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Abstract

The specification of conditional probability tables (CPTs) is a difficult task
in the construction of probabilistic graphical models. Several types of canon-
ical models have been proposed to ease that difficulty. Noisy-threshold mod-
els generalize the two most popular canonical models: the noisy-or and the
noisy-and. When using the standard inference techniques the inference com-
plexity is exponential with respect to the number of parents of a variable.
More efficient inference techniques can be employed for CPTs that take a
special form. CPTs can be viewed as tensors. Tensors can be decomposed
into linear combinations of rank-one tensors, where a rank-one tensor is an
outer product of vectors. Such decomposition is referred to as Canonical
Polyadic (CP) or CANDECOMP-PARAFAC (CP) decomposition. The ten-
sor decomposition offers a compact representation of CPTs which can be
efficiently utilized in probabilistic inference. In this paper we propose a CP
decomposition of tensors corresponding to CPTs of threshold functions, ex-
actly `-out-of-k functions, and their noisy counterparts. We prove results
about the symmetric rank of these tensors in the real and complex domains.
The proofs are constructive and provide methods for CP decomposition of
these tensors. An analytical and experimental comparison with the parent-
divorcing method (which also has a polynomial complexity) shows superiority
of the CP decomposition-based method. The experiments were performed on
subnetworks of the well-known QMRT-DT network generalized by replacing
noisy-or by noisy-threshold models.
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1. Introduction

Bayesian networks [1, 2, 3] provide a popular framework for modeling and
decision-making under uncertainty. Since most of our decisions are based
on information that is (at least partially) uncertain, Bayesian networks were
applied in many diverse domains. Their fundamental advantage over different
frameworks is their ability to divide the modeling problem into two basic
stages: first, the structure of the modeled domain is described using a graph
and secondly, the numerical values describing the quantitative relationship
between model variables are provided. The model is either built by domain
experts or automatically learned from collected data; and possibly created
using a process that combines both ways. The key property of Bayesian
networks that allows them to be applied in domains with up to hundreds
of variables is the decomposability of the joint probability distribution they
represent.

The structure of a Bayesian network is defined by an acyclic directed
graph G = (V,E), where E is the set of directed edges, i.e., E ⊆ V × V .
The joint probability of a Bayesian network is defined for all configurations
x = (x1, . . . , xn) of discrete variables X1, . . . , Xn as

P (x1, . . . , xn) =
n∏
i=1

P (xi|xpa(i)) , (1)

where pa(i) denotes the set of parents of node i in the graph G = (V,E), i.e.,
pa(i) = {j, (j → i) = (j, i) ∈ E}. Using a common shorthand for a formula
valid for all configurations of variables we can write formula (1) as

P (X1, . . . , Xn) =
n∏
i=1

P (Xi|Xpa(i)) . (2)

Formula (1) allows efficient computations of probabilistic queries

P (Xi = xi|e), e = {Xj = xj, j ∈ A}, A ⊂ V

for all values xi of all Xi, i ∈ V \ A. The computational complexity of this
task when the popular junction tree method [4, 5] is used is exponential
with respect to the size |C| of a largest clique C ⊆ V of the triangulated
moralized graph G′ of G, see [4, 5] for details. The value |C|− 1 is called the
treewidth of G′. If the treewidth is not large, then computationally efficient
probabilistic inference is possible. This allows the application of Bayesian
networks in domains with hundreds of variables, where a naive computation
with the full joint probability table would not be tractable.
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Unfortunately, the treewidth is large in some applications, for example,
some variables Xi, i ∈ V may have a very large parent set (|pa(i)| > 102).
In such cases the exact inference with the standard junction tree method is
not tractable. One solution is to resort to approximate inference methods,
e.g., to Monte-Carlo methods [6], the Pearl polytree algorithm [1] applied
to Bayesian networks with loops, variational methods [7], inference using
probability trees [8, 9], or binary probability trees [10].

Based on our experience with different applications of Bayesian networks
we believe that the conditional probability tables (CPTs), which are the basic
building blocks of Bayesian networks, may often have a simple structure, for
example, they correspond to a noisy functional dependence. This property
should be exploited not only when building a Bayesian network model but
also during the probabilistic inference.

Various methods that can exploit the local structure of CPTs were pro-
posed. An early example is the Quickscore algorithm [11] exploiting noisy-or
relations in the Quick Medical Reference model. Olesen et al. [12] proposed
the so-called parent-divorcing method. Heckerman and Breese [13] use a
temporal model transformation. Zhang and Poole [14] introduced deputy
variables that are used to create heterogeneous factorizations in which the
factors are combined either by multiplication or by a combination operator.
Takikawa and D’Ambrosio [15] used auxiliary variables, which allowed them
to transform an additive factorization into a multiplicative factorization. The
additions are achieved by the marginalization of the intermediate variables.
Dı́ez and Galán [16] pointed out that the transformation of noisy-max can
be done using a single variable.

CP tensor decomposition, called tensor rank-one decomposition in [17],
is a generalization of Dı́ez and Galán’s decomposition. It is based on the
CP decomposition of tensors [18, 19]. Savicky and Vomlel [17] described CP
tensor decompositions of several canonical models – noisy-max, noisy-min,
noisy-add, noisy-xor.

Previous research reveals that for certain models the computational sav-
ings achieved by this transformation are very large – instead of a representa-
tion that is exponential with respect to the number of variables in a CPT we
get a representation that is only quadratic [17, 20, 21]. The application of the
CP tensor decomposition allows application of Bayesian networks in domains
where exact probabilistic inference would not otherwise be possible. We be-
lieve this may have a substantial impact on the quality of decision-making
in complex domains such as: medical decision support systems and health
monitoring [12, 22, 23, 24, 25], troubleshooting complex devices [26, 27], etc.

This paper is organized as follows. Conditional probability tables with
a local structure are discussed in Section 2. In Section 3 we introduce the
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necessary tensor notation, define tensors of the exactly `-out-of-k and thresh-
old functions, and present their basic properties. Sections 4 and 5 represent
the main original contribution of this paper. We propose methods for the
decomposition of tensors of the threshold and exactly `-out-of-k functions in
the real and complex domains and prove results about the symmetric rank
of these tensors. In Section 6 we analytically compare the CP decomposition
and the parent-divorcing method using an exemplary class of models. In Sec-
tion 7 we present experimental comparisons of the CP decomposition method
with the standard junction tree method and the parent-divorcing method.
The experiments are performed on a generalized version of the QMR-DT
network. In Section 8 we briefly review other methods exploiting local struc-
ture of CPTs. We outline how the CP decomposition can be combined with
weighted model counting. Major proofs are moved to appendices.

2. Conditional probability tables with a local structure

Canonical models [28] represent a class of CPTs with the local structure
being defined either by:

• a deterministic function of the values of the parents (they are called
deterministic models in [28] ),

• a combination of a deterministic part with independent probabilistic
influence of each parent variable (called ICI models in [28] ), or

• a combination of a deterministic part with a probabilistic relationship
between the child variable of the deterministic part and its child (called
simple canonical models in [28]).

For the graph of a deterministic model see Figure 1. The graph of an
ICI model contains auxiliary variables X ′1, . . . , X

′
k, one for each parent, see

Figure 2. The graph of a simple canonical model contains one auxiliary
variable Y ′, see Figure 3.

The joint probability distribution of the Bayesian network in Figure 2 is

P (Y |X ′1, . . . , X ′k)
k∏
i=1

P (X ′i|Xi)P (Xi) ,

where the first term P (Y |X ′1, . . . , X ′k) corresponds to a deterministic func-
tion and terms P (X ′i|Xi) to the probabilistic part (often called noise). We
can replace the Bayesian network of Figure 2 with a model without auxil-
iary variables X ′1, . . . , X

′
k (see Figure 1) by marginalizing them out from the

Bayesian network.
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X1 X2 . . . Xk

Y

Figure 1: A Bayesian network with a canonical model P (Y |X1, . . . , Xk) without auxiliary
variables.

X ′
k. . .X ′

2X ′
1

Y

X1 X2 . . . Xk

Figure 2: A Bayesian network with a canonical model with explicit deterministic part
P (Y |X ′

1, . . . , X
′
k) and probabilistic parts P (X ′

i|Xi), i = 1, . . . , k.

The values of P (Y |X1, . . . , Xk) can be computed from the original model
by

P (Y |X1, . . . , Xk) =∑
X′

1

. . .
∑
X′
k

P (Y |X ′1, . . . , X ′k) ·
k∏
i=1

P (X ′i|Xi) .

This model is equivalent to the original one in the sense that it can be used
to compute correct marginal and conditional probabilities for any subset of
its variables present in both models.

As was suggested in [17] we can rewrite each CPT as a product of two-
dimensional potentials1 ψi, i = 1, . . . , k and ξ:

P (Y |X1, . . . , Xk) =
∑
B

ξ(B, Y ) ·
k∏
i=1

ψi(B,Xi) , (3)

1These potentials take values that are real (or even complex) numbers.
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Y ′

Y

X1 X2 . . . Xk

Figure 3: A Bayesian network with a canonical model with a deterministic part
P (Y ′|X1, . . . , Xk) and a probabilistic part P (Y |Y ′).

where B is an auxiliary variable. This transformation can be visualized by
the undirected graph given in Figure 4.

X1 X2 . . . Xk

B

Y

Figure 4: Model of P (Y |X1, . . . , Xk) after the transformation using auxiliary variable B.

If the state y of variable Y is observed, we can omit the variable Y and
the corresponding potential and decompose the CPT P (y|X1, . . . , Xk) as:

P (y|X1, . . . , Xk) =
∑
B

k∏
i=1

ψi(B,Xi) . (4)

This transformation can be visualized by the undirected graph given in Fig-
ure 5.

To guarantee either of the above equalities, variable B has to have a cer-
tain number of states. Trivially, the equality can always be satisfied if the
number of states of B is the product of the number of states of variables
X1, . . . , Xk. However, the transformation becomes computationally advan-
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X1 X2 . . . Xk

B

Figure 5: Model of P (y|X1, . . . , Xk) after the transformation using auxiliary variable B.

tageous if the number of states is substantially lower2. Again, this model is
equivalent to the original one in the sense that it can be used to compute
correct marginal and conditional probabilities for any subset of its variables
present in both models.

The above decomposition specified by formula (3) or (4) can be integrated
into any inference engine that allows us to work with real-valued tables (po-
tentials). It can be beneficial to perform inference with complex numbers.
Although the complexity of addition and multiplication of two complex num-
bers is higher than of those operations on real numbers, the decompositions
based on complex numbers have better numerical stability.

In a junction tree method, the decomposition can be applied as a prepro-
cessing step replacing the moralization step. Instead of connecting all parents
of a node (as is done in moralization), one auxiliary node is added. This node
is connected to all parents by an undirected edge and, if the child node was
not observed, also to the child node. This undirected graph is then trian-
gulated and a junction tree with cliques as its nodes is created. Each table
is attached to a clique containing all variables of that table. The computa-
tions than proceed in the same way as in the standard junction tree method.
Note that in [20] results were reported of numerical experiments based on
an experimental R implementation3 of the lazy propagation [29] exploiting
approximate decomposition based on formula (4) in the real domain.

2As we will later see, this is the case for the CPTs of exactly `-out-of-k and threshold
functions

3R: A Language and Environment for Statistical Computing, http://www.R-project.
org
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3. Tensors of the exactly `-out-of-k and threshold functions

Each probability table can be understood as a tensor A. A tensor is
simply a mapping4 A : I → R or I → C, where I = I1 × . . . × Ik, k is a
natural number called the order of tensor A, and Ij, j = 1, . . . , k are index
sets. Typically, Ij are sets of integers of cardinality nj. Then we can say that
tensor A has dimensions n1, . . . , nk. All index sets considered in this paper
will be Ij = {0, 1}, j = 1, . . . , k.

Example 1 (Tensor of order 4 with all dimensions being 2). We can visualize
tensors using nested matrices with successive dimensions alternating between
rows and columns.

A =


(

1 0
0 0

) (
0 0
0 0

)
(

0 0
0 0

) (
0 0
0 0

)


Probability table P (y|X1, . . . , Xk) defines tensor A as

Ai1,...,ik = P (y|X1 = xi1 , . . . , Xk = xik),

for all combinations of states (xi1 , . . . , xik), (i1, . . . , ik) ∈ I1 × . . . × Ik of
variables X1, . . . , Xk.

Definition 1. Tensor A has rank one in real or complex domain, respectively,
if it can be written as an outer product of vectors, i. e.,

A = a1 ⊗ . . .⊗ ak

with the outer product being defined for all (i1, . . . , ik) ∈ I1 × . . .× Ik as

Ai1,...,ik = a1,i1 · . . . · ak,ik ,

where aj = (aj,i)i∈Ij , j = 1, . . . , k are real or complex valued vectors, respec-

tively.

Example 2. The tensor A from Example 1 has rank one since

A = (1, 0)⊗ (1, 0)⊗ (1, 0)⊗ (1, 0) .

4In this paper we consider decompositions of real-valued tensors, but the tensors in the
decomposition can actually be real-valued or complex-valued.
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Definition 2. Let A,B be two tensors of the same order k and the same
dimensions. Then their sum C = A + B is defined for all (i1, . . . , ik) as

Ci1,...,ik = Ai1,...,ik + Bi1,...,ik .

Definition 3. The rank of a tensor A, denoted rank(A), is the minimal r
such that A can be decomposed as a linear combination of rank-one tensors:

A =
r∑
i=1

bi · ai,1 ⊗ . . .⊗ ai,k . (5)

The decomposition of a tensor A to tensors of rank one that sum up to A is
called CP tensor decomposition.

It was observed in [17] that the minimum number of states of B in the
decomposition defined by formula (4) equals the rank of tensor A. The
decomposition of tensors into the form corresponding to the right hand side
of formula (4) has been studied for more than forty years [19, 18] and it is
now known as Canonical Polyadic (CP) or CANDECOMP-PARAFAC (CP)
decomposition. In [30] it is called an outer-product decomposition.

In this paper we deal with conditional probability tables representing two
specific canonical models – deterministic threshold and exact functions and
their noisy counterparts. An (`, k)-threshold function is a function of k binary
arguments that yields the value 1 if at least ` out of its k arguments take
value 1 – otherwise the function value is zero, the exactly `-out-of-k function
takes value 1 if exactly ` out of its k arguments take value 1. The noisy
version allows noise at the inputs of the function. In the model of Figure 2
the noise is represented by conditional probability tables P (X ′i|Xi).

The noisy-threshold models represent a generalization of two popular
models – noisy-or and noisy-and. They constitute an alternative to noisy-or
and noisy-and in case they are too rough. The conditional probability tables
of the noisy-threshold models appear, for example, in medical applications of
Bayesian networks [24, 23, 31, 32]. The noise on the parent variables cannot
increase the rank, see [17, Theorem 6]. Therefore all results about rank of
deterministic tensors represent an upper bound on rank of their noisy coun-
terparts. Also, it is easy to combine the noise with the CP decomposition
of a deterministic tensor to get a CP decomposition of its noisy counterpart.
For details, see [17]. In this paper we present results about tensors of deter-
ministic canonical models since they are easily extendable to ICI models and
simple canonical models.
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Definition 4. Let p be a propositional formula taking values true and false.
Function δ is defined as

δ(p) =

{
1 if p = true
0 otherwise.

Definition 5. Tensor S(`, k) : {0, 1}k → {0, 1} represents an exactly `-out-
of-k function if it holds for (i1, . . . , ik) ∈ {0, 1}k:

Si1,...,ik(`, k) = δ(i1 + . . .+ ik = `)

Example 3.

S(2, 4) =


(

0 0
0 1

) (
0 1
1 0

)
(

0 1
1 0

) (
1 0
0 0

)


Definition 6. Tensor T(`, k) : {0, 1}k → {0, 1} represents an (`, k)-threshold
function if it holds for (i1, . . . , ik) ∈ {0, 1}k:

Ti1,...,ik(`, k) = δ(i1 + . . .+ ik ≥ `)

Example 4.

T(2, 4) =


(

0 0
0 1

) (
0 1
1 1

)
(

0 1
1 1

) (
1 1
1 1

)


Remark. Note that the tensor of the logical “or” function is a special case of
the tensor of the (`, k)-threshold function for ` = 1. Similarly, the tensor of
the logical “and” function is a special case of the tensor of the (`, k)-threshold
function for ` = k.

It is straightforward to see that the exactly `-out-of-k tensors and the
(`, k)-threshold tensors are related as

T(`, k) =
k∑

m=`

S(m, k) . (6)

The above tensors correspond to the CPTs where the value of Y was
observed to be 1. Next, we shall consider extended versions of the above
tensors that correspond to CPTs with Y being unobserved. Such CPTs
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are part of the model if Y has a successor with evidence that is not its
child5. This applies, for example, to the case where observations of the state
of Y are noisy, which can be modeled by an auxiliary variable Y ′ being
deterministically related to X1, . . . , Xk with a child Y of Y ′ probabilistically
related to Y ′ by a CPT P (Y |Y ′). These models are called simple canonical
models in [28], see Figure 3.

Definition 7. Tensor S(`, k) : {0, 1}k+1 → {0, 1} is an extended tensor of
an exactly `-out-of-k function if it holds for (i0, i1, . . . , ik) ∈ {0, 1}k+1:

Si0,i1,...,ik(`, k) =

{
Si1,...,ik(`, k) if i0 = 1
1− Si1,...,ik(`, k) if i0 = 0 .

(7)

Example 5.

S(2, 4) =




(

1 1
1 0

) (
1 0
0 1

)
(

1 0
0 1

) (
0 1
1 1

)



(

0 0
0 1

) (
0 1
1 0

)
(

0 1
1 0

) (
1 0
0 0

)



Definition 8. Tensor T(`, k) : {0, 1}k+1 → {0, 1} is an extended tensor of
an (`, k)-threshold function if it holds for (i0, i1, . . . , ik) ∈ {0, 1}k+1:

Ti0,i1,...,ik(`, k) =

{
Ti1,...,ik(`, k) if i0 = 1
1− Ti1,...,ik(`, k) if i0 = 0 .

(8)

Example 6.

T(2, 4) =




(

1 1
1 0

) (
1 0
0 0

)
(

1 0
0 0

) (
0 0
0 0

)



(

0 0
0 1

) (
0 1
1 1

)
(

0 1
1 1

) (
1 1
1 1

)



.

5If the value of Y is unobserved and Y has no observed successor then its CPT and
CPTs of its successors can be discarded from the model – they are barren nodes [2].
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Definition 9. Tensor A : {0, 1}k → R is symmetric if for (i1, . . . , ik) ∈
{0, 1}k it holds that

Ai1,...,ik = Aiσ(1),...,iσ(k) ,

for any permutation σ of {1, . . . , k}.

Tensors S(`, k), T(`, k) are symmetric, and S(`, k), T(`, k) are partially
symmetric with respect to the last k coordinates. We concentrate on CP de-
composition of the former symmetric tensors first. We will present results for
tensors S(`, k) and T(`, k) that correspond to evidence Y = 1. The decompo-
sitions of tensors corresponding to evidence Y = 0 can be derived similarly.
CP decomposition of the extended tensors will be studied in Section 5. For
symmetric tensors it is possible to define a symmetric rank as follows:

Definition 10. The symmetric rank srank(A) of a tensor A is the minimum
number of symmetric rank-one tensors such that their linear combination
equals A

A =
r∑
i=1

bi · ai ⊗ . . .⊗ ai︸ ︷︷ ︸
k copies

=
r∑
i=1

bi · a⊗ki , (9)

where we adopt the notation a⊗k = a⊗ . . .⊗ a︸ ︷︷ ︸
k copies

of [30].

Remark. It is not known whether it holds for symmetric tensors A that
rank(A) = srank(A). In [30] it is conjectured that the equality holds and
the equality is proved for a restricted class of tensors.

We will use the following property of symmetric tensors.

Definition 11. Let A be a symmetric tensor, A : {0, 1}k → R. Then we
say that tensor A′ : {0, 1}k → R is constructed from A by swapping all its
coordinates if

A′i1,...,ik = Aδ(i1=0),...,δ(ik=0) ,

where δ(i = j) is defined in Definition 4.
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Example 7. Consider T(`, k) from Example 4. Then T ′(`, k) constructed
from T(`, k) by swapping all its coordinates is

T ′(2, 4) =


(

1 1
1 1

) (
1 1
1 0

)
(

1 1
1 0

) (
1 0
0 0

)
 .

Lemma 1. Assume a symmetric tensor A of order k and having all dimen-
sions equal to two. Let A′ be the tensor constructed from A by swapping all
its coordinates. Then it holds that

srank(A′) = srank(A) .

Proof. Note that

A =
r∑
i=1

(ui, vi)
⊗k ⇔ A′ =

r∑
i=1

(vi, ui)
⊗k

for any ui, vi ∈ R or ui, vi ∈ C.

An immediate consequence of Lemma 1 is Corollary 1.

Corollary 1.

srank(S(`, k)) = srank(S(k − `, k)) .

Each symmetric tensor A : {0, 1}k → R of rank-one can be written as

A =

{
(0, a)⊗k if A0,...,0 = 0
b · (1, a)⊗k otherwise,

(10)

where a, b ∈ R or a, b ∈ C.
In the following lemmas we treat the border cases with symmetric rank

equal to one.

Lemma 2. The symmetric rank of tensors S(`, k) representing the respective
exactly `-out-of-k function for ` ∈ {0, k} is one.

Proof.
S(k, k) = (0, 1)⊗k

S(0, k) = (1, 0)⊗k .

Lemma 3. The symmetric rank of tensors T(`, k) representing the respective
(`, k)-threshold function for ` ∈ {0, k} is one.
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Proof.
T(k, k) = (0, 1)⊗k

T(0, k) = (1, 1)⊗k .

In the next lemma we present a case with a low symmetric rank equal to
two.

Lemma 4. The symmetric rank of tensors T(1, k) representing the respective
(1, k)-threshold function is two.

Proof.
T(1, k) = (1, 1)⊗k − (1, 0)⊗k

and there does not exist any vector a such that

T(1, k) = a⊗k .

To see this, note that T(1, k)0,...,0 = 0. This requires a = (0, a), a ∈ R. But
tensor (0, a)⊗k has all its values except the one at (1, . . . , 1) equal to 0 and
thus cannot be equal to T(1, k).

Remark. Contrary to T(1, k) having symmetric rank of two in both real and
complex domains, the rank of S(1, k) is k – even in complex domain – see
Proposition 3.

4. CP decompositions of tensors of the exactly `-out-of-k and thresh-
old functions

In this section we establish the rank of tensors S(`, k) and T(`, k) and
present explicit formulas for the CP decomposition of these tensors in both
the real and complex domains. We conclude the section by explaining the
relationship between the symmetric tensor decomposition and the decompo-
sition of homogeneous polynomials.

Let A be a symmetric tensor of order k, in particular one of S(`, k),
T(`, k) for some ` = 2, . . . , k − 1. We shall seek for a decomposition of a
tensor A in the form of

A = A(a, b) =
r∑
i=1

bi · (1, ai)⊗k , (11)

where a = (a1, . . . , ar) is a vector of nonlinear parameters and b = (b1, . . . , br)
is referred to as a vector of amplitudes. We will refer to this decomposition
as the symmetric CP decomposition to r terms.
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Remark. Note that a general result of [30, Section 4.1] says that a symmetric
rank of a symmetric tensor of the order k and dimensions of two is always
less or equal to k + 1 in the complex domain.

Remark. Note that a minimal decomposition of this type with respect to r
does not imply that the symmetric rank is r. It can be smaller than r since
we excluded from this decomposition rank-one tensors of the type (0, a)⊗k.
Actually, this happens in the case of S(k, k) and T(k, k).

4.1. CP tensor decomposition in the real domain

In this section we will discuss CP tensor decompositions of S(`, k) and
T(`, k) in the real domain.

Proposition 1. In the real domain:

(A) the symmetric rank of S(`, k), for ` ∈ {2, . . . , k − 2}, is k.

(B) the symmetric rank of T(`, k), for ` ∈ {3, . . . , k − 2}, is at least k − 1,

The proof of the proposition is constructive, see Appendix B and Ap-
pendix C, respectively.

In the formulas we will use polynomials pm,m = 1, . . . , k determined by
their roots ai, i = 1, . . . , k, i 6= m,

pm(x) =
k∏

i=1,i 6=m

(x− ai) =
k∑
i=1

pm[i] · xi−1 , (12)

where pm[j] denotes the j−th coefficient of polynomial pm.
In the case of decomposition of tensor S(`, k) the first k − 1 elements

of vector a = (a1, . . . , ak) are taken at random, but distinct and with the
restrictions6 that pi[` + 1] 6= 0, i = 1, . . . , k − 1. Then ak is computed as a
rational function of these ai, i = 1, . . . , k − 1:

ak =
pk[`]

pk[`+ 1]
. (13)

The vector b of amplitudes has its elements defined for m = 1, . . . , k as

bm =
pm[`+ 1]

pm(am)
. (14)

6The theoretical probability that randomly generated values of a do not meet the
restrictions is zero.

15



Here pm(am) is the value of the polynomial pm(x) at point am. The derivation
of (13) and (14) is given in Appendix B. Note that the right-hand side of (13)
is a function of a1, . . . , ak−1 and is distinct from these ai’s provided that they
are mutually distinct - otherwise a decomposition with k − 1 terms would
exist, which is not possible.

Remark. In [20] it was shown that for S(`, k) there exist tensors that have
relatively low rank (at most min{` + 1, k − ` + 1}) and approximate tensor
S(`, k) with an arbitrarily small error. However, the computations with these
low rank approximations are not guaranteed to be numerically stable.

For tensor T(`, k), a similar decomposition as in the case (A) was proposed
in [21], with the difference that (13) and (14) are replaced by

ak =

∑k
i=` pk[i]∑k
i=`+1 pk[i]

= 1 +
pk[`]∑k

i=`+1 pk[i]
and (15)

bm =

∑k
i=`+1 pm[i]

pm(am)
, for m = 1, . . . , k. (16)

In Appendix C we present a novel decomposition of the tensor T(`, k) to
k − 1 factors for 2 < ` < k − 1, to prove part (B) of Proposition 1. Here,
the first k − 3 elements ai are taken at random, but distinct, and ak−2 and
ak−1 are computed so that the decomposition holds. These ak−2 and ak−1 are
given as solutions of a quadratic equation whose coefficients are functions
of ai, i = 1, . . . , k − 3. It appears that the roots of the equation are not
always real-valued. For now, for all tested values of ` and k (k ≤ 100) we
were able to find (by maximizing a discriminant of the equation) a choice of
ai, i = 1, . . . , k − 3 such that the discriminant was positive and all ais were
real-valued. However, we were not able to prove that such a choice always
exists – therefore we state it only as a conjecture.

Conjecture 1. In the real domain the symmetric rank of T(`, k), for ` ∈
{3, . . . , k − 2}, is k − 1.

The decomposition is highly ambiguous, in general. For the numerical
stability it is better to have the elements ai as separate as possible but at
the same time their absolute values should not be too large. In other words,
Vandermonde (k − 1)× (k − 1) matrix V (a) defined as

V (a) =


1 . . . 1
a1 . . . ak−1
...

...
ak−21 . . . ak−2k−1

 . (17)
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should not be badly conditioned7. Therefore we propose optimizing the
choice of the initial values of a by jointly minimizing the condition num-
ber of V (a). The minimization can be done by the Nelder-Mead simplex
algorithm with multiple random initializations, to avoid local minima.

Example 8. For the tensor from Example 3 the minimization results in
S(2, 4) = A(a, b) with

a = (−1.4588,−1.0151,−0.0685, 0.6491)

b = (−0.3341, 1.2563,−1.9324, 1.0101)

Example 9. For the tensor from Example 4 the minimization results in
T(2, 4) = A(a, b) with

a = (−1.1132,−0.6173, 0.3972, 0.9999)

b = (−0.1391, 0.8801,−1.8737, 1.1327) .

Note that Proposition 1 cannot be applied in this case since ` = 2 and
Proposition 1 requires ` ≥ 3. Instead we used formulas (15) and (16).

4.2. CP tensor decomposition in the complex domain
For large k’s, such as k = 25 and higher, the condition number of

the Vandermonde matrix becomes high for any choice of initial values of
ai, i = 1, . . . , k − 3. Therefore, we suggest considering a complex-valued de-
composition of the tensors, which can be expressed in closed forms, and might
be numerically more suitable. In particular, ai are uniformly distributed on
the unit circle and depend only on the tensor order k, but not on parameter
`.

The following proposition gives a method for how to construct a decom-
position of tensors S(`, k) into k terms for 0 ≤ ` ≤ k − 1 with the same set
of the nonlinear parameters ai, and consequently decompose any symmetric
tensor (and T(`, k) in particular) into k + 1 terms. For example, a “soft
threshold” tensor (see Example 10) can also be decomposed in this way.

Example 10. An example of a “soft threshold” tensor. The tensor is sym-
metric. Contrary to the “sharp” threshold, its values are not 0 and 1 only,
but changing from 0 to 1 with an increasing total sum of coordinates.

U =


(

0 0.2
0.2 0.5

) (
0.2 0.5
0.5 0.8

)
(

0.2 0.5
0.5 0.8

) (
0.5 0.8
0.8 1

)
 .

7Note that for the computations of values of vector b we need to invert the Vandermonde
matrix.
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Proposition 2. Let j =
√
−1, z = e2πj/k, and ` ∈ {1, . . . , k − 1} be given.

In the complex domain, S(`, k) and T(`, k) can be decomposed into k terms
and k + 1 terms, respectively, as

S(`, k) =
1

k

k∑
m=1

z(k−`)(m−1)(1, zm−1)⊗k (18)

T(`, k) = (0, 1)⊗k +
k − `
k

(1, 1)⊗k

+
1

k

k−1∑
m=1

zm − zm(k−`+1)

1− zm
(1, zm)⊗k . (19)

Proof. The decomposition of S(`, k) can easily be proven by verifying validity
of the linear system (B.1) with

a = (1, z, z2, . . . , zk−1)

b =
1

k
(1, zk−`, z2(k−`), . . . , z(k−1)(k−`))

for the particular right-hand side. The decomposition of T(`, k) is computed
using (18), Lemma 2, and (6).

Example 11. Tensor S(2, 4) from Example 3 can be decomposed in the
complex domain as A(a, b) defined by (11) and taking values

a = (1, j,−1,−j)

b = (
1

4
,−1

4
,
1

4
,−1

4
) ,

which means that

S(2, 4) =
1

4
(1, 1)⊗4 − 1

4
(1, j)⊗4 +

1

4
(1,−1)⊗4 − 1

4
(1,−j)⊗4 .

Example 12. Tensor T(2, 4) from Example 4 can be decomposed in complex
domain as

T(2, 4) = (0, 1)⊗4 +
1

2
(1, 1)⊗4 +

−1 + j

4
(1, j)⊗4 +

−1− j
4

(1,−j)⊗4 ,

where the term corresponding to vector (1,−1) vanishes since its correspond-
ing coefficient is 0.

Remark. In the same way, any symmetric tensor can be decomposed into
k + 1 terms, because any symmetric tensor of the dimension 2× . . .× 2 and
order k can be written as a linear combination of S(`, k), ` = 1, . . . , k.
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The decompositions in Proposition 2 are not guaranteed to be minimal.
We note from Proposition 1 that T(`, k) has rank k − 1 in the real domain;
hence its rank cannot be higher in the complex domain. The importance of
Proposition 2 lies in the decomposition method of an arbitrary symmetric
tensor of the order k and dimensions 2.

The next proposition determines the true symmetric rank of the tensors
S(`, k) and T(`, k) in the complex domain, and presents an example of the
decomposition.

Proposition 3. Let j =
√
−1. In the complex domain:

(A) for ` ∈ {1, . . . , k − 1}

r = srank(S(`, k)) = max{`+ 1, k − `+ 1}

A decomposition is S(`, k) = A(a, b) with

a = (1, z1, . . . , zr−1)

b =
1

r
(1, zr−`, z2(r−`), . . . , z(r−1)(r−`))

where z = e2πj/r,

(B) for ` ∈ {2, . . . , k − 1}

r = srank(T(`, k)) = max{`+ 1, k − `+ 1}

A decomposition is T(`, k) = A(a, b) with ai, i = 1, . . . , r defined as
the roots of the polynomial p(x) = xr − xr−1 + 1, and

b = [V (a)]−1(01×`,11×(r−`))
T (20)

where V (a) is the Vandermonde r×r matrix and vT denotes the trans-
position of v.

For the proof see Appendix D.
The following two examples illustrate that by using Proposition 3 we get

CP decompositions that require fewer terms than those based on Proposi-
tion 2.

Example 13. It follows from the first part of Proposition 3 that tensor
S(2, 4) has a rank of r = max{` + 1, k − ` + 1} = 3 in the complex domain.
Therefore it can be decomposed using only three terms:

S(2, 4) =
1

3
(1, 1)⊗4 +

e
2πj
3

3

(
1, e

2πj
3

)⊗4
+
e−

2πj
3

3

(
1, e−

2πj
3

)⊗4
.
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Example 14. It follows from the second part of Proposition 3 that tensor
T(2, 4) has a rank of r = 3 in the complex domain and it can be decomposed
using only three terms (numbers are rounded to six decimal points):

T(2, 4) = 0.310629 (1,−0.754878)⊗4

+(−0.155314 + 0.340362j) (1, 0.877439− 0.744862j)⊗4

+(−0.155314− 0.340362j) (1, 0.877439 + 0.744862j)⊗4 .

4.3. Relationship to the decomposition of homogeneous polynomials

Finding a symmetric CP decomposition of a symmetric tensor of order d
and dimension n is equivalent with (can be formulated as) a decomposition
of a homogeneous polynomial in n variables of total degree d as a sum of dth
powers of linear forms – see [33].

All symmetric tensors studied in this paper have a dimension of n = 2.
Therefore, the corresponding polynomials are homogeneous polynomials in
two variables, which are also called binary forms. As long ago as in 1886
J. J. Sylvester [34] proved a theorem whose proof is constructive and yields
an algorithm that, for a given binary form, constructs its minimal decom-
position as a sum of powers of linear forms. Brachat et al. [33] generalized
Sylvester’s algorithm for dimensions n > 2. However, Sylvester’s algorithm
offers solutions to our problem in the complex domain only. The rank of
the decomposed tensors is not known until the algorithm is completed. On
the other hand, the CP decompositions described in the previous subsections
explicitly present the rank of tensors of our interest and their decompositions
into factors.

Also, note that, generally, tensors S(`, k) and T(`, k) are not generic
tensors in the sense of Definition 1 in [35], i.e., the sets of tensors having
ranks the same as those of individual tensors S(`, k) and T(`, k) are not open
dense subsets of the set of all tensors that have the given order and given
dimensions. Therefore, Sylvester’s theorem [35, Theorem 3], which implies
that the rank of generic symmetric tensors of order k and dimensions 2 is at
most bk

2
c+ 1, does not apply to them.

5. A CP decomposition of extended tensors

Let U(`, k) be one of S(`, k) and T(`, k) and let it be decomposed as A

in (4) with a certain r,

U(`, k) =
r∑
i=1

bi · (1, ai)⊗k (21)
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Y1

X1

Y2

Figure 6: A subnetwork of the QMR-DT network.

Then, the corresponding extended tensor U(`, k) in (7) and in (8), respec-
tively, can be written as

U(`, k) = (1, 0)⊗
(
(1, 1)⊗k −U(`, k)

)
+ (0, 1)⊗U(`, k)

= (1, 0)⊗ (1, 1)⊗k + (−1, 1)⊗U(`, k)

= (1, 0)⊗ (1, 1)⊗k + (−1, 1)⊗
r∑
i=1

bi · (1, ai)⊗k . (22)

It follows that the extended tensor has a decomposition to r + 1 rank-one
terms, and hence its rank is at most r+ 1. If, however, one of ai’s can be set
to 1, say a1 = 1, then the decomposition can be written in only r terms,

U(`, k) = (1− b1, b1)⊗ (1, 1)⊗k + (−1, 1)⊗
r∑
i=2

bi · (1, ai)⊗k . (23)

Note that the condition a1 = 1 can be satisfied in constructions treated
in Appendix B and in Proposition 2, but not in those considered in Appendix
C, Proposition 1(B), and in Appendix D, Proposition 3(B).

6. Comparison with Parent-Divorcing

In this section we compare complexity of statistical inference using the
proposed CP decomposition method versus the parent divorcing. Consider a
Bayesian network like the one in Figure 6, which has two layers. The lower
layer has two nodes, and the upper layer has r+s+ t nodes: the first r nodes
are connected only to the first node in the lower layer, the middle s nodes are
connected to both nodes in the lower layer, and the remaining t nodes are
connected to the second node in the lower layer. In Figure 6, r = 1, s = 2,
and t = 3.

In both techniques, auxiliary nodes are added to the network, together
with some additional edges due to moralization (only in case of parent-
divorcing) and triangularization (in both methods). The resultant graphs
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Figure 7: The resulting graph after the CP decomposition and consequent triangulation of
the QMR-DT subnetwork from Figure 6. The small numbers attached to nodes represent
number of states of corresponding variables. The total table size is 68.

X1 X2 X4 X5 X6

Y2,1

Y2,2

Y2,2

Y1,1

2 2 2 2 2

5

4

33

X3

2

Figure 8: The resulting graph after parent divorcing and consequent moralization and
triangulation of the QMR-DT subnetwork from Figure 6. The small numbers attached to
nodes represent number of states of corresponding variables. The total table size is 104.

are shown in Figure 7 and Figure 8, together with the number of states
at each node. The optimal triangulation was obtained by the procedure
implemented in the software package Hugin8. Complexity of each method,
measured by the total table size, is 68 and 104, respectively.

In the case of general r, s and t and larger s, a different triangulation is
optimal, namely the one where the nodes B1 and B2 are connected by an
edge. The number of the states of the auxiliary variables B1 and B2 depends
on parameter `. For ` = 2, for example, the number of the states (ranks of
the tensors) is maximal and it is equal to the number of parents, i.e., r + s
and s+ t, respectively. We will use this worst case for our comparisons. The
corresponding graph will contain s cliques consisting of three nodes having
r+ s, s+ t, and 2 states plus r cliques consisting of two nodes with r+ s and
2 states and t cliques with s+ t states. Together, the total table size for the

8Hugin Expert A/S, http://www.hugin.com
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CP decomposition equals

ttsCP (r, s, t) = 2
(
s3 + (r + t)s2 + (r + t+ rt)s+ 2r2 + 2t2

)
= O(s3) .

In the parent-divorcing method, the graph structure is more complex, see
Figure 8. Assuming s ≥ 4 the optimal triangulation contains, at the part
common to both observations, two cliques of the table sizes 2 · s · (s + 1),
2 · 2 · s · (s− 1), and 3 · (s− 1) · 3 · 2 · 2 and for each i = 1, . . . , s− 4 one clique
with the table size (s− i) · (s− i− 1) · 2 · (i+ 2) and one with the table size
(s− i− 1) · 2 · (i+ 2) · (i+ 3). At the part exclusive for the first observation
there are cliques with (s + i) · (s + i + 1) · 2 table size for i = 1, . . . r − 1
and one clique of the table size (s + r) · 2. At the part exclusive for the
second observation there are cliques with (s+ i) · (s+ i+ 1) · 2 table size for
i = 1, . . . t− 1 and one clique of the table size (s+ t) · 2. The total table size
is

ttsPD(r, s, t) = s4/3− 2s3 + (2r + 2t+ 11/3)s2

+2(t2 + r2 + 21)s+ 2(r3 + t3 + 2r + 2t)/3

= O(s4) .

We can see that the total table size of the PD method grows as a biquadratic
function of s, while that of the former, CP method grows as a cubic function
of s. The former method is clearly superior.

Remark. In the standard junction tree method, which does not exploit the
local structure of CPTs, the moralization has to be performed. This implies
that all parents of Y1 and Y2 are pairwise interconnected by edges. Two
cliques with r + s binary nodes and s + t binary nodes, respectively, are
created. Consequently, the total table size is 2r+s+2s+t, which is exponential
with respect to s.

7. Experiments

We performed experiments with the Quick Medical Reference - Decision
Theoretic version (QMR-DT) derived from the original QMR [36] as it is
described in [22]. The Bayesian network of QMR-DT contains 570 diseases
(variables Xi) and 4075 observations (variables Yj). The conditional proba-
bility tables for observations given related diseases are noisy-or models. We
generalized the QMR-DT by replacing noisy-or with noisy-threshold models.
These experiments were performed with subnetworks of QMR-DT.
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In the first test, we randomly selected 14 observations. We included all
their parents in the generated subnetwork. In Figure 6 we give an example
of a subnetwork of the QMR-DT network generated by two observations and
their parents. We generated 100 different networks this way. For each net-
work we compared computational complexity of the junction tree method [5]
applied to models after two different transformations:

• moralization and triangulation - the standard method

• the parent-divorcing method [12] applied to CPTs with the number of
parents greater than eight9 followed by moralization and triangulation

• the tensor CP decomposition applied to CPTs with the number of par-
ents more than six10 followed by triangulation. In the experiments we
assumed the CP decomposition consists of k real-valued terms.

In the second test, we repeated the same process with 28 observations instead
of 14. In both tests we utilized 200 bipartite graphs with their sizes ranging
from 38 to 582 nodes.

We measured the computational complexity of probabilistic inference by
the total table size of models computed by the optimal triangulation proce-
dure implemented in the software package Hugin. If the total table size is
larger than 264 the models are intractable in Hugin. Also, for some mod-
els Hugin was not able to find an optimal triangulation within reasonable
time11. In our experiments we limited the time allowed for the triangulation
algorithm to a maximum of 300 seconds.

The results of our experiments are summarized in Figure 9. Note the
logarithmic scales. In plots of the top row in this figure we present results
of experiments with graphs for which Hugin found optimal triangulation for
both methods under comparison. It is important to note that using the
standard method we were not able to get optimal triangulations for 89 out
of 200 graphs (i.e., for 44.5% graphs) and using the parent-divorcing for 109
out of 200 graphs (i.e., for 54.5% graphs). For graphs that Hugin was not
able to triangulate optimally we used a triangulation heuristics implemented

9For CPTs with number of parents smaller than or equal to eight we used moralization
instead. The reason is that, for a small number of parents, the full table has a lower
number of entries than the total number of entries in the tables after parent divorcing.

10For CPTs with number of parents less or equal to six we used moralization instead.
Again, the reason is that for small number of parents the full table has a lower number of
entries than the the total number of entries in the tables after CP decomposition.

11In our experiments this happened for the standard and parent-divorcing methods only,
it never happened for the tensor CP decomposition.
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in Hugin. This heuristics is based on restricting the maximum number of
minimal separators (we used the value 106). To make fair comparisons we
used the same triangulation heuristics also for the graphs obtained after
tensor CP decomposition (despite the fact that we were able to find optimal
triangulations of these graphs).

Numerical experiments reveal that by using tensor CP decomposition on
the QMR subnetworks we can get a gain in the order of several magnitudes
over the standard method and a gain of one up to four magnitudes over
the parent-divorcing methods. More importantly, many intractable models
become tractable when the tensor CP decomposition is used.

8. Relationship to arithmetic circuits

A different approach that exploits local structures of CPTs makes use of
arithmetic circuits [37]. An arithmetic circuit is a rooted, acyclic directed
graph. The leaf nodes are labeled with numeric constants or variables and all
other nodes correspond to summation or multiplication. Arithmetic circuits
are usually constructed by a conversion to multilinear function, which is then
converted to an algebraic circuit through a logical formula of propositional
logic. Details can be found in [37, 38]. In [39] the CP tensor decomposi-
tion was used to preprocess Bayesian networks containing noisy-or models.
The ACs of the preprocessed networks were compared with ACs created by
Ace12 from networks after parent-divorcing. The CP tensor decomposition
decreased the size of ACs for a majority of tested networks (about 88%).
We conjecture we would get similar results for experiments reported in this
section. However, we did not perform these experiments – since Ace does not
have any direct support for noisy-threshold models. Performing experiments
with Ace without this support (i.e., treating them as general CPTs) would
most probably lead to results similar to the standard junction tree method.

For the construction of arithmetic circuits, methods used for logical rea-
soning can be utilized. It was shown that when Bayesian networks exhibit
a lot of determinism or context-specific independence, the weighted model
counting (WMC) can be an efficient method for probabilistic inference [40].
The basic idea is to encode the Bayesian network in a conjunctive nor-
mal form (CNF), associate weights to literals according to the CPTs of the
Bayesian network, and then compute the probability of given evidence as a
sum of weights of all logical models consistent with that evidence. The weight
of a logical model is the product of weights of all literals. A naive computa-
tion of WMC by listing all models and summing their weights is intractable

12Ace, A Bayesian Network Compiler, 2008, http://reasoning.cs.ucla.edu/ace/
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Figure 9: Comparison of total table sizes for optimally triangulated QMR-DT subnetworks
(top row) and QMR-DT subnetworks triangulated by a heuristics (bottom row) for the
standard method versus the CP tensor decomposition (the left hand side) and the parent-
divorcing versus the CP tensor decomposition (the right-hand side). Crosses correspond
to subnetworks with 14 observations, circles to subnetworks with 28 observations.
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for large problems. Fortunately, efficient WMC solvers exist, that compute
WMC using several advanced techniques such as clause learning, component
caching, etc. An example of a successful WMC solver is Cachet13.

The CP tensor decomposition can be combined with weighted model
counting (WMC). This was done by Wei Li et al. [41] for noisy-or and noisy-
max models. They have shown that for BNs with CPTs representing noisy-or
and noisy-max models the Dı́ez and Galán’s transformation [16], which is a
special case of the CP decomposition, often improves the efficiency of in-
ference by several orders of magnitude. The BNs with CPTs representing
noisy-threshold models (or exactly `-out-of-k models) can also be transformed
by the CP tensor decomposition and then encoded as a CNF. Either Dar-
wiche’s encoding [42] or Sang, Beame, and Kautz’s encoding [43] can be used.
Then WMC solvers as Cachet can be utilized to compute the probability of
evidence as the WMC of logical formula encoded by the CNF.

As it was noted in [40], it should be possible to use a WMC solver for the
construction of an arithmetic circuit by modifying it to keep a trace of its
operations. As a criteria for fair comparisons of different inference methods
we suggest using the number of multiplication and addition operations in the
computations, e.g., in the constructed arithmetic circuit. This would allow
us to make fair comparisons of different inference methods with inference by
arithmetic circuits or by WMC methods based on different CNF encodings
and using different WMC solvers such as Cachet and Ace. The mentioned
experiments represent an interesting topic for future research.

9. Conclusions

We proposed a CP decomposition of tensors corresponding to conditional
probability tables of the threshold and exactly `-out-of-k functions and their
noisy counterparts. We applied this decomposition to probabilistic inference
in Bayesian networks containing conditional probability tables representing
noisy-threshold functions. We performed computational experiments with a
generalized version of QMR-DT where the noisy-or models were replaced by
noisy-threshold models. The CP tensor decomposition when compared to the
standard junction tree method led to a computational gain in the order of
several magnitudes and made many intractable models manageable. Theoret-
ical analysis and numerical experiments reveal that tensor CP decomposition
is clearly superior to the parent-divorcing method. Our CP decomposition
approach can be used as a preprocessing step for weighted model counting.

13Cachet, Model Counting using Component Caching and Clause Learning, 2005,
http://www.cs.rochester.edu/u/kautz/Cachet/index.htm
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Appendix A.

In the proof of Proposition 1 we will use the following lemma.

Lemma 5. Let p(x) be a polynomial whose roots are all distinct and real-
valued. Then, it is not possible for two consecutive coefficients of the polyno-
mial to be zeros.

Proof. First, let us prove by mathematical induction that all derivatives of
the polynomial p(x) are polynomials in variable x sharing with p(x) the
property that all their roots are real-valued and distinct. Note that if p(x)
has roots a1 < a2 < . . . < ak then its first derivative p′(x) has roots a′1 < . . . <
a′k−1 at stationary points of p(x), i.e., a1 < a′1 < a2 < a′2 < . . . < a′k−1 <
ak. Assume by contradiction that p[i] = p[i + 1] = 0 are two consecutive
coefficients of p(x). Then the i-th derivative of p(x) is a polynomial which
has both its constant term and the linear term equal to 0. It means that 0 is
a double root of the polynomial, which contradicts the assumption that all
roots of p(x) were distinct.

Appendix B. CP decomposition of S(`, k) in k terms

In this appendix we present the proof of part (A) of Proposition 1.

Proof. The condition for a

k times︷ ︸︸ ︷
2× . . .× 2 symmetric tensor A to be decomposed

by the symmetric CP decomposition to r terms as (11), is

a01 · b1 + . . .+ a0r · br = A0...0

a11 · b1 + . . .+ a1r · br = A0...0,1

...

ak1 · b1 + . . .+ akr · br = A1...1,1 , (B.1)

which is a system of k + 1 equations with 2r variables.
In a decomposition of a symmetric tensor there might be one more term

that is not considered in formula (11) and, consequently, in (B.1). It takes
the form b0 · (0, 1)⊗k. We do not use it in the suggested decompositions.
As we prove later, even without considering this term we get a minimal CP
decomposition of S(`, k).
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Let m ∈ N+, a = (a1, . . . , am), aj ∈ R, j ∈ {1, . . . ,m}, and V (a) be a
Vandermonde m×m matrix

V (a) =


1 . . . 1
a1 . . . am
...

...
am−11 . . . am−1m

 .

Further let e(`) be the right-hand side of the system (B.1) without the
last element. It is the (`+ 1)-th column of the k × k identity matrix, or

e(`) =
(
01×`, 1,01×(k−`−1)

)T
.

A sufficient condition for the solution of the system (B.1) for r = k
is to solve the following system of 3k equations. Let a = (a1, . . . , ak),
b = (b1, . . . , bk), c = (c1, . . . , ck), and a ∗ b denote elementwise multipli-
cation (Hadamard product) of vectors a and b. All but the last equation
of system (B.1) correspond to system (B.2), all but the first equation of
system (B.1) correspond to systems (B.3) and (B.4):

V (a) · b = e(`) (B.2)

V (a) · c = e(`− 1) (B.3)

c = a ∗ b . (B.4)

If values of ai, i = 1, . . . , k are distinct then

b = V (a)−1 · e(`)

c = V (a)−1 · e(`− 1) .

Note that the explicit formula for the inverse of the Vandermonde matrix
is known [44]. It implies that for i = 1, . . . , k

bi =
pi[`+ 1]

pi(ai)
(B.5)

ci =
pi[`]

pi(ai)
. (B.6)

Substituting (B.5) and (B.6) into (B.4) and assuming that pi[` + 1] 6= 0 we
get for i = 1, . . . , k:

ai =
ci
bi

=
pi[`]

pi[`+ 1]
, (B.7)
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where the right-hand side depends on aj, j 6= i only. Due to symmetry, if
at least one equation of (B.7) holds then all these equations hold, and the
system can be reduced to just one equation, e.g., to the desired equation:

ak =
pk[`]

pk[`+ 1]
.

Now, we will show that in the real domain no decomposition of the tensors
S(`, k) with 1 < ` < k − 1 into r < k terms exists. First, assume tensor
b0 · (0, 1)⊗k does not participate in the decomposition. We prove the desired
claim by contradiction. Assume existence of distinct real-valued ai, i =
1, . . . , k−1, and corresponding amplitudes bi, such that (B.1) holds with r =
k−1. This is true if and only if (B.1) holds with r = k (i.e., a decomposition
with k terms) with bk = 0 and an arbitrary ak. From bk = 0 and (B.5) we
have that pk[` + 1] = 0. This together with (B.4) and (B.6) implies that
pk[`] = 0 as well. This is, however, not possible due to Lemma 5.

Finally, consider tensor b0 · (0, 1)⊗k taking part in the decomposition. By
subtracting this tensor from S(`, k) we get a tensor S′(`, k) that differs from
S(`, k) only in the value S′1,...,1(`, k). Now it suffices to show that system (B.1)
with A = S′(`, k) and r = k−2 has no solution. This system without the last
equation corresponds to the condition for a decomposition of S(`, k′), k′ =
k − 1 into k′ − 1 terms with b0 · (0, 1)⊗k excluded from the decomposition.
First, assume ` < k′ − 1. For this case we have already shown (just above)
that the decomposition is not possible. For the remaining border case with
` = k′−1 the system without the last equation corresponds to the conditions
for a decomposition of S(k′−1, k′) into k′−1 terms. By Proposition 3 tensor
S(k′ − 1, k′) has symmetric rank k′ in the complex domain and therefore no
decomposition into k′− 1 terms is possible. This concludes the proof of part
(A).

Appendix C. CP decomposition of T(`, k) in k − 1 terms

In this appendix we present a constructive proof of part (B) of Proposi-
tion 1.
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Proof. Assume that 2 < ` < k − 1. Define

h` = (01×`,11×(k−1−`))
T

b = V (a)−1h`

c = V (a)−1h`−1

d = V (a)−1h`−2

p(x) =
k−1∑
i=1

p[i]xi−1 =
k−2∏
i=1

(x− ai)

q(x) =
k−2∑
i=1

q[i]xi−1 =
k−3∏
i=1

(x− ai) .

Since p(x) = q(x)(x− ak−2), it holds for i = 2, . . . , k − 2

p[i] = q[i− 1]− ak−2 q[i] (C.1)

p[1] = −ak−2 q[1] . (C.2)

The vectors b, c,d should fulfill

b ∗ a = c (C.3)

c ∗ a = d . (C.4)

The last elements of the vectors b, c,d are

bk−1 =

∑k−1
j=`+1 p[j]

p(ak−1)
(C.5)

ck−1 =

∑k−1
j=` p[j]

p(ak−1)
(C.6)

dk−1 =

∑k−1
j=`−1 p[j]

p(ak−1)
. (C.7)

Therefore

ak−1 =
ck−1
bk−1

=

∑k−1
j=` p[j]∑k−1
j=`+1 p[j]

=
dk−1
ck−1

=

∑k−1
j=`−1 p[j]∑k−1
j=` p[j]

The equation to be fulfilled is(
k−1∑
j=`

p[j]

)2

=

(
k−1∑
j=`+1

p[j]

)(
k−1∑
j=`−1

p[j]

)
(C.8)
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Using substitution y =
∑k−1

j=` p[j] this can be rewritten as

y2 = (y − p[`])(y + p[`− 1])

p[`]p[`− 1] = y(p[`− 1]− p[`])

= (p[`− 1]− p[`])

(
1 +

k−2∑
j=`

p[j]

)
. (C.9)

By substituting (C.1) in (C.9) we get, after some algebra, a quadratic equa-
tion for ak−2,

Aa2k−2 +Bak−2 + C = 0

where

A = q[`]q[`− 1] + (q[`]− q[`− 1])A1

B = (q[`− 2]− q[`])A1 − q[`](q[`− 2] + q[`− 1])

C = (q[`− 1])2 − (q[`− 2]− q[`− 1])A1

A1 = 1 +
k−3∑
j=`

q[j] .

Thanks to the symmetry of the problem, the second root of the equation
is ak−1. Note that the decomposition to k − 1 terms is possible only for
2 < ` < k − 1.

Now, we will show that in the real domain no decomposition of tensors
T(`, k) with 2 < ` < k−1 into r < k−1 terms exists. We prove this claim by
contradiction. Assume existence of distinct real-valued ai, i = 1, . . . , k − 2,
and the corresponding amplitudes bi, such that (B.1) holds with r = k − 2.
This is true if and only if (B.1) holds with r = k − 1 (i.e., a decomposition
with k terms) with bk−1 = 0 and an arbitrary ak−1. From bk−1 = 0, (C.3),
and (C.4) we get that ck−1 = 0 and dk−1 = 0. This implies that all numerators
in the fractions on the right-hand sides of equations (C.5), (C.6), and (C.7)
are 0. The numerators in (C.5), (C.6) and (C.6), (C.7) differ in p[`] and p[`−
1], respectively. Therefore p[`] and p[`− 1] must be 0. This is, however, not
possible due to Lemma 5, because two consecutive coefficients of a polynomial
with distinct roots cannot be zeros.

The treatment of the case when tensor b0 · (0, 1)⊗k is allowed to take part
in the decomposition is identical as in the proof of part (A) of Proposition 1
presented in Appendix B.

Thus, no decomposition to less than k − 1 factors in the real domain is
possible, which completes the proof of part (B) of Proposition 1.
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Appendix D. Proof of Proposition 3

Proof. Consider the linear system (B.1) and assume that aj’s are distinct.
The system cannot have a solution if the right-hand side contains r consec-
utive zeros, because the Vandermonde system V (a) b = 0 can only have
trivial solution then, b = 0.

Note that for the tensor S(`, k) the right-hand side contains ` and k − `
consecutive zeros. Therefore the symmetric rank of S(`, k) is greater than or
equal to r = max(`+ 1, k − `+ 1) unless there is a decomposition of S(`, k)
containing tensor b0 · (0, 1)⊗k among its r− 1 terms. In the case of ` ≥ k− `
the tensor b0 · (0, 1)⊗k has no influence on the part of the right-hand side
containing r consecutive zeros and thus it cannot lower the symmetric rank.
Also in the case of ` < k − ` the presence of the tensor b0 · (0, 1)⊗k cannot
lower the symmetric rank since such lowering would contradict Corollary 1.

The validity of the decomposition can be verified using the system (B.1).
The existence of the decomposition with r terms proves that the rank is equal
to r.

A similar situation exists with T(`, k) with ` > k/2. Again, the system
(B.1) contains ` consecutive zeros and tensor b0 ·(0, 1)⊗k cannot influence the
part of the right-hand side containing r consecutive zeros. Therefore the rank
is at least ` + 1. The situation with ` ≤ k/2 is slightly more complex. The
rank of such T(`, k) can be deduced from the fact that H(`, k) = (1, 1)⊗k −
T(`, k) is a symmetric tensor, which has the representation (B.1) with k−`+1
consecutive zeros. Its rank is at least k − ` + 2 since the inclusion of tensor
b0 ·(0, 1)⊗k cannot lower its rank – such a lowering would contradict Lemma 1.
It follows that the rank of T(`, k) is at least k − `+ 1, since a lower rank of
T(`, k) would be in contradiction with rank of H(`, k) being at least k−`+2.

Proof of the decomposition in part (B). Let a1, . . . , ar be roots of the
polynomial p(x) = xr − xr−1 + 1. It follows that ai obey for i = 1, . . . , r

ari = ar−1i − 1 . (D.1)

Let bi, i = 1, . . . , r are elements of b in (20). Put

ϕm =
r∑
i=1

ami bi for m = 0, 1, . . . (D.2)

Since bi, i = 1, . . . , r are defined in (20) so that

ϕ0 = . . . = ϕ`−1 = 0 and (D.3)

ϕ` = . . . = ϕr−1 = 1 . (D.4)
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For m ∈ {r, r + 1, . . . , k}, the value of ϕm can be computed recursively.

ϕm =
r∑
i=1

ami bi

=
r∑
i=1

aria
m−r
i bi

=
r∑
i=1

(ar−1i − 1)am−ri bi

= ϕm−1 − ϕm−r ,

where (D.1) was used. Thus it can be proved by mathematical induction
that ϕm = 1 for m = r, r + 1, . . . , k. To see this, note that

m− r = m−max{`+ 1, k − `+ 1} = min{m− `− 1,m− k + `− 1}
≤ min{k − `− 1, `− 1} ≤ `− 1 ,

which, together with (D.3), implies that ϕm−r = 0, for m = r, r + 1, . . . , k.
It follows that the system (B.1) holds true for these ai’s and bi’s and this

fact proves the decomposition. Note that the choice of the coefficient p[1] in
the polynomial p(x) can be arbitrary – it is only constrained to be nonzero
in order to avoid multiple roots of the polynomial. We have chosen p[1] = 1
for convenience.
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