion that is most often used is Shannon entropyirf@rmation measure
introduced by Shannon in [SHA 48].

DEFINITION 5. — Entropy

H(PP) = - P(x)logP(x)

zeX

The selection of the distribution that maximizes Shanndrogy can be justified
by the fact that from all distributions in the cla$g this distribution contains least
additional information (see [HAJ 92], Chapter 3.3). Thenpiple of maximum en-
tropy was first introduced as an inference procedure by 3y 57]. Shore and
Johnson [SHO 80, JOH 83] prove there are four natural priesifhat determine that
the function that should be maximized must be the Shannanmnfunction. Also,
Paris and Vencovska [PAR 90] showed that the maximum entirtfipyence process
is the only inference process that satisfies natural priesipf independence and con-
sistency.
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A generalization of the maximum entropy principle to caségman estimaté’
of the unknown true distribution is known is the principlensinimum cross-entropy.
Cross-entropy was introduced by Kullback and Leibler [KUL] &s a divergence mea-
sure of two probability distributions. It is also known umdeveral other names:
Kullback-Leibler divergence, relative information, andlivergence. We will refer to
it asI-divergence.

DEFINITION 6. — [-divergence

Px) .
(P Q) - };XP(J;) log Q) if P<Q

+o0 it P& Q

REMARK 7. — I-divergencas not generally symmetrid.(P || @) > 0 with equal-
ity only if P and@ are identical. If7 is acompact seand P € 7 then the function
I(P | -) is continuous and strictly convex if.

In contrast tal-divergencetotal variancesatisfies theneasure properties

DEFINITION 8. — Total variance

[P=Ql = ) [P() Q) .

zeX

I-divergence can be used to provide an upper bound on toiahea:. The follow-
ing lemma is due to Kullback [KUL 66].

LEMMA 9. — If P, are two probability distributions then the following ineaity
holds:

P-Ql < 2VI(P[Q) (1]

I-divergence geometry, studied by Csiszar [CSI 75] @eticov CEN 82] is an
effective instrument enabling us to study iterative praged based on the operations
of I-projections to a set of probability distributiod& 7-projection will be the core
operation used in both iterative methods discussed in@e8tand in Section 5.

DEFINITION 10. — Q* is anI-projection of a probability distributiorP to a set of
probability distributions@ if for all @) € Q it holds that

1QP) = I |P).
We will userr (P, Q) to denotel-projection of P to Q.

If the setQ is convex and compakthen there is a unique distributiag@* € Q
that maximized (Q || P). Minimization of I-divergence is strongly related to the

1. Note thatS¢ is a convex and compact set.
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principle of maximum entropy. We will later show (in Lemma)1bat under certain
restrictions on probability distributiof® the I-projection of P to Sg corresponds to
the distribution that has the maximal entropy from all di®ttions inSg.

Let @ be a probability distribution such th&; < Q7. I-projection of@ to the
setS; can be computed [CSI 75] as

0, for QFi (2%i) = 0,
W(Q,Sj)(x) = Q@)M for QEJ (xEJ) > 0. [2]

QB @h)’

3. Iterative proportional fitting procedure

In case of a consistent input set the knowledge integraéisk tan be solved by
means of thdterative Proportional Fitting ProcedurélPFP), also known as the It-
erative Proportional Scaling. IPFP dates back to 1940. #& praposed by W. E.
Deming and F. F. Stephan [DEM 40] as a procedure for adjustofdrequencies in
contingency tables.

In each step of the iterative proportional fitting procedlif&-P) an/-projection of
the distribution from previous step to a &t j = 1, ..., k is computed. Projections
are repeated until a convergence is reaéhAdormal definition follows.

DEFINITION 11. — LetQ (X1, ..., X,) be an initial probability distribution such

that for all its marginalsQ(%) it holds thatP; < Q(b;)") forj =1,... k. IPFPisthe
following algorithm:

fori =0,1,2,...
forj=1,...k
Qikry) = T™(Qeikti—1):Si)s

REMARK 12. — If the input set containg strictly positive distributions and the
initial probability distribution is strictly positive thewe can see (from formula [2])
that each step of IPFP corresponds to
pFi
Q(i~k+j) = Q(i-k+j—1) : }3777
(i-k+j—1)

This makes IPFP an attractive procedure since it can beyaéaglemented.

The notion offactorizationwill play an important role in the characterization of
the resulting distribution.

2. k consecutive steps k +1,..., (i + 1) - k will be referred as aycle
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DEFINITION 13. — Probability distribution() factorizes with respect to sét =
{E,,..., E} if there exist nonnegative functiops;, : X — R i = 1,2,... .k
(called potentials) such that for all € X

Q) = ][ ¢e@&") .

E; €&

The set of all distributions factorizing with respect to &ewvill be denotedR¢.
Generally, it does not hold that if all probability distriftons computed in a finite
number of steps of IPFP factorize then also the limit distidn factorizes. Therefore
we will use the closure of s& ¢, defined as

Re = {P: H{Q(i) 2y Q(i) € Refori=1,2,... and lim Q(i) =P} .
LEMMA 14. — If S¢ # () thenSe N R¢ is unique, i.e., contains exactly one proba-

bility distribution.

The following lemma can be used to characterize the limibphility distribution
of a sequence of probability distributions computed by LRERIll be also used to
characterize limit probability distributions of the nevopedure proposed in Section 5.

LEMMA 15. — Let& = {Ey,...,Ex}, Q € Re, andSg = {P : PEr =
QF, ..., PFr = QFr}. Then

(@ VReRe,Q < R = Q =7(R,S¢) and
(b) @ maximimizes entropy from all distributionsdiz .

If Q) factorizes with respect t& then all probability distributions computed
within a finite number of iterations of IPFP factorize wittspect tof as well. Con-
sider@* that is the limit probability distribution of a sequence obpability distribu-
tions computed by IPFP. Sin€g" € R¢ from Lemma 15 we know tha&@* maximizes
entropy from all distributions having the margindls, , . .., Py }.

4. Distance to a given input set

In case of annconsisteninput set of probability distributions, IPFP tends to come
in cycles. Nevertheless, we wish to get a representativiegimiity distribution even
in the case when the input set is inconsistent. We endeaviard@n iterative pro-
cedure that converges even faconsisteninput sets, the marginals of the resulting
distribution should be somehow close to the input distiing and independent of the
ordering of the input low-dimensional distributions.

Empirical observations of Osherson et al. [OSH 97] supberbiasic idea underly-
ing theknowledge integratioprocess. They argue that a consistent probability model
that is fitted as closely as possible to the inconsistentjueigs of an informant will
often be closer to actual relative frequencies than the ualgments of the informant.
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Assume that to every probability distributid?y from input setP a nonnegative
weightw; is assigned such thit:f:1 w; = 1. The weights can be understood as
credibility weights of the corresponding probability distitions. Alternatively, the
weights can be proportional to the number of data vectord tesestimate the values
of the corresponding probability distribution. If we have preferences among the
distributions we sety; = %,j = 1,...,k. Recall that byQ® we denote marginal
distribution of a joint probability distributiof defined on variable%’;, i € E;, where
E; C V is the index set of variables ¢t € P.

In Definition 16 we define am-aggregate, which will be used to measure the
distance between the marginals of the resulting distidiougind the distributions from
the input set.

DEFINITION 16. — LetP = {P,..., P} be the input set of distribution§) be a
joint probability distribution, andv; be nonnegative weights summing up to 1.
I-aggregate is the functional

k
G@QI Pryo P = Y wi - I(P | Q%)
j=1

REMARK 17. — Sincel (P; || QF7) > 0 with equality iff P; = Qi it follows that
V(Q || Pr,...,P) > 0withequality iffj = 1,....k : P; = QF5. Itimplies that in
case of a consistent input $8t= { P, ..., P, } minimization of/-aggregate ensures
that the resulting distributio has the required marginals, i.€),€ S.

Generally, thel-aggregate need not be minimized by a unique probability dis
tribution. If there exists a probability distributiof that minimize thel-aggregate
then all probability distributions having the same margr@”, E € £ minimize
the corresponding aggregate as well. Furthermore, al¢obdisons having differ-
ent marginal€)”, E € £ can be minimizers of -aggregate with respect to a given
input setP = {P,...,P.}. We will denote the set of all probability distribution
minimizing the/-aggregate by . In case of aconsistent input se® it follows from
Remark 17 tha? = S.

Using the principle of maximal entropy, we will prefer thestlibution from set
7 that has the maximal entropy, i.€)* = argmaxge7r H(Q). In the case of a
consistent input sef = S, therefore@Q* is the same as the limit distribution of IPFP.

EXAMPLE 18. — Assume input seéP = {P; (X1, X2), Po(X2, X3), P5(X1, X3)}
from Example 1. Take = 2%. In this case there is no distribution having distributions
from P as its marginals (i.e. no distributiap havingy(Q || P1, P, P3) = 0). We
search for a distribution minimizing theaggregate fotw; = wy = w3 = %). We
provide such a distribution in Table 3.
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Table 3. Joint probability distributionQ (X1, X, X3)
Xo=1 Xy =2
Q Xs=1 X3=2 Xz=1 X3=2

X;=1
X1 =2

= o=
O o=
= O

= o=

5. Iterative minimization of the I-aggregate

Next we will describe a new procedure, which we call GEMA. Tlason for its
name is its similarity to the Generalized Expectation Maxation Algorithm [DEM 77].

Our goal is to find a probability distributio® that minimize the/-aggregate

V@I P P) = Y w IR QF)

The main idea of the proposed iterative algorithm is in otdeminimizey(Q ||
Py, ..., P,) decrease the value gfin the next iteratiody i.e.,

V(Qwy I Pry--- s P) = 0(Qisryny | Pry--- P) > 0.

LEMMA 19. — Assume an input sétP;, . . ., P }. For any two probability distribu-
tionsQ and R such thatforj = 1,...,k: P; < Q¥ < R it holds that

G(R| Pr,....,P)—(@Q| P,....,P) > IR|R)—IR|Q),

whereR denotes the result of the application of operatoon R defined as

k

R = ZU)j'T((R,Sj).

j=1

We can apply Lemma 19 witR being the probability distributiofy);.;.y from the
last iterationi - k and@ being the probability distributio® (;,1).x) from the current
iteration(i + 1) - k. If we take aQ((;+1).x) such that

I(Qew | Qiky) — I(Qiry | Qii+y-ry) = 0. [3]
then we are sure that we do not increase the valuginfthe next iteratior{i 4 1) - k.

3. We will later see that one iteration of the proposed algaritonsists of: steps. To have the
notation ready we index the iterations with multiplescof
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For any finite integen we will requireQ . to factorizé with respect to a class
& ={Fi,...,E;}. We will employ IPFP to meet this requirement. Next we will
show that it suffices to perform one cycle of IPFP to satisfiydition [3].

LEMMA 20. — Let IPFP be initiated with distributio® ;.,,y and the input set consist
of marginals ofQ;.4), i.e. {@5?k), s @5{“@}. After one cycle of IPFP distribution
Q((i+1)-k) satisfies inequality [3] with equality iff fof = 1,..., k: Q(b;?'k) = @(b;?'k).

Thus, each cycle of of the proposed algorithm, which we c&@Ma, has two
different phases.

During thefirst phasel-projections of the distribution from the previous cycle to
setsS; = {Q : QFi = P;} are computed. Subsequently, the weighted average of the
I-projections is computed.

For the second phase we need to compute marginal distnitsftiom the weighted
average. Observe, that these distributions are necegssarikistent since they are
marginals of a joint probability distribution.

The second phaseonsists ofk consecutive steps of IPFP starting with the dis-
tribution from the previous iteration of GEMA and conseqtlefitting the marginal
distributions computed in the first phase. A formal defimtfollows.

DEFINITION 21. — LetQ ) be aninitial joint probability distribution satisfying th
same conditions as the initial joint probability distribom in Definition 11. GEMA is
the following algorithm:

fori =0,1,2,...
Qiky = Loy w - m( QS I S5 ={Q: Q" = Py}
forj=1,...,k
compute the margina@(b;{k) of Qi
forj=1,... )k
Quirss) = T(Quurti—1> S 11 8§ ={Q: Q% =Q}

It is easy to compute thé-projections to sets;, S; forj = 1,...,k using for-
mula 2. Therefore, similarly as for IPFP, also GEMA can belga&splemented. We
will use an example to show the computations that are peddruring one iteration
of GEMA.

4. In this moment we will not provide any justification for thisquirement. Later we will see
that this requirement is necessary to guarantee the repioperties of the new algorithm.
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EXAMPLE 22. — Assume input seéP = {P; (X1, X2), P>(X2, X3), P5(X1, X3)}
andw; = wy = w3 = % In this case one iteration of GEMA consists of the following
steps:

Py Py P )

~ 1
Qi) = —Qu-k)'( 5t om T oF
3 Quy  Qum Qi

Quir+y = Qur-

s
Qick)

Qi-ky+2) = Q((ik)—&-l)'iQEz
((i-k)+1)

E3

N Qi)

Qi-ky+3) = Q((i~k)+2)'QE3
((i-h)+2)

In order to be able to apply previous results we need to shaWGEMA does not
introduce “unexpected” zero values into probability disitions.

LEMMA 23. — Let Q) be an initial joint probability distribution satisfying th
same conditions as the initial joint probability distritbom in Definition 11. Further

let Q.xy,i = 0,1,2,... be the distributions computed by GEMA with the input set
{Py,...,P;}. Thenfori =0,1,2,...andj = 1,..., kit holds:

P < Quit1yr) < Q) -

Now we are ready to prove the main result of this paper ab@utdmvergence of
GEMA.

THEOREM 24. — Let Q) be an initial joint probability distribution satisfying
the same conditions as the initial joint probability distwition in Definition 11 and
{Qm) 7, be a sequence of probability distributions computed by GEWhen the
sequencgy(Qe || Pr, ..., Pr) 1ol converges.

We used Lemma 15 to characterize the limit probability thstion of a sequence
of probability distributions computed by IPFP. We know tliat maximizes entropy
from all distributions fromSg, i.e. from the set of all distributions having the marginals
{P17"'7Pk}'

Similarly, we can characterize probability distributioc@mputed by GEMA. If
Qo) factorizes with respect t& then probability distributions);.,.1,, computed
within a finite number of iterations of GEMA factorize withsgect to sef. Now,
consider @* € R¢ thatis the limit probability distribution of a sequence obpabil-
ity distributions computed by GEMA. Then from Lemma 15 we WrtbatQ* maxi-
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mizes entropyfrom all distributions having their marginals equal to therginals of
Q* on the sets that are elementsfof

REMARK 25. — A simplified version of GEMA could consist of the first jsiesof
GEMA only®. We could use the same line of reasoning to prove its connesge
However, typically the distributions computed by this prdare would not factorize
with respect t&€ and, consequently, the limit distribution would be diffiere

We tested the behavior of IPFP and GEMAa@msistenandinconsistenversions
ofinputsetP = {P,, P», P;} defined in Table 1. The plots in Figures 1 and 2 describe
development of one probability value (vertical axis) ofmnjoprobability distribution
Q) for one combination of values of random variables. Horiabakis corresponds
to iterationi . We can see that in theonsistentase both methods converge to the
same value. In thmconsistentase IPFP oscillates while GEMA converges. We have
observed that, in some cases, the convergence of GEMA neaptimum is quite
slow. For other experiments see [VOM 99].

. ,,,..470-—0»4 I 3 IR S e R S SR A A A A
Lo
.- ?

10 20 30 40 50 60 70 80

Figure 1. IPFP (full line) and GEMA (dotted line) applied to the corisist input set
(€= 3)

The experiments suggests that the resulting distributmesdot depend on the
ordering of the input sefP, ..., P }. Also, the resulting distribution does not seem

5. This provides a justification for the requirement that/fioe 0, 1, 2, . . . probability distribu-

tions Q... should factorize with respect to
6. Such a procedure was originally proposed by F. Matu$ (pafssommunication).
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Figure 2. IPFP (full line) and GEMA (dotted line) applied to the incastent input
set € = =)

to be influenced by the starting distributions providediisi&s the conditions for the
initial joint probability distribution given in Definitiorl1 and factorizes with respect
to&.

6. Efficient implementation of GEMA

In the framework of probabilistic modelactorizationis used to design computa-
tionally efficient representations of probability distritons.

DEFINITION 26. — Set& of subsets of is decomposable if either it has exactly one
element or it is the union of two disjoint decomposable §e@snd &, such that there
existF, € & andE; € & so that:

(UE/Ggl E/) N (UE“eng”) = FEiNE,;.

Observe that in GEMA we do not need to h@@_k) represented explicitly since
we only need its marginal@ﬁﬁk),n = 1,...,k. We can construct a decompos-

able setC = {C1,...,C}, C; € V,i = 1,...,m such that it holds that for each
Pj(XFEi) € P there existg’; € C such thatF; C C;. Then, we can use the junction
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tree propagation [JEN 90] witt; € C being the nodes of the junction tree to com-
pute efficiently the margina@ﬁﬁk), n =1,..., k. Thus the first phase of GEMA can
be implemented similarly as suggested by Lauritzen [LAUf@5the EM-algorithm.
The computational complexity of the update by one distrdyuf’; from the input set

is proportional tay . . [X“.

Since the second phase of GEMA is equivalent to one cycler® We can use the
space-saving implementation of IPFP proposed by Jiros&al{JIR 91] or [JIR 95a].
The computational complexity of one step of the space-gdwiplementation of IPFP
is also proportional tg ., .. [X

Consequently, the computational complexity of one cyclé&s&MA is propor-
tional tok - > ¢ |X“%|, wherek is the number of distributions in the input set

7. Conclusions

The proposed algorithm - GEMA - satisfies the original ini@mtto design a
method that is an extension of IPFP for inconsistent input\We have proved that it
converges also when the input set of probability distrifmasiis inconsistent. We have
proposed to use thB-aggregate to measure how well the marginals of a probgabilit
distribution fits the input probability distributions. Albugh GEMA tends to mini-
mize this criteria we did not provide any guarantee aboutats/ergence to a global
or local minima. The conditions that would guarantee sucbraergence should be a
topic of a future research.

An important property of GEMA is that it can be implementefibéntly. It means
that it can be used for computations with probability disitions containing hundreds
or thousands of variables provided the probability distiiins have a compact factor-
ized representation.
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A. Proofs

LEMMA 14. — If S¢ # () thenSe N R¢ is unique, i.e., contains exactly one proba-
bility distribution.

PROOF. — The idea of the proofis the same as of the proof of Lemmai8.fl4AU 96].
Let @ be a probability distribution fronse NR¢. Assume an arbitrar® € Se NR¢.
We can writé:

k k
R=lim [[¢% and Q= lim J]o%
i=1 i=1
By exploiting the above factorizations we get:
k
2 R@)ogQ(r) = 3 R()} los lm o (@)
x 1=1

k
= lim Z Z RE (2F") 1log ¢S;) (xF7)

i=1 g Ei

k
= lim Y Q M) log g (o)

=1 g E;
= ZQ Zlog lim_¢f (")
= ZQ ) log Q(x) [4]

7. The superscrip{n) serves as an index of the sequences of poten(ragz)}ic;l and

{¢(n)
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Similarly, we can get:
ZQ( log R(x ZR )log R(x [5]

We will use the following well-known inequality that holderfarbitrary probability
distributionsQ, Q2

> Qi(x)log Qa(x ZQl )log Q1(z) [6]

and equality holds iff); = Q.. When [4] and [5] are combined with [6] witR and
@ substituted fo); and@- we get

ZR( )log R(x ZQ Jlog R(z) < ZQ )log Q(z
ZQ( log Q(x ZR YogQ(z) < ZR )log R(x

which holds only ifR = Q. Thus we have shown th&t NRs = {Q}. ]

LEMMA 15. — Let& = {FEy,...,Ex}, Q € Re, andSg = {P : PEr =
QF, ..., PFr = QFr}. Then

(@ VReRe,Q < R = Q =7(R,S¢) and
(b) @ maximimizes entropy from all distributionsdiz .

PROOF. — First, observe tha) € S¢ N Re. From Lemma 14 we know that there is
no other distribution irSs N R¢ than(. It suffices to show thatR € Re, Q < R:

m(R,Ss) € SeNRe = {Q} .

This can be shown using properties of IPFP proven by CsiszfE$| 75]. We can
start IPFP from arbitrary® € R¢, QQ < R and iterate fitting the distributions from the
inputset{Q%1, ..., QF*}. We have thaS¢ # (. In such a case IPFP converges to a
Q' € Se N Re. Since this intersection contains only one element we lGve: Q.
Csiszar also proved that IPFP converges(®, S¢). It follows that@ = 7 (R, S¢).

Now, assumer to be the uniform probability distribution, i.eR(z"") = ¢, where
¢ is a constant such thgf_» R(z"") = 1. Observe that for any it holds that
R € R¢. Assertion (a) implies that

Q arg min I(S || R) = arg min Z S(z")log M
SeSe SeSe Y c

= argmax—ZS Ylog S(zV) = argné%xH(S)
£
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LEMMA 19. — Assume an input sty ..., P, }. For any two probability distribu-
tionsQ and R such thatforj = 1,...,k: P; < Q¥ < R it holds that

G(R|| Pryo o P —0(Q || Pr,...,P) > I(R|R)—IR| Q) ,

whereR denotes the result of the application of operatasn R defined as
k
Z wy - W(R, SJ)
j=1

PROOF. — Since forj = 1,...,k: P; < Q¥ < RFi it holds that
REi(2F) =0 = Q¥ (2¥)=0 = Pj(z®) =0 .

Also
REi(2B) =0 = Va'V, 2’5 =25 : R(@"V) =0

and similarly for@. This together with the conventidriog % = 0 allows to perform
the sum in the following expressions only owéti : R¥i (2¥i) > 0. In order to avoid
an extensive notation we will omit this condition in the fmlling.

z/](RlevaP)_ (Q”PlaaP)

P; 2
+wa R e

_ij ZP 2P 1ogQEJ((mE]))

QP (x7)

- ij ZP EJ 1OgREJExEJ)

EJ QJV\E) R( V\E; |x ))

) szp RPN eontl ey

2V \Ej

Now we apply Jensen’s inequality

logZ)\ixi > Z/\i loga; if Y Ai=1
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to obtain

V(R P, Pe) (@ | Pr, ..o Pr)
k
. 1B, QzV\Es, 2B
> Z;wj-;Pj(wEf)- > R [2%) log ey
J= xd

2V \Ej

b ) R(zV QzY
(St )

>
> S R@EY) log gng; |

- R(zY _ N
> Z R(z") -log gga:v; + Z R(z") -log %
> I(R|R) - I(R| Q) .

LEMMA 20. — Let IPFP be initiated with distributio® ;.,,y and the input set consist
of marginals ofQ;.4), i.e. {@55@)’ o @5{3@)}. After one cycle of IPFP distribution
Q1)) Satisfies inequality [3] with equality iff fof = 1,.. ., k: Qﬁ{k) - éﬁ{k).

PROOF. — In each step of IPFP we compufeprojection to a sefS, whereS is a
set of all distributions having a given marginal. We can usemalog of Pythagoras’
theorem in/-divergence geometry [CSI 75]. Fét € S and any(Q that has defined
©(Q,S) it holds that

IPQ) = I(P|~@QS)+I=(QS5) Q)

See Figure 3 for an example of the theorem applied to the fide of IPFP when
there are three distributions in the input set.

In the general case, the analog of “Pythagoras’ theoremligsthat
IQuw | Qi) — IQeiny Il Quik+ry)) = I(Qurr) || Qeioky)
IQuw | Qursn) —IQuny | Quikr) = I(Qukia) |l Quikin)

HQuw Il Quitir—1)) = IQuiwy | Quikrny) = I(Qiksn) Il Qikin—1))
The sum all equations gives

IQuw | Qi) — I Qeiry Il Qi) )
= QG+ Il Quiry) + - + I Qi+1)k) | Qii1)-k—1)) - [7]
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Qe | Q) + 1(Qy Il Qo))

=17
IQu | Quy) = I(Qq) || Qezy) + I( Q) | Q)
=17

Q) |l Qo))

I(@(o) | Q2y) (Quoy | Qzy) + 1 Q3 || Qe2))

Figure 3. The “Pythagoras’ theorem” applied to the first cycle of IPFRthwthree
distributions in the input set

Sincel-divergence is nonnegative it implies that
IQeuw | Qur) — I Quimy || Quiziyny) = 0,

where the left hand side equals zero if and onlg{f.,) has all its marginal@ﬁfk)

for j = 1,...,k equal to the corresponding marginals@f, ). Therefore one cycle
of IPFP satisfies condition [3]. ]

LEMMA 23. — Let Q) be an initial joint probability distribution satisfying th
same conditions as the initial joint probability distritbom in Definition 11. Further

let Q.xy,i = 0,1,2,... be the distributions computed by GEMA with the input set
{P1,...,Px}. Thenfori =0,1,2,...andj = 1,..., k it holds:

P < Quityr) < Q) -

PROOF. — SinceP; < Qo) it suffices to show foj = 1,. .., k that
P <Qury = P <Qiv1)k) & Qiv1)-k) K Qeik)
We will show it in the same order as GEMA computes these digions:
T(Qeik), S)) =0 = Qu(r) =0V Pi(a™) =0

Q(i,k)(l‘) =0 <= j=1,...,k: W(Q(i.k),sj')(x) =0
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and forj = 1,..., kit holds that

Qiky+5) () =0 = Qur)+j-n(®) =0V Pj(xEj) =0.
]

THEOREM 15. — Let Q) be an initial joint probability distribution satisfying
the same conditions as the initial joint probability digttion in Definition 11 and
{Qm) 1720 be a sequence of probability distributions computed by GEWhen the
sequencgy(Qen || Pr, ..., Pr) 1ol converges.

PROOF. — From Lemmas 19, 20, and 23 we have thé€ ., || Pi,..., P) for
Q(i-x) computed by GEMA is a non-increasing functionioft is bounded from below

by ¥(Qiky || P1,...,Pr) > 0 (see Remark 17). Therefore the sequence of values of
V(Qiky || P, .., Px)of Q.y computed by GEMA converges. [



