
Bayesian networks in Mastermind

Jǐŕı Vomlel
http://www.utia.cas.cz/vomlel/

Laboratory for Intelligent Systems Inst. of Inf. Theory and Automation
University of Economics Academy of Sciences

Ekonomická 957 Pod vodárenskou věž́ı 4
148 01 Praha 4, Czech Republic 182 08 Praha 8, Czech Republic

Abstract

The game of Mastermind is a nice example of an
adaptive test. We propose a modification of this
game - a probabilistic Mastermind. In the probabilis-
tic Mastermind the code-breaker is uncertain about
the correctness of code-maker responses. This mod-
ification better corresponds to a real world setup for
the adaptive testing. We will use the game to il-
lustrate some of the challenges that one faces when
Bayesian networks are used in adaptive testing.

1 Mastermind

Mastermind was invented in early 1970’s by Morde-
cai Meirowitz. A small English company Invicta
Plastics Ltd. bought up the property rights to the
game, refined it, and released it in 1971-72. It was
an immediate hit, and went on to win the first ever
Game of the Year Award in 1973. It became the
most successful new game of the 1970’s [8].

Mastermind is a game played by two players, the
code-maker and the code-breaker. The code-maker
secretly selects a hidden code H1, . . . ,H4 consisting
of an ordered sequence of four colors, each chosen
from a set of six possible colors {1, 2, . . . , 6}, with
repetitions allowed. The code-breaker will then try
to guess the code. After each guess T = (T1, . . . , T4)
the code-maker responds with two numbers. He com-
putes the number P of pegs with correctly guessed
color with correct position, i.e.

Pj = δ(Tj ,Hj) , for j = 1, . . . , 4 (1)

P =
4∑

j=1

Pj , (2)

where δ(A,B) is the function that is equal to one
if A = B and zero otherwise. Second, the code-
maker computes the number C of pegs with correctly
guessed color that are in a wrong position. Exactly
speaking, he computes

Ci =
4∑

j=1

δ(Hj , i) , for i = 1, . . . , 6 (3)

Gi =
4∑

j=1

δ(Tj , i) , for i = 1, . . . , 6 (4)

Mi = min(Ci, Gi) , for i = 1, . . . , 6 (5)

C =

(
6∑

i=1

Mi

)
− P . (6)

The numbers P,C are reported by number of black
and white pegs, respectively.

Example 1 For (1, 1, 2, 3) and (3, 1, 1, 1) the re-
sponse is P = 1 and C = 2. �

The code-breaker continues guessing until he guesses
the code correctly or until he reaches a maximum
allowable number of guesses without having correctly
identified the secret code.

Probabilistic Mastermind

In the standard model of Mastermind all information
provided by the code-maker is assumed to be deter-
ministic, i.e. each response is defined by the hidden
code and the current guess. But in many real world
situations we cannot be sure that the information we
get is correct. For example, a code-maker may not
pay enough attention to the game and sometimes
makes mistakes in counting the number of correctly
guessed pegs. Thus the code-breaker is uncertain
about the correctness of the responses of the code-
maker.

In order to model such a situation in Mastermind we
add two variables to the model: the reported num-
ber of pegs with a correct color in the correct position
P ′ and reported number of pegs with a correct color
in a wrong position C ′. The dependency of P ′ on
P is thus probabilistic, represented by a probabil-
ity distribution Q(P ′ | P) (with all probability val-
ues being non-zero). Similarly, Q(C ′ | C) represents
probabilistic dependency of C ′ on C.

2 Mastermind strategy

We can describe the Mastermind game using the
probability framework. Let Q(H1, . . . ,H4) denote
the probability distribution over the possible codes.
At the beginning of the game this distribution is
uniform, i.e., for all possible states h1, . . . , h4 of

H1, . . . ,H4 it holds that

Q(H1 = h1, . . . ,H4 = h4) =
1
64

=
1

1296

During the game we update probability
Q(H1, . . . ,H4) using the obtained evidence
e and compute the conditional probability
Q(H1, . . . ,H4 | e). Note that in the standard
(deterministic) Mastermind it can be computed as

Q(H1 = h1, . . . ,H4 = h4 | e)

=
{ 1

n(e) if (h1, . . . , h4) is a possible code
0 otherwise,

where n(e) is the total number of codes that are pos-
sible candidates for the hidden code.

A criteria suitable to measure the uncertainty about
the hidden code is the Shannon entropy

H(Q(H1, . . . ,H4 | e)) = (7)∑
h1,...,h4

Q(H1 = h1, . . . ,H4 = h4 | e)
· log Q(H1 = h1, . . . ,H4 = h4 | e) ,

where 0 · log 0 is defined to be zero. Note that the
Shannon entropy is zero if and only if the code is
known. The Shannon entropy is maximal when noth-
ing is known (i.e. when the probability distribution
Q(H1, . . . ,H4 | e) is uniform.

Mastermind strategy is defined as a tree with nodes
corresponding to evidence collected by performing
guesses t = (t1, . . . , t4) and getting answers c, p
(in case of standard Mastermind game) or c′, p′ (in
the probabilistic Mastermind). The evidence cor-
responding to the root of the tree is ∅. For ev-
ery node n in the tree with corresponding evidence
en : H(Q(H1, . . . ,H4 | en)) 6= 0 it holds:

• it has specified a next guess t(en) and

• it has one child for each possible evidence ob-
tained after an answer c, p to the guess t(en)1.

A node n with corresponding evidence en such that
H(Q(H1, . . . ,H4 | en)) = 0 is called a terminal node
since it has no children (it is a leaf of the tree) and the
strategy terminates there. Depth of a Mastermind
strategy is the depth of the corresponding tree, i.e.,
the number of nodes of a longest path from the root
to a leaf of the tree.

We say that a Mastermind strategy T of depth ` is
an optimal Mastermind strategy if there is no other
Mastermind strategy T ′ with depth `′ < `.

The previous definition is appropriate when our main
interest is the worst case behavior. When we are

1Since there are at maximum 14 possible combinations
of answers c, p node n has at most 14 children.

interested in an average behavior other criteria is
needed. We can define expected length EL of a strat-
egy as the weighted average of the length of the test:

EL =
∑
n∈L

Q(en) · `(n) ,

where L denotes the set of terminal nodes of the
strategy, Q(en) is the probability of terminating
strategy in node n, and `(n) is the number of nodes
in the path from the root to a leaf node n. We say
that a Mastermind strategy T of depth ` is optimal
in average if there is no other Mastermind strategy
T ′ with expected length EL′ < EL.

Remark Note that there are at maximum(
3 + 4− 1

4

)
− 1 = 15− 1 = 14

possible responses to a guess2. Therefore the lower
bound on the minimal number of guesses is

log14 64 + 1 =
4 · log 6
log 14

+ 1 .= 3.716 .

When the number of guesses is restricted to be at
maximum m then we may be interested in a par-
tial strategy3 that brings most information about the
code within the limited number of guesses. If we use
the Shannon entropy (formula 7) as the information
criteria then we can define expected entropy EH of
a strategy as

EH =
∑
n∈L

Q(en) ·H(Q(H1, . . . ,H4 | en)) ,

where L denotes the set of terminal nodes of the
strategy and Q(en) is the probability of getting to
node n. We say that a Mastermind strategy T is a
most informative Mastermind strategy of depth ` if
there is no other Mastermind strategy T ′ of depth `
with its EH ′ < EH.

In 1993, Kenji Koyama and Tony W. Lai [7] found
a strategy (of deterministic Mastermind) optimal in
average. It has EL = 5625/1296 = 4.340 moves.
However, for larger problems it is hard to find an
optimal strategy since we have to search a huge space
of all possible strategies.

Myopic strategy

Already in 1976 D. E. Knuth [6] proposed a non-
optimal strategy (of deterministic Mastermind) with

2It is the number of possible combinations (with rep-
etition) of three elements black peg, white peg, and no peg
on four positions, while the combination of three black
pegs and one white peg is impossible.

3Partial strategy may have terminal nodes with corre-
sponding evidence en such that H(Q(H1, . . . , H4 | en)) 6=
0.

the expected number of guesses equal to 4.478. His
strategy is to choose a guess (by looking one step
ahead) that minimizes the number of remaining pos-
sibilities for the worst possible response of the code-
maker.

The approach suggested by Bestavros and Belal [2]
uses information theory to solve the game: each
guess is made in such a way that the answer max-
imizes information on the hidden code on the aver-
age. This corresponds to the myopic strategy selec-
tion based on minimal expected entropy in the next
step.

Let Tk = (T k
1 , . . . , T k

4) denote the guess in the step
k. Further let P ′k be the reported number of pegs
with correctly guessed color and the position in the
step k and C ′k be the reported number of pegs with
correctly guessed color but in a wrong position in the
step k. Let ek denote the evidence collected in steps
1, . . . , k, i.e.

e(t1, . . . , tk) =(
T1 = t1, P 1 = p1, C ′1 = c′1,
. . . ,Tk = tk, P ′k = p′k, C ′k = c′k

)
For each e(t1, . . . , tk−1) the next guess is a tk that
minimizes

EH(e(t1, . . . , tk−1, tk)) .

3 Bayesian network model of
Mastermind

Different methods from the field of Artificial Intelli-
gence were applied to the (deterministic version of
the) Mastermind problem. In [10] Mastermind is
solved as a constraint satisfaction problem. A ge-
netic algorithm and a simulated annealing approach
are described in [1]. These methods cannot be easilly
generalized for the probabilistic modification of the
Mastermind.

In this paper we sugest to use a Bayesian network
model for the probabilistic version of Mastermind.
In Figure 1 we define Bayesian network for the Mas-
termind game.

The graphical structure defines the joint probability
distribution over all variables V as

Q(V) =
Q(C | M1, . . . ,M6, P) ·Q(P | P1, . . . , P4)

·

 4∏
j=1

Q(Pj | Hj , Tj) ·Q(Hj) ·Q(Tj)

·

(
6∏

i=1

Q(Mi | Ci, Gi) ·Q(Ci | H1, . . . ,H4)
·Q(Gi | T1, . . . , T4)

)

P ′

C

P1

P2

P3

P4P

H1

C6C5C4C3C2C1

M1

M2

C′

M3

H2

M4

M5

M6

G1

G2

G3

G4

G5

G6T4

T3

T2

T1

H4H3

Figure 1: Bayesian network for the probabilistic
Mastermind game

Conditional probability tables4 Q(X | pa(X)), X ∈
V represent the functional (deterministic) depen-
dencies defined in (1)–(6). The prior probabilities
Q(Hi), i = 1, . . . , 4 are assumed to be uniform. The
prior probabilities Q(Ti), i = 1, . . . , 4 are defined to
be uniform as well, but since variables Ti, i = 1, . . . , 4
will be always present in the model with evidence the
actual probability distribution does not have any in-
fluence.

4 Belief updating

The essential problem is how the conditional proba-
bility distribution Q(H1, . . . ,H4 | t, c, p) of variables
H1, . . . ,H4 given evidence c, p and t = (t1, . . . , t4)
is computed. Inserting evidence corresponds to fix-
ing states of variables with evidence to the observed
states. It means that from each probability table we
disregard all values that do not correspond to the
observed states.

New evidence can also be used to simplify the model.
In Figure 2 we show simplified Bayesian network
model after the evidence T1 = t1, . . . , T4 = t4 was
inserted into the model from Figure 1. We elimi-
nated all variables T1, . . . , T4 from the model since
their states were observed and incorporated the evi-

4pa(X) denotes the set of variables that are parents
of X in the graph, i.e. pa(X) is the set of all nodes Y in
the graph such that there is an edge Y → X.

dence into probability tables Q(Mi | Ci), i = 1, . . . , 6,
Q(C | C1, . . . , C6), and Q(Pj | Hj), j = 1, . . . , 4.

M1

P

M2

M3

M4

M5

M6

P3

P1

P4

C′

P2

C6

P ′

C4 C5

C

C3C2C1

H4H3H2H1

Figure 2: Bayesian network after the evidence T1 =
t1, . . . , T4 = t4 was inserted into the model.

Next, a naive approach would be to multiply all
probability distributions and then marginalize out
all variables except of variables of our interest. This
would be computationally very inefficient. It is bet-
ter to marginalize out variables as soon as possi-
ble and thus keep the intermediate tables smaller.
It means the we need to find a sequence of multi-
plications of probability tables and marginalizations
of certain variables - called elimination sequence -
such that it minimizes the number of performed nu-
merical operations. The elimination sequence must
satisfy the condition that all tables containing vari-
able, must be multiplied before this variable can be
marginalized out.

A graphical representation of an elimination se-
quence of computations is junction tree [5]. It is the
result of moralization and triangulation of the orig-
inal graph of the Bayesian network (for details see,
e.g., [4]). The total size of the optimal junction tree
of the Bayesian network from Figure 2 is more than
20, 526, 445. The Hugin [3] software, which we have
used to find optimal junction trees, run out of mem-
ory in this case. However, Hugin was able to find
an optimal junction tree (with the total size given
above) for the Bayesian network from Figure 2 with-
out the arc P → C.

The total size of junction tree is proportional to the
number of numerical operations performed. Thus we
prefer the total size of a junction tree to be as small
as possible.

We can further exploit the internal structure of the
conditional probability table Q(C | C1, . . . , C6). We
can use a multiplicative factorization of the table cor-
responding to variable C using an auxiliary variable
B (having the same number of states as C, i.e. 5)
described in [9]. The Bayesian network after this
transformation is given in Figure 3.

H3 H4

C1 C2 C3 C5C4 C6

B

P2

C

H2

P4P

M6

P1

M5

P3

M4

C′

M3

P ′

H1

M2

M1

Figure 3: Bayesian network after the suggested
transformation and moralization.

The total size of its junction tree (given in Figure 4)
is 214, 775, i.e. it is more than 90 times smaller
than the junction tree of Bayesian network before
the transformation.

After each guess of a Mastermind game we first up-
date the joint probability on H1, . . . ,H4. Then we
retract all evidence and keep just the joint prob-
ability on H1, . . . ,H4. This allows to insert new
evidence to the same junction tree. This process
means that evidence from previous steps is combined
with the new evidence by multiplication of distribu-
tions on H1, . . . ,H4 and consequent normalization,
which corresponds to the standard updating using
the Bayes rule.

Remark In the original deterministic version of
Mastermind after each guess many combinations

C1, B C6, B

M2, C2, B

B, H1, . . . , H4

M5, C5, B

B

C4, B

B, C

C3, B

C5, B

B, H1, . . . , H4

B, H1, . . . , H4

M4, C4, B

C2, B

M3, C3, B

B, H1, . . . , H4

B, H1, . . . , H4

B, P1, P2, H3, H4

C6, B, H1, . . . , H4

B, P1, . . . , P3, H4

B, P1, . . . , P4

B, P1, H2, . . . , H4

B, P1, . . . , P4, P

B, P1, . . . , P4, H4

B, P1, . . . , P3, H3, H4

B, P1, P2, H2, . . . , H4

B, P1, H1, . . . , H4

M1, C1, B M6, C6, B

B, H1, . . . , H4

C1, B, H1, . . . , H4

C2, B, H1, . . . , H4

C3, B, H1, . . . , H4 C4, B, H1, . . . , H4

C5, B, H1, . . . , H4

Figure 4: Junction tree of the transformed Bayesian network from Figure 3.

h1, . . . , h4 of variables of the hidden code H1, . . . ,H4

get impossible, i.e. their probability is zero. We
could eliminate all combination of hidden code with
zero probability and just keep information about
non-zero combinations. This makes the junction tree
even smaller. Note that several nodes in the junction
tree in Figure 4 contains all variables H1, . . . ,H4.
The elimination of zero values means that instead of
all 64 lists of probabilities for all combinations of val-
ues of other variables in the node we keep only those
lists that corresponds to a non-zero combination of
H1, . . . ,H4 values.

Before we select the next most informative guess
the computation of Q(H1, . . . ,H4 | t, c′, p′) are done
for all combinations of t1, . . . , t4, c

′, p′. An open
question is whether we can find a combination of
t1, . . . , t4 minimizing the expected entropy more effi-
ciently than by evaluating all possible combinations
of t1, . . . , t4.

5 Conclusions

One advantage of the Bayesian network model is the
natural visualization of the problem. The user cre-
ates the model of the problem and all computations

are left to an automatic inference engine. However,
we have observed that, in case of probabilistic Mas-
termind, the inference using the standard methods is
not computationally feasible. It is necessary to ex-
ploit deterministic dependencies that are present in
the model. We have shown that after the transfor-
mation using an auxiliary variable we get a tractable
model.

Acknowledgements

The author was supported by the Grant Agency
of the Czech Republic through grant number
201/02/1269.

References

[1] J. L. Bernier, C. Ilia Herraiz, J. J. Merelo,
S. Olmeda, and A. Prieto. Solving mastermind
using GA’s and simulated annealing: a case of
dynamic constraint optimization. In Parallel
Problem Solving from Nature IV, number 1141
in Lecture Notes in Computer Science, pages
554–563. Springer Verlag, 1996.

[2] A. Bestavros and A. Belal. MasterMind a game
of diagnosis strategies. Bulletin of the Faculty of

Engineering, Alexandria University, December
1986.

[3] Hugin Researcher 6.3. http://www.hugin.com/,
2003.

[4] F. V. Jensen. Bayesian Networks and Decision
Graphs. Springer Verlag, New York, 2001.

[5] F.V. Jensen, K.G. Olesen, and S.A.Andersen.
An algebra of bayesian belief universes for
knowledge-based systems. Networks, 20:637–
659, 1990.

[6] D. E. Knuth. The computer as a Master
Mind. Journal of Recreational Mathematics,
9:1–6, 1976–77.

[7] K. Koyama and T. W. Lai. An optimal Master-
mind strategy. Journal of Recreational Mathe-
matics, 25:251–256, 1993.

[8] T. Nelson. A brief history of the master mind
board game. http://www.tnelson.demon.co.uk/

mastermind/history.html.

[9] P. Savicky and J. Vomlel. Factorized represen-
tation of functional dependence. (under review),
2004.

[10] P. Van Hentenryck. A constraint approach
to mastermind in logic programming. ACM
SIGART Newsletter, 103:31–35, January 1988.

