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Abstract. The topic of this chapter is conditional independence models. We review
mathematical objects that are used to generate conditional independence models in
the area of probabilistic reasoning. More specifically, we mention undirected graphs,
acyclic directed graphs, chain graphs, and an alternative algebraic approach that
uses certain integer-valued vectors, named imsets. We compare the expressive power
of these objects and discuss the problem of their uniqueness.

In learning Bayesian networks one meets the problem of non-unique graphical
description of the respective statistical model. One way to avoid this problem is to
use special chain graphs, named essential graphs. An alternative algebraic approach
uses certain imsets, named standard imsets, instead. We present algorithms that
make it possible to transform graphical representatives into algebraic ones and
conversely. The algorithms were implemented in the R language.

1 Conditional Independence Models

The main motivation for this chapter is conditional independence models (CI
models). The classical concept of independence of two variables has an inter-
pretation of their mutual irrelevance, which means that knowing more about
the state of the first variable does not have any impact on our knowledge
of the state of the second variable. Similarly, the concept of conditional in-
dependence of two variables given a third variable means, that if we know
the state of the third variable then knowing more about the state of the first
variable does not have any impact on our knowledge of the state of the second
variable. We will illustrate this concept using an example taken from Jensen
(2001).

Example 1 (CI model). Assume three variables:

• person’s length of hair, denoted by h,
• person’s stature, denoted by s, and
• person’s gender, denoted by g.

We can describe relations between these three variables as follows:

• Seeing the length of hair of a person will tell us more about his/her gender
and conversely. It means, the value of g is dependent on the value of h.
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• Knowing more about the gender will focus our belief on his/her stature.
It means that s is dependent on g and (through g) also on h.
• Nevertheless, if we know the gender of a person then length of hair of that

person gives us no extra clue on his/her stature, that is h is independent
of s given g.

Thus, we have indicated one (conditional) independence relation. Note that
all the observations are implicitly understood as symmetric claims. That is,
for example, the dependence between g and h is the same as the dependence
between h and g.

The conditional independence relations of the above-mentioned type can
formally be specified as conditional independence statements over a non-
empty finite set of variables N .

Definition 1 (Disjoint triplet over N). Let A,B,C ⊆ N be pairwise
disjoint subsets of a set of variables N . This disjoint triplet over N will be
denoted by 〈A,B | C〉. The symbol T (N) will be used to denote the class of
all possible disjoint triplets over N .

Definition 2 (CI statement). Let 〈A,B | C〉 be a disjoint triplet over N .
Then the statement “A is conditionally independent of B given C” is a CI
statement (over N), written as A⊥⊥B | C. The negation of this statement, the
respective conditional dependence statement, will be denoted by A6⊥⊥B | C.

If any of the sets A,B, or C will be a one-element set we will omit the curly
brackets and write a to denote {a}.

Example 2 (CI statement). In Example 1 we have indicated only one CI
statement, h⊥⊥s | g. On the other hand, we have indicated two dependence
statements, namely g 6⊥⊥h and s6⊥⊥g. These are viewed as conditional depen-
dence statements, namely g 6⊥⊥h | ∅ and s6⊥⊥g | ∅.

Using CI statements we can create a model of a real domain/system that
describes conditional independence relations between all variables in the mod-
eled domain.

Definition 3 (CI model). A CI model is a set of CI statements.

Example 3 (CI model). The situation in Example 1 can be modelled by a
CI model containing just one non-trivial CI statement h⊥⊥s | g. However,
one should also include trivial CI statements, which have the form A⊥⊥∅ | C,
where A,C ⊆ {s, h, g} are disjoint. They correspond to an intuitively evident
statement that there cannot be any dependency on an empty set of variables.
It is implicitly understood that the disjoint triplets that are not present in the
list of CI statements are interpreted as conditional dependence statements.
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One way to describe an independence model of a real system is to provide
the list of all valid CI statements. However, for large domains of interest this
list might be terribly long. This means, humans would hardly be able to to
create, maintain, or verify the correctness of a list of this kind.

The list of CI statements can be shortened if we take into consideration
certain properties of probabilistic CI models. The CI models that satisfy
five basic axioms listed below are called semi-graphoids (Pearl, 1988). These
axioms can be used as rules that generate from a certain set of CI statements
called the base all valid CI statements in the modeled system. Thus, instead
of storing the whole list of CI statements we just keep the CI statements in
the base.

Definition 4 (Semi-Graphoid Axioms). For each collection A,B, C, D ⊆
N of pairwise disjoint sets the following axioms are assumed:

A⊥⊥∅ | C,

A⊥⊥B | C =⇒ B⊥⊥A | C,

A⊥⊥B ∪D | C =⇒ A⊥⊥B | C,

A⊥⊥B ∪D | C =⇒ A⊥⊥B | C ∪D,

A⊥⊥B | C ∪D ∧ A⊥⊥D | C =⇒ A⊥⊥B ∪D | C.

Even if lists of CI statements are shortened so that they only contain CI
statements in a base they still might be hardly understandable by humans.
Therefore various auxiliary mathematical objects were proposed that can be
used to generate CI models.

In Section 2 we review some of these mathematical objects that are tra-
ditionally used in the area of probabilistic reasoning. More specifically, we
discuss undirected graphs, acyclic directed graphs, chain graphs, and an al-
ternative algebraic approach that uses certain integer-valued vectors, named
imsets. We compare their expressive power and discuss the problem of their
uniqueness. The discussion is a starting point for introducing imsets since
they meet two requirements:

• so-called standard imsets can represent each CI model generated by a
discrete probability distribution, and
• imsets from a special class of standard imsets are unique representatives

of CI models generated by acyclic directed graphs.

These properties play an important role in learning CI models.
In Section 3 we introduce two representatives of an equivalence class of

acyclic directed graphs – essential graphs and standard imsets. The core of
this chapter is the transition between these two representatives of Bayesian
network models. Therefore, in Section 4, we explain in detail why an algo-
rithm for this transition is desired in the area of learning Bayesian networks.
Then, in Section 5, certain graphical characteristics of chain graphs are intro-
duced that play a crucial role in the reconstruction of the essential graph on
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basis of the standard imset. In Section 6 we formulate lemmas on which the
reconstruction algorithm is based and the algorithm is given in Section 7. In
Section 8 we discuss the relation to hierarchical junction trees, which provide
a third method for representing a Bayesian network model. We implemented
all mentioned algorithms in the R language developed by R Development
Core Team (2004). In Conclusions we discuss future perspectives.

2 Objects generating conditional independence models

The main motivation for using mathematical objects to generate CI models
is that they often have much more compact form when compared with a list
of CI statements. They are also better readable by humans. By a CI object
over N we will understand a mathematical object defined over a finite set (of
variables) N that can be used to generate a CI model.

In this section we review the most popular classes of CI objects: discrete
probability distributions, undirected graphs, acyclic directed graphs, chain
graphs, and imsets. We will describe how they generate CI models and com-
pare their expressive power with respect to the collection of all CI models
generated by discrete probability distributions. All CI models discussed in
this section are semi-graphoids.

2.1 Probability distributions

Every discrete probability distribution (PD) defined over variables from N
can be used to induce a CI model over N . In Definition 5 the concept of
conditional independence for discrete PDs is recalled.

Definition 5 (CI in PDs). Let P be a discrete PD over N . Given any
A ⊆ N , let vA denote a configuration of values of variables from A and for
B ⊆ N \A let P (vA | vB) denote the conditional probability for A = vA given
B = vB . Given 〈A,B | C〉 ∈ T (N), the CI statement A⊥⊥B | C is induced by
probability distribution P over N if for all vA, vB , vC such that P (vC) > 0

P (vA, vB | vC) = P (vA | vC) · P (vB | vC) . (1)

Example 4. Assume that h, s, g are variables from Example 1. For simplicity,
further assume that they are all discrete and binary:

• h taking states short and long,
• s taking states more than 164 cm and less than 164 cm, and
• g taking states male and female.

Let A = {h}, B = {s}, and C = {g}. If a probability distribution P (A,B, C)
satisfies equation (1) for all respective configuration of values (vA, vB , vC)
from

{short, long} × {more than 164 cm, less than 164 cm} × {male, female}
then A⊥⊥B | C (which is h⊥⊥s | g) is a CI statement induced by P .
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2.2 Undirected graphs

Probabilistic graphical models modelled by undirected graphs are also known
as Markov networks (Pearl, 1988).

Definition 6 (UG). An undirected graph (UG) over N is a pair (N, E),
where N is a set of nodes and E a set of undirected edges, i.e., a set of
unordered pairs a! b where a, b ∈ N and a 6= b.

Definition 7 (Undirected path). An undirected path between nodes a and
b in an UG G = (N, E) is a sequence a ≡ c1, . . . , cn ≡ b, n ≥ 2 of nodes such
that c1, . . . , cn are distinct and ci ! ci+1 ∈ E for i = 1, . . . , n− 1.

Definition 8 (Separation criterion for UGs). A⊥⊥B | C is represented
in an UG G if every path in G between a node in A and a node in B contains
a node from C.

Example 5. The UG in Figure 1 represents the CI statement h⊥⊥s | g.

s

g

h

Fig. 1. The UG generating h⊥⊥s | g

Definition 9 (Clique). A set of nodes K ⊆ N of an UG G = (N, E) is
complete if a ! b ∈ E for all a, b ∈ K, a 6= b. A maximal complete set of G
with respect to set inclusion is called a clique.

An important concept is that of a decomposable (undirected) graph. There
are several equivalent definitions of a decomposable graph (see § 2.1.2 of Lau-
ritzen (1996)), one of them is the following.

Definition 10 (Decomposable graph). An undirected graph G = (N, E)
is decomposable if its cliques can be ordered into a sequence K1, . . . ,Km,
m ≥ 1 satisfying the running intersection property (cf. Proposition 2.17(ii)
in (Lauritzen, 1996)):

∀ i ≥ 2 ∃ k < i Si ≡ Ki ∩ (
⋃
j<i

Kj) ⊆ Kk . (2)
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It is a well-known fact that the collection of sets Si, 2 ≤ i ≤ m does not
depend on the choice of an ordering satisfying (2) – see Lemma 7.2 in Stu-
dený (2005b). We will call these sets separators of the graph. Moreover, the
multiplicity ν(S) of a separator S, that is, the number of indices i for which
S = Si also does not depend on the choice of an ordering satisfying (2). Note
that the definition implies that the class of cliques is disjoint with the class
of separators.

Example 6. The UG in Figure 1 has two cliques C1 = {h, g} and C2 = {g, s}.
It is decomposable and it has one separator S = {g}.

2.3 Acyclic directed graphs

Acyclic directed graphs are a very popular class of CI objects in the area of
probabilistic reasoning. They constitute the structural part of probabilistic
models known as Bayesian network models (Pearl, 1988).

Definition 11 (Directed graph). A directed graph is a pair (N,F), where
N is the set of nodes and F is a set of directed edges, i.e., a set of ordered
pairs a→ b where a, b ∈ N and a 6= b such that if a→ b ∈ F then b→ a 6∈ F .

Definition 12 (Directed path). A directed path between nodes a and b in
a directed graph G = (N,F) is a sequence a ≡ c1, . . . , cn ≡ b, n ≥ 2 such
that c1, . . . , cn are distinct and for i = 1, . . . , n− 1: ci → ci+1 ∈ F .

Definition 13 (Directed cycle). A directed cycle in a graph G = (N,F)
is a sequence c1, . . . , cn, cn+1 ≡ c1, n ≥ 3 of nodes in G such that c1, . . . , cn

are distinct and for i = 1, . . . , n− 1: ci → ci+1 ∈ F .

Definition 14 (DAG). An acyclic directed graph (DAG) is a directed graph
that has no directed cycle.

Remark 1. Researchers in the area of artificial intelligence became accus-
tomed to the abbreviation DAG. It is based on the phrase directed acyclic
graph, which is, however, imprecise from the grammatical point of view.

Definition 15 (Underlying graph of a DAG). Underlying graph of a
DAG G = (N,F) is undirected graph G′ = (N, E), where

E = {a! b : a→ b ∈ F ∨ a→ b ∈ F} .

Definition 16 (Set of parents in a DAG). Let G = (N,F) be a DAG.
The set of parents of a node b ∈ N is the set {a ∈ N : a → b ∈ F}, denoted
by paG(b).

To introduce so-called moralization criterion for reading CI statements
from a DAG we will use graphical concepts of ancestral set and moral graph.
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Definition 17 (Ancestral set in a DAG). Let G = (N,F) be a DAG.
Node a is an ancestor of node b in G if there exists a directed path from a to
b. Given B ⊆ N , the set of ancestors of nodes in a set of nodes B is called
the (least) ancestral set for B. It will be denoted anG(B).

Definition 18 (Induced subgraph for a DAG). Assume a DAG G =
(N,F) and ∅ 6= M ⊆ N . The induced subgraph of G for M is graph GM =
(M,FM ), where FM = {a→ b ∈ F : a ∈M, b ∈M}.

Note that every induced subgraph of a DAG is again a DAG.

Definition 19 (Moralization for DAGs). The moral graph of a DAG
G = (N,F) is graph Gmor, which is an undirected graph (N, E), where

E = {a! b : (a→ b ∈ F) ∨ (b→ a ∈ F) ∨
(∃c ∈ N \ {a, b} : a→ c, b→ c ∈ F)}

Now, we can formulate the moralization criterion. To check whether a CI
statement is represented in a DAG, we first create an ancestral graph, moral-
ize it, and finally check the validity of the CI statement using the separation
criterion for UGs as defined in Definition 8.

Definition 20 (Moralization criterion for DAGs). A⊥⊥B | C is repre-
sented in a DAG G if A⊥⊥B | C is represented in the moral graph of induced
graph GanG(A∪B∪C).

Example 7. In Figure 2 three DAGs generating the CI statement h⊥⊥s | g
are shown. They all have the same moral graph, which is in Figure 1. Note
that there are three different DAGs that generate the same CI model.

g

ss h

g

sh h

g

Fig. 2. Three DAGs generating h⊥⊥s | g

2.4 Chain graphs

Chain graphs (Lauritzen and Wermuth, 1989) are a common generalization
of both UGs and DAGs. They form a special subclass of graphs that contain
both directed and undirected edges, so called hybrid graphs.
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Definition 21 (Hybrid graph). A hybrid graph is a triplet (N, E ,F), where
N is the set of nodes, E is a set of undirected edges, i.e., a set of unordered
pairs a! b where a, b ∈ N and a 6= b and F is a set of directed edges, i.e., a
set of ordered pairs a→ b where a, b ∈ N and a 6= b. Moreover, it is required
that if a→ b ∈ F then b→ a 6∈ F and a! b 6∈ E .

Definition 22 (Semi-directed cycle). A semi-directed cycle in a hybrid
graph H is a sequence c1, . . . , cn, cn+1 ≡ c1, n ≥ 3 of nodes in G such that
c1, . . . , cn are distinct, c1 → c2 ∈ F , and either ci → ci+1 ∈ F or ci ! ci+1 ∈
E for i = 2, . . . , n.

Definition 23 (Chain graph). A chain graph (CG) is a hybrid graph that
has no semi-directed cycle.

Example 8. In Figure 3 we give an example of a chain graph.

f

c

g

a

e

d

b

Fig. 3. A chain graph

The following definitions generalize definitions of undirected and directed
paths.

Definition 24 (Path). Path in a hybrid graph H = (N, E ,F) between
nodes a and b is a sequence a ≡ c1, . . . , cn ≡ b, n > 1 such that c1, . . . , cn are
distinct and for i = 1, . . . , n− 1 one of the following three conditions holds:

(1) ci ! ci+1 ∈ E ,
(2) ci → ci+1 ∈ F , or
(3) ci+1 → ci ∈ F .

If for i = 1, . . . , n− 1 either the condition (1) or (2) holds the path is called
descending.

Example 9. An example of a descending path in the chain graph in Figure 3
is the path a→ b! c→ d.

Next, we generalize the concepts of set of parents and ancestral set for
CGs.
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Definition 25 (Set of parents in a CG). Let H = (N, E ,F) be a CG.
The set of parents of nodes in a set B is the set {a ∈ N : a→ b ∈ F , b ∈ B}.
It will be denoted paH(B).

Definition 26 (Ancestral set in a CG). Let H = (N, E ,F) be a CG.
Node a is an ancestor of node b in H if there exists a descending path from
a to b. The set of ancestors of nodes in a set of nodes B is called the (least)
ancestral set for B. It will be denoted anH(B).

Example 10. Let H be the chain graph from Figure 3. For example, the set
of parents of {d} is {c}, the ancestral set of {d} is {a, b, c, e, f}. The ancestral
set of {d, g} is the set of all nodes N .

Next, we generalize special concepts from DAGs to CGs.

Definition 27 (Induced subgraph for a CG). Let H = (N, E ,F) be a
CG and ∅ 6= M ⊆ N . The induced subgraph of H for M is graph HM =
(M, EM ,FM ), where EM = {a ! b ∈ E : a, b ∈ M} and FM = {a → b ∈ F :
a, b ∈M}.

Note that every induced subgraph of a CG is a CG.

Definition 28 (Components). A set of nodes C ⊆ N is connected in a CG
H = (N, E ,F) if for all a, b ∈ C there exists a path in the undirected graph
G = (N, E). Maximal connected subsets of N with respect to set inclusion
are called components in H. The class of all components in H will be denoted
C(H).

Remark 2. Observe that every induced subgraph of a CG H for a component
C ∈ C(H) is an UG. Given a C ∈ C(H), paH(C) is disjoint with C. Compo-
nents in a CG H = (N, E ,F) form a partition of N . Components in a DAG
are singletons.

Example 11. The chain graph H from Figure 3 has five components. Thus,
C(H) = { {a}, {f}, {b, c, e}, {d}, {g} }.

Definition 29 (Moralization). The moral graph of a hybrid graph H =
(N, E ,F) is graph Hmor, which is the undirected graph (N, E), where

E = {a! b : (a→ b ∈ F) ∨ (b→ a ∈ F) ∨
(a! b ∈ E) ∨ (∃C ∈ C(H) : a 6= b, {a, b} ⊆ paH(C))}

Example 12. In Figure 4 we give the moral graph of the graph from Figure 3.

Now, we are ready to introduce the moralization criterion for reading CI
statements represented in a CG. To check a CI statement, we first create an
ancestral graph, moralize it, and finally check the CI statement using the
separation criterion for UGs as defined in Definition 8.
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a

b

f

d

c

g

e

Fig. 4. The moral graph of the chain graph from Figure 3

Definition 30 (Moralization criterion for CGs).
CI statement A⊥⊥B | C is represented in a CG H if A⊥⊥B | C is represented
in the moral graph of induced graph HanH(A∪B∪C).

Remark 3. Note that CGs are generalization of DAGs and UGs because the
moralization criterion for CGs generalizes the separation criterion for UGs
and the moralization criterion for DAGs.

Example 13. In order to verify whether the CI statement a⊥⊥d | {b, e, g} is
represented in the chain graph H in Figure 3 we check this CI statement using
the separation criterion in the moral graph G of the ancestral graph for the
set {a, b, d, e, g}, which is apparently the undirected graph in Figure 4. Since
there exist a path from a to d that does not contain a node from {b, e, g}

a! f ! c! d

the CI statement is not represented in the undirected graph G and, conse-
quently, it is not represented in the CG H.

2.5 Imsets

An imset (Studený, 2005b) is an algebraic object that can be used to describe
a CI model.

Definition 31 (Imset). Let N be a finite set, P(N) = {A : A ⊆ N}
the power set of N , and Z the set of all integers. An imset u is a function
u : P(N) 7→ Z.

Remark 4. Let N be the set of all natural numbers. Sometimes, function
m : P(N) 7→ N is called multiset. The word imset is an abbreviation for
Integer valued MultiSET.

Zero function on the power set of N will be denoted by 0. Note that every
imset can be interpreted as a vector, whose components are integers indexed
by subsets of N .
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Example 14. Let N = {h, g, s}. An example of an imset over N is
B u(B)
∅ 0
{h} 0
{g} +1
{s} 0
{h, g} −1
{g, s} −1
{h, s} 0
{h, g, s} +1

We will specify imsets using a special convention. Let us use Kronecker’s
symbol δ to denote an indicator function defined for A,B ⊆ N as follows:

δA(B) =
{

1 if A = B,
0 otherwise.

Then, given an imset u, one has

∀B ⊆ N : u(B) =
∑

A⊆N

u(A) · δA(B)

which can be abbreviated as

u =
∑

A⊆N

cA · δA

where cA = u(A) ∈ Z is a the respective coefficient for every A ⊆ N .

Example 15. Using the convention we will write the imset from Example 14
as follows:

u = δ{g} − δ{h,g} − δ{g,s} + δ{h,g,s}

Definition 32 (Elementary imset). Let K ⊆ N , a, b ∈ N \K, and a 6= b.
The elementary imset corresponding to 〈a, b | K〉 is given by the formula

u〈a,b|K〉 = δ{a,b}∪K + δK − δ{a}∪K − δ{b}∪K .

The symbol E(N) will denote the set of all elementary imsets over N .

Definition 33 (Structural imset). An imset u is structural iff

n · u =
∑

v∈E(N)

kv · v ,

where n ∈ N and v ∈ E(N) : kv ∈ N ∪ {0}.
As an analogy to graphical criteria in the case of UGs, DAGs, and CGs,

we need a criterion that specifies how imsets generate CI models. This time
we have an algebraic criterion.

Definition 34. CI statement A⊥⊥B | C is represented in a structural imset
u over N if there exists k ∈ N such that k · u = u〈A,B|C〉 + w, where w is a
structural imset.
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2.6 Comparison of CI objects

The CI objects discussed above are often used to represent CI models induced
by probability distributions. Thus, we may compare how well they can play
this role. Let

• M(P ) be a CI model generated by a discrete probability distribution P
over N ,
• M denote the class of all CI models generated by discrete probability

distributions over N ,
• O denote a considered class of CI objects (e.g., UGs, DAGs, CGs, struc-

tural imsets).

Definition 35 (Perfectly Markovian). A probability distribution P is
perfectly Markovian with respect to an object O ∈ O if for every disjoint
triplet 〈A,B | C〉 ∈ T (N)

A⊥⊥B | C is represented in P ⇐⇒ A⊥⊥B | C is represented in O .

In other words, perfect Markovness means that P and O generate the
same CI model. Now, we can raise three basic questions about the relation
between a class O of CI objects and the class M of CI models generated by
discrete probability distributions.

Definition 36 (Faithfulness). A class of CI objects O is faithfull if for
every CI object O ∈ O there exists a CI model M(P ) from M such that P
is perfectly Markovian with respect to O.

Definition 37 (Completeness). A class of CI objects O is complete if for
every CI model M(P ) from M there exists a CI object O ∈ O such that P
is perfectly Markovian with respect to O.

Definition 38 (Uniqueness). A class of CI objects O satisfies the unique-
ness property if for every CI model M(P ) from M at most one CI object
O ∈ O exists such that P is perfectly Markovian with respect to O.

Table 1 compares properties of different classes of CI objects. In contrary
to graphical probabilistic models (UGs, DAGs, and CGs) the class of struc-
tural imsets is complete, that is, it can describe all CI models generated by
discrete PDs.

Table 2 shows the numbers of different CI models that can be generated
by different classes of CI objects. We can see that, already for N having only
four elements, only a small fraction of CI models generated by discrete PDs
over N can be represented by DAGs, UGs, and CGs. Structural imsets are
complete, which means that they can represent all CI models from M.
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Table 1. Properties of classes of CI objects

Faithfulness Completeness Uniqueness

UGs yes no yes
DAGs yes no no
CGs yes no no
structural imsets no yes no

Table 2. Comparison of the number of CI models generated by different classes of
CI objects for |N | = 3, 4, 5. The number of CI models generated by discrete PDs is
not known for |N | ≥ 5.

|N | UGs DAGs CGs |M|
3 8 11 11 22
4 64 185 200 18300
5 1024 8782 11519 ?

3 Representatives of equivalence classes of DAGs

We have already mentioned that several different DAGs may generate the
same CI-model, that is, DAGs do not satisfy the uniqueness property. This
unpleasant fact may cause some problems in learning Bayesian networks (see
Section 4) and motivates the need for a uniquely determined representative of
the respective CI model. In this section we present two unique representatives
of an equivalence class of DAGs that generate the same CI model. First, we
define the essential graph and note how it can be constructed from a DAG.
Second, we introduce a uniquely determined algebraic representative of an
equivalence class of DAGs – the standard imset.

Definition 39 (Independence equivalence). Two CI-objects are called
independence equivalent if they define the same CI-model. We will briefly say
that they are equivalent.

Verma and Pearl (1991) gave a direct graphical characterization of equiv-
alent DAGs. It uses the following concept.

Definition 40 (Immorality). An immorality in a DAG G = (N,F) is an
induced subgraph of G for a set {a, b, c} ⊆ N such that a → c, b → c ∈ F
and a← b, a→ b 6∈ F .

Lemma 1. (Verma and Pearl, 1991)
Two acyclic directed graphs are equivalent iff they have the same underlying
graph and immoralities.
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3.1 Essential graphs

Definition 41 (Essential graph). The essential graph (EG) G∗ of an equiv-
alence class G of DAGs over N is a hybrid graph over N defined as follows:

• a→ b in G∗ if a→ b in G for every G ∈ G,
• a! b in G∗ if ∃G1, G2 ∈ G such that a→ b in G1 and a← b in G2.

We say that a hybrid graph H over N is an EG over N if there exists an
equivalence class G of DAGs over N such that H = G∗.

Of course, this definition is in terms of the whole equivalence class of
DAGs. Nevertheless, there exists an algorithm for getting the EG on basis
of any G ∈ G – see Studený (2004). A graphical characterization of EGs
was presented by Andersson et al. (1997a). To recall it we need the following
notion.

Definition 42 (Flag). A flag in a CG H = (N, E ,F) is an induced subgraph
of H for a set {a, b, c} ⊆ N such that a→ b ∈ F , b! c ∈ E , and a← c, a→
c 6∈ F , a! c 6∈ E .

Example 16. The chain graph in Figure 3 has two flags, a → b ! c and
f → e! c.

Lemma 2. (Andersson et al., 1997a, Theorem 4.1)
A hybrid graph H = (N, E ,F) is an EG iff it is a CG without flags such that,
for every component C ∈ C(H), the induced subgraph HC is decomposable
and, for every a→ b ∈ F , at least one of the following conditions holds:

• ∃c ∈ N : (c→ a ∈ F) ∧ (c→ b 6∈ F),
• ∃c ∈ N : (c→ b ∈ F) ∧ (c! a 6∈ E) ∧ (c→ a 6∈ F),
• ∃c1, c2 ∈ N : (c1 → b, c2 → b ∈ F) ∧ (c1 ! a, c2 ! a ∈ E) ∧

(c1 → c2, c2 → c1 6∈ F) ∧ (c1 ! c2 6∈ E)

Example 17. An example of an EG is given in Figure 5.

ea

b

fdc

g

Fig. 5. Example of an EG.

Another useful result is a characterization of CGs equivalent to DAGs,
which uses the following concept.



Representatives of CI models 15

Definition 43 (Closure graph). If C is a component in a CG H then by
the closure graph for C we will understand the moral graph of the induced
subgraph for the set D = C ∪ paH(C). It will be denoted by H̄(C).

Lemma 3. (Andersson et al., 1997b, Proposition 4.2)
A chain graph H is equivalent to a DAG iff, for every component C of H,
the closure graph H̄(C) is decomposable. In particular, the induced subgraph
HC is decomposable for any C ∈ C(H).

3.2 Standard imsets

Another uniquely determined representative of an equivalence class of DAGs
is the standard imset (Studený, 2005b).

Definition 44 (Standard imset). Given a DAG G = (N,F), the standard
imset for G is given by the formula

uG = δN − δ∅ +
∑
a∈N

{
δpaG(a) − δ{a}∪paG(a)

}
. (3)

Note that some terms in the formula (3) can cancel each other and some
terms can be merged together. The basic observation is as follows.

Lemma 4. (Studený, 2005b, Corollary 7.1)
Two DAGs G and H are independence equivalent iff uG = uH .

Thus, standard imsets can serve as unique representatives of the respective
CI model. Another pleasant fact is that standard imsets, viewed as vectors,
have many zero components. Therefore, they can effectively be kept in the
memory of a computer.

Now, we give a formula for the standard imset on basis of any chain graph
H over N which is equivalent to a DAG. It is based on Lemma 3. Let K̄(C)
denote the collection of cliques of H̄(C) and S̄(C) the collection of separators
in H̄(C). Further, let ν̄C(S) denote the multiplicity of a separator S in H̄(C).

The standard imset for H is given by the following formula:

uH = δN − δ∅ +
∑

C∈C(H)

{δpaH(C) −
∑

K̄∈K̄(C)

δK̄ +
∑

S̄∈S̄(C)

ν̄C(S̄) · δS̄}. (4)

The point is that the formula (4) gives the same result for equivalent chain
graphs.

Lemma 5. (Studený et al., 2005, Proposition 20)
Let G and H are equivalent chain graphs such that there exists a DAG equiv-
alent to them. Then uG = uH .
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Of course, if H = G is a DAG, then (4) gives the same result as (3). On
the other hand, since the EG G∗ of an equivalence class of DAGs G is a CG
equivalent to any G ∈ G, we can conclude this:

Corollary 1. Let G be a DAG and H the EG of the respective equivalence
class. Then the formula (4) gives the standard imset for G.

Example 18. In Table 3 we give the standard imset for the EG from Figure 5.

B u(B)

{a, b, c, d, e, f, g} +1
∅ +1
{a, b} +2
{d, f} +1
{a, b, c} −1
{a, b, d} −1
{d, f, g} −1
{b} −1
{a, e} −1
{e, f} −1
{e} +1

Table 3. The standard imset for the EG from Figure 5. The values for remaining
subsets of N are zero.

4 Learning Bayesian networks

Specific motivation for the transition between EGs and standard imsets is
learning Bayesian networks. A Bayesian network model has two components:

• structure, determined by a DAG, whose nodes correspond to variables,
• parameters, namely the numbers in the collection of conditional proba-

bility tables, which correspond to the DAG.

We are interested in learning structure of a Bayesian network from data.
Actually, our aim is to determine the respective statistical model, that is, the
class of probability distributions with prescribed structure.

4.1 Quality criterion

The basic division of methods for learning Bayesian networks is as follows:

• methods based on statistical conditional independence tests.
• methods based on the maximization of a quality criterion.
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In this chapter, we are interested in maximization of a quality criterion

Q : DAGS (N)× DATA (N, d) −→ R

where DAGS (N) is the class of DAGs over N and DATA (N, d) is the col-
lection of databases over N of the length d ≥ 1. In this context, the graph
“represents” the respective statistical model. Because the direct maximiza-
tion of a quality criterion is typically infeasible, the researchers in artificial
intelligence developed various methods of local search, see Chickering (2002).

The basic idea of these methods is to introduce the concept of neighbour-
hood for representatives of considered CI models (= graphs) and search for
a local maximum of the criterion with respect to the neighbourhood struc-
ture. Typically, the change in the value of a (common reasonable) quality
criterion is easy to compute. Natural neighbourhood concept from a math-
ematical point of view is so-called inclusion neighbourhood, see Kočka and
Castelo (2001).

4.2 Problem of representative choice

This topic is related to the question of internal computer representation of a
Bayesian network model. There are two approaches:

• to use any DAG in the respective equivalence class (which need not be
unique),
• to use a suitable uniquely determined representative.

We prefer using a unique representative. This is because we believe that non-
uniqueness may lead to computational inefficiencies. Another reason is that
using a unique representative is more elegant from a mathematical point of
view. Two possible unique representatives, namely the EG and the standard
imset, were already mentioned in Section 3.

A natural question is whether one can “translate” one to the other. Our
special motivation is as follows. The inclusion neighbourhood of a given
Bayesian network model is already characterized in terms of the EG – see
Studený (2005a). We would like to have its characterization in terms of the
standard imset. Below we explain why we consider standard imsets particu-
larly suitable for this purpose.

4.3 Algebraic approach

The basic idea of an algebraic approach (to learning Bayesian networks) is to
use the standard imset as a unique representative of the respective statistical
model – se § 8.4 in (Studený 2005). The advantage of this approach is that
every imset can be interpreted as a vector and (reasonable) quality criteria
appear to be affine (= shifted linear) functions of the standard imset.
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More specifically, every criterion Q(G, D) depending on a DAG G and a
database D, which is score-equivalent and decomposable Studený (2005b),
has the form

Q(G, D) = sQD +
∑
S⊆N

tQD(S) · uG(S),

where sQD is a constant depending on data and [tQD(S)]S⊆N is so-called data
vector (relative to a criterion Q).

Example 19. In the case of a well-known Bayesian information criterion (=
BIC) one has the following formula for the respective data vector:

tBIC
D (S) = d ·H(P̂S |

∏
i∈S

P̂i)−
1
2
· ln d · { |S| − 1 +

∏
i∈S

r(i)−
∑
i∈S

r(i) } ,

where ∅ 6= S ⊆ N , d is the length of the database D, H(∗|∗) denotes the
relative entropy, P̂S is the marginal of the empirical measure (based on D)
for S and r(i) = |Xi|, i ∈ S are the cardinalities of the respective individual
sample spaces. Moreover, one has tBIC

D (∅) = 0.

Another pleasant fact is that, in the method of local search, the move
between two neighbouring model in the sense of inclusion neighbourhood is
characterized by a simple elementary imset, which is the difference of respec-
tive standard imsets. Therefore, the move can be interpreted in terms of a
CI statement a ⊥⊥ b |C. In particular, the respective change in the value of
Q takes a neat form of the scalar product of two vectors:

〈tQD, u〈a,b|C〉〉 =
∑
S⊆N

tQD(S) · u〈a,b|C〉(S) .

5 Graphical characteristics of chain graphs

The formula (4) can be simplified for chain graphs without flags. In this
section, we introduce some characteristics of these graphs that will be used
in a simplified formula given in Section 6. The proofs of claims from Sec-
tions 5.1 and 5.2 can be found in Studený et al. (2005).

5.1 Initial components

Definition 45 (Initial component). A component C ∈ C(H) in a CG H
such that paH(C) = ∅ will be called an initial component in H. Let us denote
by i(H) the number of initial components in H.

Note that i(H) ≥ 1 and this number appears to be the same for equivalent
CGs.

Example 20. The chain graph H in Figure 5 has two initial components: {b}
and {a, e, f}. Thus, i(H) = 2.
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5.2 Core

Definition 46 (Idle set). We will say that a set B of nodes in a CG H =
(N, E ,F) is idle if the following two conditions hold:

• ∀ b1, b2 ∈ B, b1 6= b2, (b1 → b2 ∈ F) ∨ (b2 → b1 ∈ F) ∨ (b1 ! b2 ∈ E)
• ∀ a ∈ N \B, ∀ b ∈ B, a→ b in H.

The meaning of these conditions is that no non-trivial CI statement rep-
resented in H involves variables in B. The second condition implies that
∀C ∈ C if C ∩ B 6= ∅ then C ⊆ B. Therefore, every idle set is the union
of some components. One can easily show that every CG H over N has a
unique maximal idle set of nodes, possibly empty. This set can be shown to
be the same for equivalent chain graphs.

Definition 47 (Core, core-components). The complement N \B of the
maximal idle set B will be called the core of H and denoted by core(H). The
class of core-components, that is, components in H contained in the core, will
be denoted by Ccore(H).

Observe that if the core is non-empty then every initial component is a
core-component.

5.3 Cliques and separators

If H is a CG without flags equivalent to a DAG then every its core-component
C induces a decomposable graph HC by Lemma 3. Let us denote by K(C)
the class of its cliques, by S(C) the collection of its separators, and by νC(S)
the multiplicity of S ∈ S(C) in HC . Note that, the fact that C is connected
implies that every S ∈ S(C) is a non-empty proper subset of Ccore(H).

Example 21. The chain graph H in Figure 5 has an empty maximal idle
set, i.e., the core is core(H) = N . Its core-components are C1 = {a, e, f},
C2 = {b}, C3 = {c}, C4 = {d} and C5 = {g}. All components except
for C1 have only one clique and no separator. The set of cliques of HC1 is
K(C1) = {{a, e}, {e, f}} and the set of its separators is S(C1) = {{e}}.

5.4 Parent sets

Definition 48 (Parent sets). A set P ⊆ N will be called a parent set in
a CG H if it is non-empty and there exists a core-component C ∈ Ccore(H)
with P = paH(C). The multiplicity τ(P ) of a parent set P is the number of
C ∈ Ccore(H) with P = paH(C). Let us denote the collection of parent sets
in H by Pcore(H).

Evidently, every P ∈ Pcore(H) is a proper subset of Ccore(H).

Example 22. The parent sets in the chain graph H in Figure 5 are {a, b} and
{d, f}. The multiplicities are τ({a, b}) = 2 and τ({d, f}) = 1.
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6 Simplified formula for imset of essential graph

For CGs without flags the formula (4) can be simplified as follows.

Lemma 6. (Studený and Vomlel, 2005, Lemma 5.1).
Let H be a CG without flags equivalent to a DAG with Ccore(H) 6= ∅. Then
the standard imset for H is given by

uH = δcore(H) −
∑

C∈Ccore(H)

∑
K∈K(C)

δK∪paH(C)

+
∑

S∈S(C)

νC(S) · δS∪paH(C) +
∑

P∈Pcore(H)

τ(P ) · δP + {i(H)− 1} · δ∅ .

The point is that, in the case of a non-trivial EG H, none of the terms in
the above formula cancel each other.

Lemma 7. (Studený and Vomlel, 2005, Lemma 5.2).
Let H be the EG of an equivalence class of DAGs over N such that uH 6= 0.
Then, for every L ⊆ N , exclusively one of the following six cases occurs:

(a) L = core(H) and uH(L) = +1,
(b) L = K ∪ paH(C) for K ∈ K(C), C ∈ Ccore(H) and uH(L) = −1,
(c) L = S ∪ paH(C) for S ∈ S(C), C ∈ Ccore(H) and uH(L) = νC(S) > 0,
(d) L = P for P ∈ Pcore(H) and uH(L) = τ(P ) > 0,
(e) L = ∅ and uH(L) = i(H)− 1 ≥ 0,
(f) none of the above cases occurs and uH(L) = 0.

Lemma 7 implies that, given an EG H, the class of sets

KH ≡ {K ∪ paH(C);K ∈ K(C), C ∈ Ccore(H)}

and the class of sets

Pcore(H) ∪ SH , where SH ≡ {S ∪ paH(C);S ∈ S(C), C ∈ Ccore(H)},

can be determined on basis of uH . Therefore, it follows from Lemma 7 that,
given a non-zero standard imset, one can simply determine the core of the
EG H, the number of its initial components, the collections of sets KH , and
Pcore(H) ∪ SH .

7 Reconstruction algorithm

Lemma 7 is a basis of a two-stage reconstruction algorithm for the EG from
the standard imset; the proof of its correctness is quite long – see (Studený,
Vomlel 2005).

The first stage of the algorithm is a decomposition procedure, whose output
is an ordered sequence τ of subsets of the set of variables N . The procedure,
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Table 4. Subroutine Adapt (u over N |M, w over M).

Input: u . . . a standard imset over a non-empty set of variables N
Output: M . . . a subset of N

w . . . an adapted standard imset over M

1 find a maximal set M ⊆ N with respect to inclusion with u(M) 6= 0;
2 w := the restriction of u to the class of subsets of M ;
3 return M, w;

described in Table 6, consists of repeated application of two subroutines until
one gets a zero imset. The first subroutine is an adaptation subroutine for (a
standard imset) u which is applied if u(N) = 0 – see Table 4.

The basic idea of the second subroutine, which is described in Table 5,
is to reduce the set of variables N . Thus, the original imset u over N is
“decomposed” into an imset w over a proper subset M ⊂ N and a certain set
of nodes T with M ∪T = N . Note the set T chosen in line 4 of Table 5 plays
crucial role in the reconstruction phase and one can prove that is a clique
T = K ∪ paH(C), K ∈ K(C) of the closure graph for a component C ∈ C(H)
that is a leaf-clique of a junction tree for cliques of H̄(C) – for details see
(Studený and Vomlel, 2005, Section 7). The reduced imset w is obtained from
the original imset u by subtracting a structural imset that corresponds to a
CI statement (M \T )⊥⊥(T \M) | (T ∩M) and by restricting to M – see lines
7-8 of Table 5.

Table 5. Subroutine Reduce (u over N |T, M, w over M).

Input: u . . . an adapted standard imset over a non-empty set of variables N
Output: T . . . a proper subset of the set of variables N

M . . . a proper subset of N such that M ∪ T = N and T \M 6= ∅
w . . . a standard imset over M

1 T := {L ⊆ N ; u(L) < 0};
2 L := {L ⊂ N ; u(L) > 0, L 6= ∅};
3 W :=

⋃
L;

4 find T ∈ T such that T \W 6= ∅ and T ∩W ∈ L ∪ {∅};
5 R := T \W ;
6 M := N \R;
7 w̃ := u− δN + δM + δT − δT\R;
8 w := the restriction of w̃ to the class of subsets of M ;
9 return T, M, w;

The decomposition procedure is illustrated by Example 23.
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Table 6. The first stage Decompose (u over N | τ over N).

Input: u . . . a standard imset over a non-empty set of variables N
Output: τ . . . an ordered sequence of subsets of N

1 Y := N ;
2 τ := empty list;
3 if u = 0 then
4 append Y as the last item in τ ;
5 return τ ;
6 if u 6= 0 = u(Y ) then
7 Adapt (u over Y |M, w over M);
8 append Y as the last item in τ ;
9 go to 14;
10 if u(Y ) 6= 0 then
11 Reduce (u over Y |T, M, w over M);
12 append T as the last item in τ ;
13 go to 14;
14 Y := M ;
15 u := w;
16 go to 3;
17 exit;

Example 23. The ordered sequence of subsets that is the outcome of the first
stage for the imset given in Table 3 is

{a, b, c}, {d, f, g}, {a, b, d}, {a, e}, {b}, {e, f} . (5)

Note that, in this case, only the subroutine Reduce was applied.

The basis of the dual procedure is the extension subroutine, described in
Table 7. It constructs the EG H over N on basis of its induced subgraph
G for M ⊂ N and a set T ⊆ N with M ∪ T = N . Of course, the set is
assumed to have above-mentioned special form T = K∪paH(C). The crucial
step to fully reconstruct H on basis of G and T is to decide which of two
following cases occurs: either T ∩M = paH(C) or T ∩M = Z∪paH(C), where
Z ∈ S(C). The condition in line 6 of Table 7 is a necessary and sufficient
condition for the second case.

Now, the second stage of the algorithm, the composition procedure, which
consists of repeated application of the subroutine Extend. It is described
in Table 8. Its input is the ordered sequence τ of sets obtained from the
decomposition procedure. However, the sequence τ is processed in the reverse
order. The procedure is illustrated by Example 24.

Example 24. The output of the second stage of the algorithm applied to the
ordered sequence (5) of subsets of N is the EG in Figure 5.
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Table 7. Subroutine Extend (G over M, T |H over M ∪ T ).

Input: G . . . a chain graph over a non-empty set of variables M
T . . . a set of variables with T \M 6= ∅

Output: H . . . a chain graph over M ∪ T

1 L := T ∩M ;
2 R := T \M ;
3 Z := ∅;
4 if L 6= ∅ then
5 choose a terminal component X in GL;
6 if X is a complete component in GL and paG(X) = L \X
7 then put Z := X;
8 determine the edges in H as follows:
9 HM := G;
10 ∀x ∈ L \ Z, ∀ z ∈ R include x → z in H;
11 ∀ y ∈ R ∪ Z, z ∈ R, y 6= z include y! z in H;
12 return H;

Table 8. The second stage Compose (τ over N |H over N).

Input: τ . . . an ordered sequence T1, . . . , Tn, n ≥ 1 of subsets of N
Output: H . . . a chain graph over M

1 M := Tn;
2 H := the complete undirected graph over M ;
3 G := H
4 for j = n− 1, . . . , 1 do
5 Extend (G over M, Tj |H over M ∪ Tj)
6 M := M ∪ Tj ;
7 G := H;
8 return H;

8 Construction of a hierarchical junction tree

The sequence of sets that is the outcome of the first stage (Table 6) can also
be used to construct a hierarchical junction tree similar to those introduced
in Puch et al. (2004).

Each set in the sequence defines a node of the hierarchical junction tree
whose entering edges could be labeled by sets Z or L obtained during the
second stage of the reconstruction algorithm (see Table 8). More specifically,
each node T may or may not be ascribed an entering edge and the edge can
be labeled either by a separator Z (if Z 6= ∅) or by a parent set L (if Z = ∅
and L ≡ L \ Z 6= ∅). These units can be used then to compose the whole
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hierarchical junction tree. Due to the lack of space we omit details of the
construction and give two examples instead.

Example 25. The nodes of a hierarchical junction tree constructed from the
sequence (5) are given in Figure 6, including their attributed separators and
parent sets. The resulting hierarchical junction tree is given in Figure 7.

a, b, d

a, b

d, f, g a, b, c

d, f

e, f b

a, b

a, e

e

Fig. 6. Units of a hierarchical junction tree.

a, b, c

e, f

a, b

a, e

e

d, f

a, b, d

d, f, g

a, b

b

Fig. 7. A hierarchical junction tree.

Example 26. Figure 8 gives another example of an EG H. The first stage of
the reconstruction algorithm applied to the standard imset uH ends with the
sequence of sets

{a, b, c, d}, {a, b, d, e}, {a}, {b} .

The nodes of the respective hierarchical junction tree are given in Figure 9,
including their attributed separators and parent sets. The resulting hierar-
chical junction tree is given in Figure 10. In that picture, the parent set
paH({c, d, e}) = {a, b} is attributed to just one node of the hierarchical junc-
tion tree. One can perhaps draw a picture in which every parent set is ascribed
to every node of the respective component of the hierarchical junction tree.
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c

b

e

a

d

Fig. 8. An EG.

a, b, d, e

d

b a, b, c, d

a, b

a

Fig. 9. Units of a hierarchical junction tree.

a, b

b

a, b, c, dda, b, d, e

a

Fig. 10. A hierarchical junction tree.

Conclusions

The presented procedures for the transition between graphical and algebraic
representatives of a CI model generated by DAG. These can be the first
step on the way towards a fully algebraic method for learning structure of
Bayesian networks. We hope that the procedures can be utilized to find a
characterization of the inclusion neighborhood of a given DAG in terms of
the standard imset. This will be a topic of a future research. We also plan to
study the polytope generated by standard imsets over N hoping that linear
programming maximization methods can be applied in learning Bayesian
networks.
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