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Abstract

Influence diagrams are decision theoretic exten-
sions of Bayesian networks. They are applied to
diverse decision problems. In this paper we ap-
ply influence diagrams to the optimization of a
vehicle speed profile. We present results of com-
putational experiments in which an influence di-
agram was used to optimize the speed profile of
a Formula 1 race car at the Silverstone F1 cir-
cuit. The computed lap time and speed profiles
correspond well to those achieved by test pilots.
An extended version of our model that consid-
ers a more complex optimization function and di-
verse traffic constraints is currently being tested
onboard a testing car by a major car manufac-
turer. This paper opens doors for new applica-
tions of influence diagrams.

1 INTRODUCTION

Optimization of a vehicle speed profile is a well known
problem studied in literature. Some authors minimize the
energy consumption (Monastyrsky and Golownykh, 1993;
Chang and Morlok, 2005; Saboohi and Farzaneh, 2009;
Hellström et al., 2010; Mensing et al., 2011; Rakha et al.,
2012) while others aim at minimizing the total time (Vele-
nis and Tsiotras, 2008).

In this paper we describe an application of influence dia-
grams to the problem of the optimization of a vehicle speed
profile. Speed profile specifies the vehicle speed at each
point of the path. We illustrate the proposed method using
an example of the speed profile optimization of a Formula 1
race car at the Silverstone F1 circuit (Velenis and Tsiotras,
2008). The goal is to minimize the total lap time. This ex-
ample will be used throughout the paper to explain the key
concepts and for the final experimental evaluation of the
proposed approach. An advantage is that the optimal solu-
tion is known (Velenis and Tsiotras, 2008). This allows us

to compare the influence diagram solution with the analytic
one. Both solutions have a close correspondence.

The proposed method allows applications of influence di-
agrams to more complex scenarios of a speed profile op-
timization. Speed constraints can be invoked not only by
path radii, but also by other causes like traffic regulations,
weather conditions, distance to other vehicles, etc. More-
over, these conditions can be changing dynamically. Also,
the criteria to be optimized need not be the total time only.
We can consider also safety, fuel consumption, etc. We be-
lieve that influence diagrams are very appropriate for these
situations since optimum policies are precomputed for any
speed the vehicle can attain. The optimal speed profile can
be quickly updated if the conditions change.

There are two key properties that allow efficient computa-
tions. The first one is that the overall utility function is the
sum of local utilities in all considered segments of the ve-
hicle path. This is the case not only when the goal is to
minimize the total time, but also when we aim at the mini-
mal total fuel consumption or a linear combination of these
two. The second key property is the Markov property. This
allows to aggregate the whole future in one probability and
one utility potential. These potentials are defined over the
speed variable in the current path segment.

The paper is organized as follows. In Section 2, we de-
scribe the physical model of a vehicle and define the prob-
lem of the vehicle speed profile optimization. In Section 3,
we introduce influence diagrams and in Section 4 we apply
them to the vehicle speed profile optimization. The results
of numerical experiments with real data are presented in
Section 5. Section 6 reviews the related work. In Section 7,
we conclude the paper by a summary of our contribution
and by a discussion of our future work.

2 PHYSICAL MODEL OF THE VEHICLE

First, we describe a simple physical model of a vehicle.
The content of this section is based on (Velenis and Tsio-
tras, 2008). Although this model is too simple to model the



complex behavior of a car-like vehicle, it is sufficient for
the optimization of a vehicle speed profile.
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Figure 1: A point mass moving along a path.

We model a vehicle as a point mass moving along a path,
see Figure 1. We split the path into n ∈ N small seg-
ments of a specified length (e.g., 5 meters). Let s denote
the length of each segment, i ∈ {0, . . . , n} be the path
length coordinate, [i, i + 1] be the segment between path
length coordinates i and i + 1. We assume that the accel-
eration is constant at each segment. Let vi be the velocity
at i, and ai the acceleration at the segment [i, i + 1]. The
velocity vi+1 at i + 1 is a function of the velocity vi and
acceleration ai:

vi+1 = vi+1(vi, ai, s) =
√

(vi)2 + 2 · s · ai . (1)

Time ti+1 spent at the path segment [i, i+ 1] is:

ti+1 = ti+1(vi, vi+1, s) = s ·
(
vi + vi+1

2

)−1
. (2)

The vehicle is controlled by a control variable ui, which is
assumed to be constant at the segment [i, i+1]. The control
variable ui takes values from interval [−1,+1], where neg-
ative values represent braking and positive values represent
accelerating. We use variable ui to control acceleration ai:

ai =

{
amax
t · ui − cv · (vi)2 if ui ≥ 0
amin
t · ui − cv · (vi)2 if ui < 0 , (3)

where amax
t and amin

t are engine and brakes characteris-
tics, namely the maximum tangential acceleration and de-
celeration, respectively. cv is the deceleration coefficient
for aerodynamic drag.
Example 1. For a F1 race car:

ai = ai(ui, vi)

=

{
16 · ui − 0.0021 · (vi)2 if ui ≥ 0
18 · ui − 0.0021 · (vi)2 if ui < 0 . (4)

The vehicle path is characterized by a radius profile, which
is defined as the radius ri of the circular arc which best
approximates the path curve at each point i = 1, . . . , n
(see Figure 1). The radius ri defines the maximum speed
at point i as

vi ≤ vmax
i =

√
amax
n · ri , (5)

where amax
n is the maximum lateral acceleration.

Example 2. For a typical F1 race car amax
n = 30 m · s−2.

This implies that

vmax
i =

√
30 · ri . (6)

If ri = 30 m then the maximum speed is 108 km · h−1.
Example 3. In Figure 2, we present the radius and maxi-
mum speed profiles of the F1 Silverstone circuit (the bridge
version). The radius larger than 500 meters is not de-
picted1. From the radius profile, we derive the maximum
speed profile by use of formula (6).
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Figure 2: Radius and maximum speed profiles.

Other restrictions on maximal and minimal tangential ac-
celerations are due to friction forces at the tires, which re-
stricts the control signals:

|ui| ≤ umax
i (vi) =

√
1−

(
vi

vmax
i

)4

. (7)

Now, we can formally specify the problem.
Definition 1 (Vehicle speed profile optimization problem).
The goal is to find a vehicle speed profile vi, i = 1, . . . , n
such that

1Radius 500 meters allows maximum speed of 441 km · h−1

– a speed never reached by an F1 race car.



• v0 is the actual speed of the vehicle at coordinate 0,

• it minimizes the total time
∑n

i=1 ti,

• it satisfies the speed constraints specified by for-
mula (5) for i = 0, 1, . . . , n and

• it satisfies the control constraints specified by for-
mula (7) for i = 0, 1, . . . , n.

Remark. Please, note that an optimal speed profile can
be also specified by values of control variable ui for i =
0, . . . , n− 1, from which it is computed.

3 INFLUENCE DIAGRAMS

An influence diagram (Howard and Matheson, 1981) is a
Bayesian network augmented with decision variables and
utility functions. In graphs, random variables are depicted
as circles, decision variables as squares, and utility func-
tions as diamonds. As an example, see Figure 3. Random
and decision variables are denoted by capital letters, their
states by respective lower-case ones.

A solution to the decision problem described by an influ-
ence diagram consists of a series of decision policies for the
decision variables. Decision policy for decision variable U
defines for each configuration of parents of U a probabil-
ity distribution over the states of U . Decision strategy is a
sequence of decision policies, one for every decision vari-
able. The goal is to find an optimal decision strategy that
maximizes the expected total utility.

3.1 SOLVING INFLUENCE DIAGRAMS

Several methods for solving influence diagrams were pro-
posed. A simple method was published already in (Howard
and Matheson, 1981) where influence diagrams were intro-
duced. They proposed to unfold respective influence dia-
gram into a decision tree and solve it using dynamic pro-
gramming. Another algorithm was developed by (Shachter,
1986) and it foreshadowed the future graphical algorithms.
Basically, one can gradually simplify respective influence
diagram by successive removing nodes from its graph.
When a decision node is being removed (by maximizing
expected utility), the maximizing alternative is recorded
as the optimal policy. Three operations to remove graph
nodes were introduced; at least one of them can be used
at any given time. Another method is to reduce an influ-
ence diagram into a Bayesian network by converting de-
cision variables into random variables – the solution of a
specific inference problem in this Bayesian network then
corresponds to the optimal decision policy of the influence
diagram (Cooper, 1988). One can also transform an in-
fluence diagram into a valuation network and solve it us-
ing variable elimination in the valuation network (Shenoy,
1992).

We decided to use a method that employs a strong junction
tree (Jensen et al., 1994; Jensen and Nielsen, 2007), which
is a refinement of methods of Shenoy (1992) and Shachter
and Peot (1992). The utility nodes are eliminated first by
marrying all parents of each utility node and by including
the corresponding utility potentials to cliques containing all
parents of the utility node. It has been shown that an in-
fluence diagram can be solved exactly by message passing
performed on the strong junction tree.

To every clique C in the junction tree, we associate a prob-
ability potential ΦC and a utility potential ΨC . Let C1 and
C2 be adjacent cliques with separator S. To pass a mes-
sage from clique C2 to clique C1 potentials ΦC1 and ΨC1

are updated as follows2 (Jensen et al., 1994):

Φ′C1
= ΦC1 ∗ ΦS , (8)

Ψ′C1
= ΨC1

+
ΨS

ΦS
, (9)

where

ΦS = M
C2\S

ΦC2
, ΨS = M

C2\S
(ΦC2

∗ΨC2
)

andM is a generalized marginalization operation. The op-
erator M acts differently for a random variable A and a
decision variable U of a (probability or utility) potential Ξ:

M
A

Ξ =
∑
A

Ξ, M
U

Ξ = max
U

Ξ ,

where
∑

A is a shorthand for summation over all states ofA
and maxU denotes maximum over all states of U . For a set
of variables C, we define MCΞ as a sequence of single-
variable marginalizations. The elimination order follows
the inverse order as determined by the relation≺. In case of
discrete variables, the complexity of one message passing
operation is O(|C1| + |C2| + |S|), where |C| denotes the
number of combinations of states of variables in C.

Despite its similarity with the junction tree algorithm for
Bayesian networks (Lauritzen and Spiegelhalter, 1988),
only the collection phase of the strong junction tree is
needed to solve an influence diagram. The maximum ex-
pected utility value can be obtained by doing the remain-
ing marginalization in the root. Above that, we can easily
get the optimal decision policy for decision variables dur-
ing the message passing process. For every combination of
parents of a decision variable (in our case the only parent
is the speed variable), it is the alternative with the maximal
expected utility in the moment of message passing.

Note that this approach is highly dependent on the process
of building a junction tree from an influence diagram. The

2Given two potentials Φ and Ψ, their product Φ ∗ Ψ and the
quotient Φ/Ψ are defined in the natural way, except that 0/0 is
defined to be 0 and x/0 for x 6= 0 is undefined (Jensen et al.,
1994).



size of cliques is determining the speed of the algorithm.
Consequently, the junction tree algorithm is typically in-
feasible for solving large influence diagrams. Fortunately,
this is not the case for our application.

4 INFLUENCE DIAGRAMS FOR
VEHICLE SPEED PROFILE
OPTIMIZATION

In this section, we use the physical model of a vehicle from
Section 2 to create an influence diagram for the speed pro-
file optimization. We split the vehicle path into n seg-
ments of the same length s. In each segment [i, i + 1],
i ∈ {0, . . . , n− 1} there are three random variables Vi, Ai,
and Vi+1, one decision variable Ui, and one utility poten-
tial Ti. A part of influence diagram corresponding to one
path segment is depicted in Figure 3. The influence dia-
gram used in the final experiments reported in Section 5
consisted of 1010 parts, one for a segment 5 meters long.

Vi

Ui

Ai

Vi+1

Ti+1

Figure 3: A part of influence diagram corresponding to the
path segment [i, i+ 1].

Variable Vi corresponds to the vehicle speed in the begin-
ning of the segment (at point i). Ai corresponds to the
vehicle acceleration in the segment [i, i + 1] and it is as-
sumed to be constant in this segment. Vi+1 is the vehicle
speed at the end of the segment (at point i + 1). The de-
cision variable Ui corresponds to the vehicle control signal
whose positive values denote application of vehicle accel-
erator and negative values ones an application of brakes.
Utility function Ti corresponds to time spent at segment
[i, i + 1]. In our implementation the actual values of Ti
are time savings achieved at segment [i, i + 1]. They are
computed by subtracting time spent by the vehicle in the
segment from a constant tmax – the maximum considered
time3 the vehicle may spend at a segment of length s. This
allows us to use maximization over non-negative utility po-
tentials, which is required when working with random vari-
ables having states of zero probability.

3E.g., tmax is time for a minimal race speed 100 km/h, which
is equal to 0.036 seconds if s = 1 meter.

Table 1: The conditional probability table P (Ai|Vi =
131km/h,Ui = 25)

ai . . . -1 0 1 2 3 . . .
P (ai|vi, ui) 0 0 0 0.8 0.2 0 0

In this paper we consider discrete random and discrete deci-
sion variables. For all i ∈ {0, . . . , n}, the variable Vi takes
its values from V , which is a finite subset of interval [0, 400]
measured in km/h, the values of Ai are from A, which
is a finite subset of interval [−34, 16] measured in ms−2,
and values of decision variable Ui are from U , which is a
finite subset of interval [−100,+100], where value −100
corresponds to the maximum braking (brakes 100%) while
+100 corresponds to full acceleration (accelerator 100%).
Sets V , A, and U are uniformly discretized with discretiza-
tion steps dV , dA, and dU , respectively. Symbols |V|, |A|,
and |U| denote the cardinalities of the respective sets.

The probability and utility potentials are defined using for-
mulas from Section 2. The conditional probability distribu-
tions are “almost” deterministic. For each parent configu-
ration of a variable there are only two states from the finite
domain of that variable with a non-zero probability. These
two values are those that are closest to the value computed
by the corresponding formula of the physical model of the
vehicle. The conditional probability distribution of the ac-
celeration Ai is defined as:

P (Ai = a|Vi = vi, Ui = ui) =
1− ai−a

dA
if a = max{a ∈ A, a ≤ ai}

1− a−ai

dA
if a = min{a ∈ A, a > ai}

0 otherwise,
(10)

where ai is defined by formula (3).

Example 4. Consider P (Ai|Vi = 131km/h,Ui = 25)
and A = {−34,−33, . . . ,−1, 0, 1, 2, . . . , 16}. Using (4)
we compute the acceleration of an F1 race car ai =
1.2 ms−2. The conditional probability distribution is spec-
ified in Table 1.

Similarly, we define the conditional probability distribution
P (Vi+1|Vi, Ai). More specifically, we combine the above
approximation and formula (1). Finally, the utility function
is defined as

f(vi−1, vi, s) = tmax − ti(vi−1, vi, s) , (11)

where function ti is defined by formula (2).

After elimination of utility nodes, the graph of the influ-
ence diagram is transformed into a strong junction tree. See
Figure 4 where we present the strong junction tree of in-
fluence diagram from Figure 3. There are two cliques for
path segment [i, i + 1], i ∈ {0, . . . , n − 1} in the strong
junction tree. We will denote them CA

i and CV
i and define



CA
i = {Ai, Ui, Vi} and CV

i = {Vi+1, Ai, Vi}. Cliques are
ordered reversely and the variable elimination is processed
also in this order. Rectangular nodes correspond to junction
tree separators.

Vi

Ai, Ui, Vi

Ai, Vi

Vi+1, Ai, Vi

CA
i

CV
i

Vi+1

Figure 4: The strong junction tree for the part of influence
diagram from Figure 3.

The junction tree is initialized as follows. Each conditional
probability distribution and each utility function is assigned
to a clique containing all its variables. Thus

ΦCA
i

= P (Ai|Ui, Vi) , ΦCV
i

= P (Vi+1|Ai, Vi) ,

ΨCA
i

= 0 , ΨCV
i

= f(Ti+1|Vi, Vi+1) .

4.1 IMPLEMENTATION OF CONSTRAINTS

During the inference we have to consider the speed and
control constraints. Both, speed and control constraints are
inserted to corresponding cliques of the junction tree.

4.1.1 Speed constraints

Speed constraints are inserted in the form of likelihood evi-
dence. Likelihood evidence is a vector that for each state of
the corresponding variable takes values between zero and
one (Jensen, 2001, Section 1.4.6). Likelihood evidence of
a speed constraint is a vector φ of length |V| such that

φ(v) =
1 if v ≤ vmax

i

1− v−vmax
i

dV
if v = min{v ∈ V, v > vmax

i }
0 otherwise,

(12)

where vmax
i is defined by (5).

Remark. The idea behind the formula (12) is that the closer
the value of vmax

i is to the nearest speed value v ∈ V that
is greater than vmax

i the higher is the likelihood of v. In
experiments, we observed that by giving a non-zero proba-
bility to the state v just above the maximum value vmax

i we

improve the quality of results. The coarser the discretiza-
tion the larger the improvement.

During the inference we include potential φ(Vi) into a
clique containing Vi that appears first in the computations.

4.1.2 Control constraints

The control constraints (7) are applied during marginaliza-
tion of the control variable Ui from a potential Ψ′

CV
i

(we
will abbreviate it as Ξ) performed in the steps specified by
formulas (8) and (9).

For each vi ∈ V we define a set of admissible control

U ′(vi) = {ui ∈ U , |ui| ≤ umax
i (vi)}

and compute an optimal admissible control value

u∗i (vi) = arg max
ui∈U ′(vi)

Ξ(Ui = ui, Vi = vi) .

The optimal decision policy in Ui is for all vi ∈ V

δi(u|vi) =

{
1 if u = u∗i (vi)
0 otherwise. (13)

The value of the new potential is

Ξ(Vi = vi) = Ξ(Ui = u∗i (vi), Vi = vi) . (14)

However, whenever u∗i (vi) is the least or the largest value
of U ′(vi) we can reduce the discretization error by consid-
ering also the nearest value u∗∗i (vi) outside U ′i . The idea is
similar to (12). If

Ξ(Ui = u∗∗i (vi), Vi = vi) ≥ Ξ(Ui = u∗i (vi), Vi = vi)

then we replace the deterministic policy (13) by a proba-
bilistic policy

δi(u|vi) =


1− |u

∗
i (vi)−u

max
i (vi)|

dU
if u = u∗i (vi)

1− |u
∗∗
i (vi)−umax

i (vi)|
dU

if u = u∗∗i (vi)

0 otherwise.

Formula (14) is replaced by

Ξ(Vi = vi) =

δi(u
∗
i |vi) · Ξ(Ui = u∗(vi), Vi = vi)

+δi(u
∗∗
i |vi) · Ξ(Ui = u∗∗i (vi), Vi = vi) .

4.2 ZERO COMPRESSION

We solve the influence method using standard strong junc-
tion tree method (Jensen et al., 1994) briefly described in
Section 3.1. But the probability potentials we are working
with are sparse, i.e., they contain many zeroes. This is a
consequence of conditional probability distributions being
“almost” deterministic. In Hugin (Andersen et al., 1990) a



procedure called zero compression is employed to improve
efficiency of inference with sparse potentials. In this proce-
dure an efficient representation of the clique tables is used
so that zeros need not be stored explicitly. The savings can
be large: in our case, we basically reduce the dimension of
each table by one. The compression does not affect the ac-
curacy of the inference process, as it introduces no approx-
imations (Cowell et al., 1999), i.e., it is an exact inference
method.

Example 5. We can store the distribution from Example 4
using two numbers only – value val and position pos of
the first non-zero number in the table. Note that the second
non-zero number is positioned on pos+1 with value 1−val
and there are two non-zero numbers only. The same applies
to P (Vi+1|Vi, Ai).

In the standard inference method the complexity in one
path segment is O (|A| · |V| · (|V|+ |U|)). In case of zero
compression the complexity drops to O(|V| · (|A|+ |U|)).
In Section 5.1 we evaluate the savings experimentally.

5 EXPERIMENTS

We performed experiments with a model of a Formula 1
race car at the Silverstone F1 circuit (the bridge version).
The goal is to find a speed profile that minimizes the total
lap time and satisfies speed and acceleration constraints as
specified by Definition 1. The speed constraints are derived
from radius of curves and the maximum allowed lateral ac-
celeration amax

n – see formula (5). For a typical F1 race
car amax

n = 30 ms−2 – see Example 2. The acceleration
constraints are defined by formula (7).

In our experiments we use the influence diagram described
in Section 3. The experiments were conducted in the fol-
lowing way:

1. Define the length of one segment s and sets of vari-
ables’ states V,A,U .

2. Initialize potentials ΦCA
i
,ΦCV

i
,ΨCA

i
, and ΨCV

i
and

set up the junction tree.

3. Insert speed and acceleration constraints to the junc-
tion tree.

4. Compute the optimal policies δi, i = 0, 1, . . . , n− 1.

5. Use the optimal policy and the initial speed4 v0 =
312 km/h to compute an optimal speed profile as
specified by formulas (15), (16), and (17).

The expected speed v̂i+1 at coordinate i + 1 is computed
using formulas (1) and (4) from the expected control value

4Initial speed v0 is set as in (Velenis and Tsiotras, 2008).

ûi(vi), which is computed as a weighted average of poli-
cies for two values vi, vi from V that are the closest to vi:

v̂i+1 = vi+1(v, s, ai (ûi(vi), vi)) , (15)

ûi(vi) =
∑

v∈{vi,vi}

w(v, vi) ·
∑
u∈U

u · δi(u|v) , (16)

w(v, vi) = 1− |v − vi|
dV

. (17)

All algorithms used in our experiments were implemented
in the programming language R (R Core Team, 2014).

5.1 ZERO COMPRESSION EXPERIMENTS

We compared computational time of the zero compression
and standard junction tree inference methods, see Table 2.
Recall that symbols |V|, |A|, and |U| denote the cardinali-
ties of the respective sets. The experiments were carried out
on an influence diagram consisting of 10 path segments.
We can see that zero compression brings large computa-
tional savings for fine grained discretizations.

Table 2: Comparisons of the CPU time for the zero com-
pression and the standard approach.

|V| |A| |U| zero compr. [s] standard [s]
50 50 50 0.08 0.73

100 100 100 0.20 4.78
100 100 200 0.19 7.09
100 200 100 0.25 9.17
200 100 100 0.39 13.01
200 200 100 0.49 24.30
200 200 200 0.50 29.61
400 100 100 0.84 38.53
400 400 100 1.26 142.92

5.2 DISCRETIZATION EXPERIMENTS

We tested different variable discretizations and different
path segmentations. The goal was to find a combination
of these parameters that represents a reasonable tradeoff
between precision and computational time.

We performed experiments on a part of Silverstone F1 cir-
cuit 180 meters long. Results of some performed experi-
ments are presented in Figure 5. In the upper part of these
figures, speed profiles are depicted while the control profile
is plotted in their lower part. The shaded areas are forbid-
den by the speed and control constraints, respectively.

It turned out that the number of states of the model vari-
ables should be in accordance with the path segmentation.
The finer is the path segmentation, the more variables’ val-
ues are required. Discretization that is not well balanced
with the path segmentation leads to oscillations of deci-
sion (control) variables as it is illustrated for s = 1m,
|V| = |A| = |U| = 100 in Figure 5.
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Figure 5: Comparisons of various path segmentations and discretizations.

In the experiments it turned out the oscillation depends
strongly on |V|. Basically, there are two reasons. First,
the discretization has to be able to distinguish small speed
changes within one segment of the path. The reason can be
elucidated by the following example.

Example 6. Consider uniformly accelerated motion with
the initial speed v0 ∈ {200 km/h, 300 km/h}. In case
of full throttle, the acceleration computed by formula (4)
is a .

= 9.52 ms−2 and a
.
= 1.42 ms−2, respectively.

Considering segments of various length s, we can compute
the speed at the end of the respective segment using for-
mula (1). From Table 3 we can see that in case of s = 1 m
the discretization has to be fine grained in order to capture
small speed changes within such a short segment.

Table 3: Speed [in km/h] in case of full acceleration

v0 v1
s = 1 m s = 5 m s = 20 m

200 200.6159 203.0606 211.9774
300 300.0612 300.3058 301.2215

The second reason is the inference algorithm itself. Infor-
mation passes through clique separators. In Figure 4 we
can see that all separators contain Vi and every second sep-
arator consists of single Vi only. Hence, the size of V limits
the information flow between respective cliques. In other
words, |V| represents a bottleneck of the inference mecha-
nism.

Representative results for the whole Silverstone F1 circuit
are presented in Table 4. The expected lap time is quite
stable with respect to different discretizations. For the final
experiments we selected the configuration printed in bold-
face since from those that respect the speed and accelera-
tion constraints well it is least computationally demanding.

5.3 INFLUENCE DIAGRAM SOLUTION

We used the influence diagram to compute the speed pro-
file for the Silverstone F1 circuit. It is plotted in the upper
part of Figure 6 by a full line. The bridge version of Sil-
verstone circuit is 5049 meters long, which corresponds to
1010 segments 5m long. In this figure we compare the



Table 4: CPU and lap time for diverse path segmentations
and discretizations.

s |V| |A| |U| lap time CPU time
[m] [s] [s]
10 400 200 100 83.92 20.61
10 800 400 200 83.83 103.94
5 400 200 100 84.09 42.88
5 800 200 100 83.97 166.88
5 800 400 200 83.95 197.93
5 800 800 800 83.94 473.16
5 1000 1000 1000 83.91 588.80
1 800 400 200 84.17 2110.68
1 1000 1000 1000 84.10 2850.66
1 1600 1000 1000 83.96 5544.99

computed speed profile with a test pilot performance at the
Silverstone F1 circuit (Oxford Technical Solutions, 2002).
In the upper part of Figure 6 the test pilot speed profile is
plotted by a dotted line. Notice that the testing pilot vi-
olates these restrictions several times. Also, the test pilot
acceleration is slower than expected. The speed constraints
used in the model seem to be too cautious and the car ac-
celeration ability a bit exaggerated.

It is interesting to compare the total lap time estimated by
the influence diagram model with results achieved by F1 pi-
lots. While the model estimated time 83.95 seconds is little
lower than time achieved by the test pilot – 85.51 seconds,
it is higher than the fastest ever lap time – 78.12 seconds
– attained by Sebastian Vettel with his Red Bull-Renault in
the qualification of the 2009 British Grand Prix.

5.4 ANALYTIC SOLUTION

The analytic solution was presented in (Velenis and Tsio-
tras, 2008). It is plotted in Figure 7 by a dotted line together
with the influence diagram solution. The solutions are quite
similar but there are some differences. Apparently, the ana-
lytical solution does not fully comply with the acceleration
constraints. This causes differences in the speed profiles,
otherwise they would be equivalent. We were not able to
explain this observation. In the lower part of Figure 7 we
present the control profile of the analytic solution recon-
structed from the speed profile of the analytic solution5.

6 RELATED WORK

The speed profile optimization problem can be also speci-
fied using Markov decision processes (MDPs) (Puterman,
1994) with a finite horizon, a non-stationary policy and a
non-linear stationary reward function. The solution of such
an MDP can be found by the approach presented in this pa-
per since solution methods of both approaches are based on

5The little oscillations are caused by imprecision of the ana-
lytic speed profile taken from (Velenis and Tsiotras, 2008).

dynamic programming. In (Velenis and Tsiotras, 2008) the
problem was solved analytically by methods of the con-
tinuous time control (Bertsekas, 2000) using the Pontrya-
gin’s maximum principle. We compared the influence di-
agram solution with the analytic solution in Section 5.4 –
the solutions were similar. However, analytical solutions
for considered extended versions of the problem with an
advanced optimization function and additional constraints
are not known and numerical methods have to be used.

7 CONCLUSIONS AND FUTURE WORK

We proposed an application of influence diagrams to speed
profile optimization and tested it in a real-life scenario.
We summarize what we have achieved and what we have
learned:

• We were able to find optimal solutions efficiently.

• We verified the solutions are in accordance with the
analytical solution of the considered problem.

• An important advantage of influence diagrams is that
once the policy is computed, it can be immediately
used to update the optimal speed profile under modi-
fied circumstances. For example, if the driver has to
slow down because of an unexpected traffic situation,
the policy immediately provides the best new control
value and the speed profile is specified by following
the precomputed optimal policies.

• Influence diagrams are especially handy in more com-
plex real-life scenarios where the analytic solution is
unknown.

• In applications, different optimality criteria come into
play. We can do the computations efficiently as long
as they decompose additively along the path segments.

In future we plan to optimize speed profiles using influence
diagrams with continuous variables. Inspired by the work
of (Kveton et al., 2006) on MDPs we plan to study infer-
ence in influence diagrams based on mixtures of beta dis-
tributions. Other possibilities to be considered are approx-
imations by mixtures of polynomials (Shenoy and West,
2011; Li and Shenoy, 2012) or by mixtures of truncated
exponentials (Cobb and Shenoy, 2008; Moral et al., 2001).

Currently, we are applying influence diagrams to a more
complex scenario with a complex utility function, for
which no analytical solution is known. Methods of the con-
trol theory, if applied to this scenario, thus need to rely on
approximate numerical methods.
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