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A GENERALIZATION OF THE NOISY-OR MODEL

Jiř́ı Vomlel

In this paper we generalize the noisy-or model. The generalization is two-fold. First, we
allow parents to be multivalued ordinal variables. Second, parents can have both positive
and negative influences on their common child. Our generalization has several advantages: it
requires only one parameter per parent, the child variable is still binary, and each inhibition
probability depends on the value of the corresponding parent. We show that our generalized
noisy-or model belongs to the family of Generalized Linear Models, namely, it is a subfamily of
Poisson Regression models. We suggest a method for learning the models and report results of
experiments on the Reuters text classification data. The multivalued noisy-or achieved better
performance than standard noisy-or for classes with lower number of documents.
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1. INTRODUCTION

Conditional probability tables (CPTs) that are the basic building blocks of Bayesian
networks [10, 7] have, generally, an exponential size with respect to the number of vari-
ables of the CPT. This has two unpleasant consequences. First, during the elicitation of
model parameters one needs to estimate an exponential number of parameters. Second,
in case of a high number of parent variables the exact probabilistic inference may become
intractable.

On the other hand real implementations of Bayesian networks (see e.g. [9]) often have
a simple local structure of the CPTs. The noisy-or model [10] is a popular model for
describing relations between variables in one CPT of a Bayesian network. Noisy-or is
member of a family of models called models of independence of causal influence [5] or
canonical models [3]. The advantage of these models is that the number of parameters
required for their specification is linear with respect to the number of variables in CPTs
and that they allow applications of efficient inference methods, see for example [4, 12].

In this paper we propose a generalization of the noisy-or model to multivalued parent
variables. Our proposal differs from the noisy-max model [6] since we keep the child
variable binary no matter what the number of states of the parent variables are. Also
we have only one parameter for each parent no matter what is the number of states
of the parent variables. Our generalization also differs from the generalization of the
noisy-or model proposed by Srinivas [13] since in his model the inhibition probabilities
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cannot depend on the state of the parent variables if the state differs from the state of
the child. We consider this to be a quite restrictive requirement for some applications.

We will show that our proposal is closely connected with the Poisson Regression of
Generalized Linear Models [8]. We discuss methods one can use to learn parameters of
the generalized noisy-or model from data. In the second part of the paper we present
results of numerical experiments on the well-known Reuters text classification data. We
use this dataset to compare the performance of suggested generalizations of multival-
ued and binary noisy-or models. We have made the source code and datasets used in
experiments available at the worldwide web – see Section 5.

2. MULTIVALUED NOISY-OR

In this section we propose a generalization of noisy-or for multivalued parent variables.
Let Y be a binary variable taking states y ∈ {0, 1} and Xi, i = 1, . . . , n be multivalued
discrete variables taking states xi ∈ {0, 1, . . . ,mi}, mi ∈ N+. The local structure of
both the standard (see, e.g., [3]) and the multivalued generalization of the noisy-or can
be made explicit as it is shown in Figure 1.

X ′n. . .X ′2X ′1

Y

X1 X2 . . . Xn

Fig. 1. Noisy-or model with the explicit deterministic (OR) part.

The conditional probability table P (Y |X1, . . . , Xn) is defined using CPTs P (X ′i|Xi)
as

P (X ′i = 0|Xi = xi) = (pi)
xi (1)

P (X ′i = 1|Xi = xi) = 1− (pi)
xi , (2)

where (for i = 1, . . . , n) pi ∈ [0, 1] is the parameter that defines the probability that
the positive value xi of variable Xi is inhibited. In the formula, we use parenthesis to
emphasize that xi is an exponent, not an upper index of pi. The CPT P (Y |X ′1, . . . , X ′n)
is deterministic and represents the logical OR function.

Remark. Note that the higher is the value xi of Xi the lower the probability of X ′i = 0,
which is a desirable property in many applications.
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Fig. 2. The dependence of P (X ′
i = 0|Xi = xi) on parameter pi = p

and the variable value xi = x.

The conditional probability table P (Y |X1, . . . , Xn) is then defined as

P (Y = 0|X1 = x1, . . . , Xn = xn) =

n∏
i=1

P (X ′i = 0|Xi = xi)

=

n∏
i=1

(pi)
xi (3)

P (Y = 1|X1 = x1, . . . , Xn = xn) = 1−
n∏

i=1

(pi)
xi . (4)

Remark. Note that if mi = 1, i.e. the values xi of Xi are either 0 or 1, then we get the
standard noisy-or model [10, 3].

In Figure 2 dependence of the inhibitory probability P (X ′ = 0|X = x) on the value
x of a variable X is depicted for different values of the parameter p.

It is important to note that contrary to the definition of causal noisy-max [3, Section
4.1.6] we have only one parameter pi for each parent Xi of Y no matter what is the
number of states of Xi. This implies that our model is more restricted. But, on the
other hand, the suggested simple parametrization guarantees ordinality, which is in
many application a desirable property (as it is also discussed in [3]). Also, since fewer
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parameters are estimates or elicited from domain experts the estimates might be more
reliable.

3. RELATION TO THE POISSON REGRESSION

In this section we will describe the relation of the generalized noisy-or model and the
Poisson Regression of Generalized Linear Models [8].

By taking the logarithm of both sides of equation (3) we get

logP (Y = 0|X1 = x1, . . . , Xn = xn) =

n∑
i=1

xi · log pi .

Define a new parameter βi = log pi. Note that since pi is probability it holds that
βi ∈ (−∞, 0]. Then we can write

logP (Y = 0|X1 = x1, . . . , Xn = xn) =

n∑
i=1

xi · βi = xTβ ,

where x denotes vector (x1, . . . , xn) and β denotes vector (β1, . . . , βn). The above
formula is the formula of the Poisson Regression of the binary variable 1− Y . Since the
expected value E(1− Y |x1, . . . , xn) = P (Y = 0|X1 = x1, . . . , Xn = xn) it holds that

logE((1− Y )|x1, . . . , xn) = xTβ .

However, as it is noted above, in the generalized noisy-or model we require non-positive
values of β. There is not any such constraint in the Poisson Regression. In this sense,
the generalized noisy-or models are a subfamily of the Poisson Regression models.

In the Poisson Regression the first value of vector β is usually the intercept. Often, it
is included in the model as β0 with corresponding entry x0 in x being fixed to 1. In the
generalized noisy-or this corresponds to a leaky cause [3], i.e. an auxiliary cause that is
always in state 1. This allows the probability

P (Y = 0|X1 = x1, . . . , Xn = xn) = pL < 1

even if x = (x1, . . . , xn) = 0. The value pL = exp(β0) is called leaky probability and
usually it is close (but not equal) to one. This allows to model unobserved or unknown
causes of Y = 1.

4. LEARNING PARAMETERS OF THE GENERALIZED NOISY-OR

The relation to the Poisson Regression allows us to apply standard maximum likelihood
estimation methods for Poisson Regression models. A method typically used to learn the
generalized linear models is the Iteratively Reweighted Least Squares (IRLS) method [8].
By use of the standard Poisson Regression methods some values βi, i = 1, . . . , n may be
learned to be positive. We can give this a quite natural interpretation that the higher
values ofXi imply higher inhibitory probability. In the generalized noisy-or model we can
treat the parents with positive values of βi by relabeling their values xi ∈ {0, 1, . . . ,mi}
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to (mi − xi) ∈ {mi, . . . , 1, 0}. In this way the generalized noisy-or is now capable to
treat not only positive influences (presence of Xi increases probability of Y = 1) but
also negative influences (presence of Xi decreases probability of Y = 1).

To guarantee that for all possible values of x we get probability values (i.e. val-
ues from [0, 1]) we need to use learning methods with the constraints β ≤ 0. In the
experiments reported in the next section we used a quasi-Newton method with box
constraints [2] implemented in R [11]. When searching for the minimum of the nega-
tive log likelihood we used the formula (6) for the gradient derived in Appendix A. To
avoid infinite numbers we added a small positive value (10−10) to the denominator in
formula (6). The algorithm was started from ten different initial values of β generated
randomly from interval [−1,+1].

In the Poisson Regression each parent has either positive (+) or a negative influ-
ence (−) on Y = 1 (we exclude parents with no influence). Thus, we can get two versions
of generalized binary noisy-or and two versions of generalized multivalued noisy-or that
either have:

• all parents Xi, i = 1, . . . , n of Y have positive influence (+) on probability of Y = 1
or

• all parents from Xi, i = 1, . . . , n of Y that have negative influence (−) in the
Poisson Regression have their states renumbered reversely (as discussed above)
and then included with a positive influence.

Remark. Note that the generalized binary noisy-or with all parents having a positive
influence (+) is the standard noisy-or.

5. EXPERIMENTS

In this section we describe experiments we performed with the well known Reuters-21578
collection (Distribution 1.0) of text documents. The text documents from this dataset
appeared on the Reuters newswire in 1987 and were manually classified by personnel
from Reuters Ltd. and Carnegie Group, Inc. to several classes according to their topic.
In the test we used the split of documents to training and testing sets according to Apté
et al. [1]. We performed experiments with preprocessed data for eight largest classes1.
To allow interested readers to replicate our experiments easily we have made our R code
and the datasets used in experiments available on the web 2.

In the experiments we compare the generalized binary noisy-or classifier and the gen-
eralized multivalued noisy-or classifier. Both models were learned using the iteratively
reweighted least squares method [8] implemented in R – a language and environment for
statistical computing [11]. We performed experiments with three versions of both types
of classifiers (with binary features and with multivalued features, respectively):

(a) features Xi with a positive (+) or a negative influence (−) were both allowed –
this is the standard Poisson Regression,

(b) only features Xi with a positive influence (+) were included.

1The preprocessed dataset is available at http://web.ist.utl.pt/acardoso/datasets/.
2The code and data are available at http://www.utia.cas.cz/vomlel/generalized-noisy-or/

http://web.ist.utl.pt/acardoso/datasets/
http://www.utia.cas.cz/vomlel/generalized-noisy-or/
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(c) features Xi with a positive influence (+) were included and features Xi with nega-
tive influence (−) have their states renumbered in the reverse order and then they
are also included.

Remark. Note that the binary classifier consisting of binary features Xi with positive
influence (+) on probability of Y = 1 only is the standard noisy-or classifier [14].

We decided to include into the models all features that were not rejected as irrelevant
at the significance level 0.1. We performed the experiments also with the significance
level increased to 0.3. In this way, we increased the number of features, but since for
most classes there was no significant increase in the accuracy we prefer simpler models.
However, it may be topic for a future research to apply exhaustive feature selection
methods that would find optimal models for the families of our interest.

The results of experiments are summarized in Tables 1 and 2. The accuracy is re-
ported using the percentage scale, it is the relative proportion of correctly classified
documents either as belonging to the given class or not. From Tables 1 and 2 we can see
that often binary noisy-or performs better for larger models, while multivalued noisy-or
is often better at smaller models. The models for the classes ship and grain are very
small, they have at most three features only and there is no difference between the
models’ accuracy.

The most general model that is not restricted performs in average slightly better than
those two restricted to positive features or positive and reversed features respectively.
In the case of binary noisy-or there is no difference in performance of the two restricted
models. In the case of multivalued noisy-or the model with positive and reversed features
is slightly better than the one with positive features only.

6. AN EXAMPLE

In this section we use the class interest to illustrate the benefits of treating the features
as multivalued. In the first example we present the binary noisy-or model and in the
second the multivalued noisy-or model. Both models contain only significant features
for the significance level 0.1.

Example 1 (The noisy-or model for the interest class). In Figure 3 the structure of the
noisy-or model for the interest class is presented (in the examples we do not make the
deterministic part explicit). All variables are binary, taking values 0 or 1. The leaky
cause has a fixed value 1. The conditional probability fo the class interest is defined as

P (Class.interest = 0|Rate = r, Fed = f, Prime = p) = (p1)r · (p2)f · (p3)p · p0 ,

where r ∈ {0, 1} is the state of feature Rate, f ∈ {0, 1} is the state of feature Fed,
and p ∈ {0, 1} is the state of feature Prime. The values of parameters p1, p2, p3 were
estimated to be

p1 = exp(β1) = exp(−0.387625201)
.
= 0.6786667

p2 = exp(β2) = exp(−0.377786535)
.
= 0.6853768

p3 = exp(β3) = exp(−0.412698847)
.
= 0.6618616
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Tab. 1. Comparisons of the accuracy of the generalized noisy-or.

The best achieved accuracy is printed boldface and framed if it is the

best when considering also multivalued generalizations from Table 2.

# test
Class documents (+ and -) (only +) (only + & rev.) nr. features
earn 1083 93.74143 93.55870 93.55870 17

acq 696 94.01553 91.73138 91.73138 28

crude 121 97.57880 97.57880 97.57880 4

money-fx 87 96.66514 96.80219 96.80219 4
interest 81 96.71083 96.71083 96.71083 3
trade 75 97.35039 97.35039 97.35039 5

ship 36 99.04066 99.04066 99.04066 2

grain 10 99.90863 99.90863 99.90863 1
total 2189

Tab. 2. Comparisons of the accuracy of the multivalued

generalization of the noisy-or. The best achieved accuracy is printed

boldface and framed if it is the best when considering also binary

generalizations from Table 1.

# test
Class documents (+ and -) (only +) (only + & rev.) nr. features

earn 1083 93.96985 93.78712 93.83280 13
acq 696 92.37095 92.18821 92.23390 23
crude 121 97.25902 97.25902 97.25902 3
money-fx 87 96.75651 96.71083 96.71083 4

interest 81 97.62449 97.85290 97.85290 2

trade 75 98.49246 98.44678 98.44678 4

ship 36 99.04066 99.04066 99.04066 3

grain 10 99.90863 99.90863 99.90863 1
total 2189
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prime leaky cause

class.interest

rate fed

Fig. 3. Binary noisy-or model for the interest class.

and the leaky parameter p0 = exp(β0) was estimated to be

p0 = exp(β0) = exp(−0.001797324)
.
= 0.9982043 .

This model has accuracy 96.71%.

Example 2 (The multivalued noisy-or model for the interest class). In Figure 4 the
structure of the multivalued noisy-or model for the interest class is presented. The

leaky causerate prime

class.interest

Fig. 4. Multivalued noisy-or model for the interest class.

variable Rate takes values from the set {0, 1, . . . , 34}, variable Prime takes values from
the set {0, 1, . . . , 17}. The leaky cause has fixed state 1. The conditional probability for
the class interest is defined as

P (Class.interest = 0|Rate = r, Prime = p) = (p1)r · (p2)p · p0 ,

where r ∈ {0, 1, . . . , 34} is the state of feature Rate and p ∈ {0, 1, . . . , 17} is the state of
feature Prime. The values of parameters p1 and p2 were estimated to be

p1 = exp(β1) = exp(−0.174466109)
.
= 0.8399053

p2 = exp(β2) = exp(−0.326624088)
.
= 0.7213549

and the leaky parameter p0 = exp(β0) was estimated to be

p0 = exp(β0) = exp(−0.004392911)
.
= 0.9956167 .
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Despite this model has less features than the noisy-or model from Example 1 its accu-
racy is higher (97.85% > 96.71%). This example illustrates how we can benefit from
multivalued features.

7. CONCLUSIONS

In this paper we proposed generalizations of the popular noisy-or model to multivalued
explanatory variables. We showed the our generalizations are subfamilies of the Pois-
son family of Generalized Linear Models. We used iteratively reweighted least squares
method to learn models from the Poisson family. For the restricted subfamilies cor-
responding to generalized noisy-or models we used a quasi-Newton method with box
constraints. In the experiments with the Reuters text collection the generalized binary
noisy-or performed better for larger models, while the generalized multivalued noisy-
or performed better for smaller models. They both represent handy generalizations of
noisy-or for real applications with multivalued variables and/or with parent variables
being a mixture of variables having either positive or negative influence on their child
variable.
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A. THE LOG LIKELIHOOD AND ITS GRADIENT

Assume data vectors (yi,x
T
i ), i = 1, . . . , N and recall that boldface symbols denote

vectors. Under the generalized noisy-or model the probability of yi given xi is defined
as:

logP (yi = 0|xi) = xT
i β

logP (yi = 1|xi) = log(1− exp(xT
i β)) .

The log likelihood of data given this model is

`(β) =

N∑
i=1

(1− yi)xT
i β + yi log(1− exp(xT

i β)) . (5)

The gradient of the log likelihood is the vector of partial derivatives with respect to β:

∂`(β)

∂β
=

N∑
i=1

(1− yi)xi − yixi
exp(xT

i β)

1− exp(xT
i β)

=

N∑
i=1

(1− yi)xi − (1− yi)xi exp(xT
i β)− yixi exp(xT

i β)

1− exp(xT
i β)

=

N∑
i=1

xi
(1− yi)− exp(xT

i β)

1− exp(xT
i β)

. (6)
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