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Abstract

This paper presents new results of our experimental research on string
similarity measures on pricelists of computer components. The first re-
sults were already presented at the Eighth Czech-Japan Seminar on Data
Analysis and Decision Making under Uncertainty in Třešť [1] in 2005.

1 Introduction

The task we are interested in is to find a given computer component described
by an unstructured text - a string S of characters - in different pricelists of com-
puter components. Different suppliers describe the same component somewhat
differently, therefore we cannot rely on a simple match between two compo-
nents’ descriptions. First, let us give three examples of components as they are
described in two different pricelists.

Toner Cartridge pro LJ4/M/+/4M+/5/5M/5N 92298X
Toner pro LaserJet 4/4M, 4/4M Plus, 5/5N/5M (8800)

Pilot Optical Mouse, USB+PS/2, 3 tlačítka, černá
Logitech myš Pilot Optical Mouse Black, USB/PS/2, retail

∗This work was supported by the Ministry of Education of the Czech Republic through
grant nr. 1M0572 DAR.
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AS 9804WKMi_RAID, T2500/2.0GHz, 2048MB, 2x120GB, DVD+/-RW SM, 20" WXGA,
WMC, ca
Aspire9804AWKMiDuo2,0GHz/2x1024MB/2x120HDD/DVD+-RWsm/20"/Ge7600/BT/1.3MB/
V/TV/WMC

Some of the pricelists we worked with contained more than 30,000 compo-
nents. Fortunately, the computer components pricelists are partially structured.
Therefore, in the current implementation of our system when searching an equiv-
alent component in other pricelist we can restrict the search only to the same
producer and the same product category1.

Some suppliers provide together with the component description also its
part number that should be unique. This can provide a very reliable matching
between components from different pricelists. Unfortunately, we have observed
that many items in pricelists do not have any part number assigned and some
suppliers do not provide part numbers in their pricelists at all. Thus we use
part numbers when they are available, but we have to have a method for finding
equivalent components even if the part number is not available.

The rest of the paper is organized as follows. In the next section we review
three methods we tested - a fulltext search, string similarity, and a vector based
method plus a linear combination of these three methods. The third section
describes results of experiments with the methods on a real data from two com-
puter parts suppliers. We conclude the paper with conclusions and suggestions
for future work.

2 Tested methods

The fulltext search method

As a reference method we have used the natural language search of MySQL Full-
Text Search [2]. A natural language search interprets the search string S1 as a
phrase in natural human language (a phrase in free text). The MySQL stopword
list applies. In addition, words that are present in more than 50% of the records
are considered common and are not matched. Also words shorter than four
characters are not matched. We denote this similarity measure between the
searched string S1 and a found string S2 as Sim1(S1, S2).

String similarity

The first of proposed methods that we tested was inspired by the string edit
distance [3]. It is described in detail in our previous paper on this topic [1].
We measure the similarity Sim(S1, S2) of two strings S1, S2 by the total length
of substrings of S1 that are substrings of string S2. We do not require the
substrings of S1 to be disjoint, which means that parts of substrings of S1

1Actually, not all components can be classified to a category therefore we need to use one
additional category of unclassified components and we always search also in this category.
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longer than two are counted several times. In the experiments we used the
relative string similarity defined as

Sim2(S1, S2) =
Sim(S1, S2)
Sim(S1, S1)

Vector based method

In vector based techniques [5] every string is encoded as a vector of real num-
bers whose components are formed by weights of individual tokens (groups of
characters) presented in the string. In our context the string is divided into to-
kens by special characters (space, comma, semicolon, etc.) as tokens separators
(separators are then omitted).

A popular method for computing the weights is the TF-IDF method [4],
which we have also described in detail in our previous paper on this topic [1].
The weight of a token x in string S is defined as

w(x, S) =
n(x, S)
n(S)

log
m

m(x)

where n(x, S) is the number of occurrences of token x in string S (often, it is 0
and 1), n(S) is the total number of tokens in string S, m is the total number
of all strings in the data, and m(x) is the number of strings containing token
x. Let d denote the total number of different tokens in the entire data. Then
w(S) = (w(x1, S), . . . w(xd, S))T is a vector that characterizes string S. By
v(S) we will denote the normalized weight vector defined as

v(S) =
w(S)√∑d

i=1 w(xi, S)2

Similarity of two strings S1 and S2 is then computed as the scalar product of
normalized weight vectors v(S1) and v(S2)

Sim3(S1, S2) =
d∑

i=1

v(xi, S1) · v(xi, S2) = v(S1)T · v(S2) . (1)

Note that since both vectors are sparse the computation of the scalar product
can be efficiently implemented.

A combination of the methods

Each method uses a different approach for finding equivalent components there-
fore one can hope that their combination can provide better results than each
single method. We have tested linear combinations of the three similarity mea-
sures - the fulltext search Sim1, string similarity Sim2, and the vector based
method Sim3:

Sim4(S1, S2) = c1 · Sim1(S1, S2) + c2 · Sim2(S1, S2) + c3 · Sim3(S1, S2)

where c = (c1, c2, c3) was set to (0.3, 1, 1), (0, 1, 1), and (0, 1, 2).
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Figure 1: The comparison of the relative success rate of different methods with
respect to the length of the output.

3 Experiments

First, we describe how we prepared a testing set. We selected two pricelists
of computer components from two different suppliers. They contained together
64566 components. From these two pricelists we selected only those components
that were given a part number and were present in both pricelists. Since only
some components are listed in the pricelists with their part number we have
got 7060 different part numbers. From these we randomly selected 500 part
numbers. These defined our test pairs.

During the tests, for each component from the first pricelist (having the
part number from those 500 selected ones) we used the tested methods to find
k (k = 1, 2, . . . , 15) most similar components in the second pricelist. Then we
checked whether the component with the same part number is among those k
selected ones (let us call k the length of the output). We counted the number of
these cases and computed the relative success rate for each method with respect
to k. The results for six different methods are presented in Figure 1.

From the figure we can see that from the three basic methods - the full-
text search, string similarity, and the vector based method - by far the best
performance was achieved with the vector based method. The fulltext method
performance is rather poor since it even worsens the performance of the other
methods when it is combined with them. From the tested combinations the
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combination with weights (0, 1, 1) appeared to be the best for the testing set.
Thus, we can conclude that the vector based method can be slightly improved
when it is combined with the string similarity.

Next, we provide four examples of the descriptions of component pairs that
were not matched. For correct matching we would need to have the above
methods extended so that they use additional information discussed in each of
the examples.

Example 1 Acer server

AAG320 PD 940 (3.2 GHz, 2x 2MB, 800 MHz FSB), 1x 512 MB DDR2
533/16x DVD-ROM
Acer Altos G320-PD940 3.2GHz/2x2MB,800F/512MB/DVD/noHDD/noKB

Acer Altos is abbreviated to AA. Different token separators (comma, space,
slash, dash, braces) are used. Whether the same symbol (e.g., the space) is a
separator (e.g., between PD940 and 3.2GHz) or it is not (e.g., 800 MHz should
be one token) depends on the context.

Example 2 Ink cartridge

Ink. náplň No. 84 pro DesignJet 10PS/20PS/50PS
C5016A Black ink Cartridge pro DSJ x0ps

náplň is Cartridge in English, 10PS/20PS/50PS is abbreviated to x0ps, and
DesignJet is abbreviated to DSJ.

Example 3 Cable

Kabel Pure AV Blue series Firewire 4pin/6pin, 1.8m
PureAV kabel FireWire, 4/6 kolíků - 1,8 m - Řada Blue

series is Řada in Czech, 4pin/6pin corresponds to 4/6 kolíků since pin is
kolík in Czech, and 1.8m corresponds to 1,8m.

Example 4 Mail antispam and antivirus

SYMANTEC BRIGHTMAIL ANTISPAM + ANTIV 6.0 SUBS + GOLD MAINT 1YR IN VALUE
BAND F(5
Sym. Bright.Antispam + Antivirus 6.0 IN F(500-999) + 1YR GM

Sym. Bright.Antispam + Antivirus corresponds to SYMANTEC BRIGHTMAIL
ANTISPAM + ANTIV and GM is an abbreviation for GOLD MAINT.

4 Conclusions and future work

In this paper we performed experiments with three string similarity measures on
real data - pricelists of computer components from two suppliers. We observed
the best performance for the vector based method, which at about 62% of cases
found the correct component as the first one and in 83% of cases it was among
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the first five. This method was possible to slightly improve by combining it with
the string similarity measure, which at about 67% of cases found the correct
component as the first one and in 85% of cases it was among the first five.

Since the vector method appeared to perform best from the tested single
methods it could serve as a basis for further improvements. One way to go is to
work with a matrix P that would provide for all pairs of tokens their similarity.
If this number would be in the interval [0, 1] then it could be interpreted as a
probability that the tokens are equivalent. Actually, we would not need to create
explicitly the whole matrix P if we would assume that the matrix values are zero
unless specified otherwise. There are several ways of having the values different
from zero and they could be combined together. We could use a dictionary of
synonyms (pairs of synonyms would get value one), Czech-English dictionary
(again, a pair from dictionary would get value one), a system of rules used for
making common abbreviations, etc. This would lead to a natural generalization
of the vector method where the formula (1) would be replaced by

Sim(S1, S2) =
d∑

i=1

d∑
j=1

v(xi, S1) ·Pi,j · v(xj , S2) = v(S1)T ·P · v(S2) .

Since the matrix P is sparse the computations can be efficiently implemented.
Additionally, Example 1 indicates that a smarter method for separating

strings into tokens would be useful.
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