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Abstract. Exact inference in Bayesian networks with nodes having a large parent
set is not tractable using standard techniques as are the junction tree method or the
variable elimination. However, in many applications, the conditional probability
tables of these nodes have certain local structure than can be exploited to make the
exact inference tractable. In this paper we combine the CP tensor decomposition
of probability tables with probabilistic inference using weighted model counting.
The motivation for this combination is to exploit not only the local structure of
some conditional probability tables but also other structural information potentialy
present in the Baysian network, like determinism or context specific independence.
We illustrate the proposed combination on BN2T networks — two-layered Bayesian
networks with conditional probability tables representing noisy threshold models.
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Introduction

Bayesian networks [1,2] are a popular model for reasoning under uncertainty. Computa-
tionally efficient probabilistic inference is possible even in models with hundreds of vari-
ables using techniques [3,4] that exploit the conditional independence relations between
modeled variables encoded by an acyclic directed graph. Unfortunately, if a node in the
graph has a very large parent set the exact inference using standard techniques as are
the junction tree method or the variable elimination is not tractable. On the other hand,
in many real application of Bayesian networks the conditional probability tables (CPTs)
have certain local structure that can be exploited to make the exact inference tractable.
A class of CPTs with local structure are models with independence of causal influence
(ICI models) [5] — a subclass of so called canonical models [6].

Diverse inference methods that exploit the local structure of CPTs were proposed.
In this paper we combine one such method — CP tensor decomposition [7,8,9] — with
weighted model counting applied to probabilistic inference [10,11]. In [10] it was ex-
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perimentaly shown that a significant computational gain can be achieved if the CPTs are
transformed before a weighted model counter is applied. We illustrate our approach by
use of a special class of Bayesian networks that is well motivated by applications. This
class is a generalization of BN20 networks, which are two-layered Bayesian networks
with conditional probability tables representing noisy-or models. A popular example of
this class is the decision theoretic version of the Quick Medical Reference model (QMR-
DT) [12]. We generalize BN20 networks to BN2T networks by replacing the noisy-or
by its generalization, the noisy threshold model. This allows modeling of a synergic ef-
fect of causes, e.g., if for a symptom to be observed as positive more than one cause (or
defect) needs to be present.

The paper is organized as follows. In Section 1 we introduce the necessary notation.
In Section 2 we present the Bayesian network factorization formula, which we will utilize
in consequent sections. Models of independence of causal influence are introduced in
Section 3, where also the CP tensor decomposition of these models is described. The
core of the paper is Section 4, where the CP tensor decomposition of CPTs of BN2T
networks is combined with weighted model counting. In Section 5 the contribution of
the paper is summarized our future research plans are presented.

1. Preliminaries

LetV ={1,...,n},n € N. Fori € V define variables X; taking states x; from a finite set
X;. Further let X4,A C V denote a multidimensional variable (X;)jca, let x4 = (x;) jea
denote a configuration of values of variable Xy, and let X4 = X je4X; denote the set of
all configurations of values of variable X4. We will use abbreviations X = Xy, x = xy,
X=Xy, X; = X{i}’ Xi =X} and X; = X{,}

Definition 1. A rable yx,,A C V is a function yx, : X4 — R viewed as an |A]-
dimensional array (also called tensor of order |A|), where coordinates in each dimension
are given by the values x; of variable X; corresponding to that dimension. For a value of
function yy, at a point x4 we will often write y/(x4) instead of yy, (x4).

Definition 2. A conditional probability table (CPT) Py, x, is a table yy, ,,A,B C
V,ANB = 0 such that it holds for all (x4,xp) € X4 x Xp that 0 < y(x4,xp) < 1 and
Y, V(xa,xg) = 1. If it is clear from context then for a particular combination of values
xa,xp of Py, |y, we write P(xplxp).

Remark. 1f B = 0 then for Py, |y, we use abbreviation Px, and call it probability table.

CPTs can be viewed as multidimensional arrays (tensors), that can be visualized
using nested matrices. In this paper we will follow the convention that the first vari-
able defines the most outer row coordinate, the second variable the most outer column
coordinate, etc. See Example 1.

Example 1. The conditional probability table Fy|x, x,x, can be viewed as a four-
dimensional array (tensor). Let Py x, x, x, represent logical or, i.e., let

P(y|x1,x2,x3) = (y <= (x1Vx2V1x3)), )]
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where logical values are 0 and 1. We can visualize the corresponding array (tensor) using
nested matrices with successive dimensions alternating between rows and columns as:

10\ /00
00) \oo
Frnexs =1 01\ 711
()

Definition 3 (Restriction). In a table Yy, we may fix values xp € Xp of some variables
Xp,0 # B C A. Then we get a new table Wxo Xp=xz» Where C = A \ B. It is defined for all
values xc as Yy, xz—xz (Xc) = Wx, (xB,XC) -

Example 2. Let Py|x, x, x, represent logical or as it was defined in Example 1. Then
0 1
1 1
P =
Y=11X1.X,.X3 1 1
1 1

Definition 4 (Multiplication). Let yx, and @x, be two tables such that A,B C V. The
product &, , of yx, and @y, is defined as & (xa,xp) = W(x4) - @(xp).

Example 3. In this example we multiply three tables Pyy, x,, Px,, and P,

N 10100} IR
) )

The product Wy x, x, = Py\x1 X - Py, - Px, is
P1-p2 0
0 0

(Pl : (107 pz)) ((1 (11?1)17'1()1.172172))

Definition 5 (Marginalization). Let yy, be a table and @ # B C A. Yy, is a marginal
table of yy, if it holds that: yx, (xg) = Yoo W, (xp,xc) where C = A\ B.

Yy X, X, =

Example 4. Consider table yy x, x, from Example 3. Table yy, x, is its marginal:
PLD2 (1=p1)-p2 >

Yx, x, = ( 2)
pr-(1=p2)  (1=p1)-(1=p2)

2. Bayesian networks

Bayesian networks [1,13,2] describe probabilistic relations between random variables
X1,...,X,. The structure of a Bayesian network is defined by an acyclic directed graph
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Figure 1. Structural part of the Bayesian network from Example 5.

G = (V,E), where E is the set of directed edges, i.e., E C V X V. The joint probability of
a Bayesian network is defined for all configurations x = (xj,...,x,) of the multidimen-
sional variable X = (Xi,...,X,) as

P(x1,...,x) :HP(x,-|xpa(l-)) , 3)
fly

where pa(i) denotes the set of parents” of node i in the graph G = (V,E), i.e. pa(i) =
{J,(i = j) € E}. The factorization defined by formula (3) allows efficient computations
of probabilistic queries P(X;le),e = {X; =x;,j € A},A CV forall i € V\ A. This allows
applications of Bayesian networks in domains with hundreds of variables, where a naive
computations with the full joint probability table would not be tractable.

Remark. To differentiate between different groups of variables we will denote variables
also by different letters than X, for example by Y or Y’, etc.

Example 5. In Figure 1 we give an example of an acyclic directed graph that defines the
structural part of a Bayesian network. The joint probability of this Bayesian network is
defined for all configurations (x1,x2,x3,X4,y1,y2) as

P(x1,...,X4,y1,y2) = P(y1]x1,x2,%3) - P(y2|x2,%3,%4) - P(x1) - P(x2) - P(x3) - P(x4) .

3. Models of Independence of Causal Influence

Unfortunately, in some application, the treewidth is large, often because some variables
X;,i € V have a large parent set, e.g., |pa(i)| > 100 and the exact inference with the stan-
dard junction tree method is not tractable. Luckily, in many real application of Bayesian
networks the conditional probability tables P(X;|X,,(;)) have a certain local structure
that can be exploited to make the exact inference tractable. A class of CPTs with local
structure are models with independence of causal influence (ICI models) [5], which is
a subclass of so called canonical models [6]. In each ICI model it is possible to make
graphically explicit the deterministic and probabilistic parts using auxiliary variables
X!,i=1,...,k. On the left hand side of Figure 2 a structure of an ICI model is presented.
A most popular example of an ICI model is the noisy-or model defined as

k
Pyix,,..x (Olxt,. ;) = [J (i) “)

i=1

2For simplicity, we will also use pa(X;) to refer to variables corresponding to nodes that are parents of the
node i corresponding to variable X;.
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Figure 2. Structure of an ICI model on the left hand side and the graph of the CP decomposition of an ICI
model with an evidence ¥ =y on the right hand side .

where parameters p;,i = 1,. ..,k satisfying 0 < p; < 1 are called inhibitory probabilities.

Example 6 (Noisy-or model for k = 3). The CPTs are defined as follows:
10 00
00 00
01 (11 ’
11 11

where parameters p; represent probabilities that the positive influence of X; = 1 on Y is
inhibited with probability p;.

&)

(o fori=1 k =
Pxix, = 0 1—p; ori=1,....;k Pyx xix; =

A generalization of the noisy-or model is the noisy threshold which takes value Y = 1
if at least £ out of k parent variables X ,...,X] are true (0 < £ < k). Let K = {1,... k}.
The CPT of the noisy threshold model is defined by

Py\xl,...,xk(mxla-- ) Z Z H pi)" H (I=(pj)") (6)
J=0 ICK |l|=k—j i€l JERNI

Note that for £ = 1 the noisy threshold model corresponds to the noisy-or model. The
threshold functions appear, for example, in medical applications [14,15,16].

Example 7 (Noisy threshold for k = 3,¢ = 2). In a noisy-threshold model with k = 3
the CPTs Py/y,,i = 1,...,k are defined as for noisy-or in Example 6 and Pyxs x1 x; is

defined as follows:
11 10
10 00

Pyixi x x; = 00N 701 : (N
01 11

Diverse inference methods that exploit the local structure of CPTs were proposed.
Even a brief review of these methods would go beyond the scope of this paper. Instead
we refer to other papers [17, Section 3] or [7, page 753], where methods exploiting local
structure in probabilistic inference are listed together with references to original papers.
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In this paper we build on one of the proposed methods — CP tensor decomposition
(previously called tensor rank-one decomposition) [7,8]. The CP tensor decomposition is
a generalization of the Diez and Galdn’s decomposition of noisy-max originally proposed
in [9]. In [7] it was generalized to some other canonical models. In [8] a CP tensor
decomposition of noisy threshold models was proposed. The basic idea of the CP tensor
decomposition is by introducing an auxiliary variable Y’ rewrite the CPT as a marginal
of a product of two-dimensional tables. This is always possible if we allow sufficient
number of states Y'. For a given CPT the goal is to find a decomposition with minimal
number of states |Y’| of Y’. The minimal value of |Y’| is called the rank of table (array,
tensor) Py|x, ... x,- In this paper we deal with decompositions of CPTs where Y has its
state y observed — either y =0ory = 1.

k
Pyoyix,.x = ZH Yx,y - (®)
Y i=1

This decomposition can be visualized using an undirected graph, see right hand side of
Figure 2. In [8] an algorithm for CP-decomposition of noisy-threshold was presented
that requires |Y’'| = |pa(Y)].

Example 8 (Decomposition of threshold for k =3,/ =2 and Y = 1). Consider the de-
terministic part Py X/ X} X} of a noisy-threshold model from Example 7 and assume that
Y = 1. Then using the algorithm described in [8] we can get the following CP tensor

decomposition:
0 0
0 1
Py_ijx) x5 x; = 0 |
() ()

6 3 2
WX.’.Y’ == fOI‘i: 1,273 . (10)
v 3/1 3/1
28 =% o

The CP tensor decomposition can be applied to Bayesian networks having defined
their structure by arbitrary acyclic directed graphs. However, in this paper we decided
to deal only with Bayesian networks that have the structure of a bipartite graph with all
edges directed from one part (the top level) towards the other (the bottom level) and all
conditional probability tables represent noisy threshold models. These networks are a
generalization of BN20 networks, generalizing noisy-or to noisy threshold models. We
will refer to them as to BN2T networks. See Figure 1 for an example of the graph of a
BN2T network. Furthermore, we assume that only the nodes from the bottom level can be
observed?. This allows us to include in the model only CPTs of bottom level nodes that
were observed since the unobserved nodes from the bottom level are barren nodes [13].
This observation together with (3) implies that for an evidence e = (yy,...,y,) it holds
that

3
= YT ©)
Y i=1

3In medical applications this corresponds to observing symptoms, results of lab tests, etc. Diseases are not
directly observable.
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n m
P()C],~--,Xn,e):HP()C[)HP()’HXPQ(YJ)) ) (11)

i=1 j=1
where X;,i=1,...,n are the nodes in the top level and Y}, j = 1,...,m are observed nodes

in the bottom level. It follows by the Bayes rule that

1 n m
P(xy,...,xple) = %HP(XI') I—IIP(y|xpa(yj)) , (12)
= j=
P(e) = Z P(x1,...,%,€) . (13)
X1see9Xn
We can substitute the CP tensor decomposition of CPTs Pyj:yj‘ pa(Y;): j=1,...,m as

defined in formula (8) into formulas (11) and (13) and get

P)= ¥ (ﬁP(n)) [T T verte)) - (14)
i=1

X17----,Xn7)’/|7---7)’;/n lexlepa(y/)

It is important to note that contrary to formula (11) the tables in formula (14) are defined
for at most two variables. Typically, this allows substantially more efficient inference.
The lower the number of states of auxiliary variables Y{,...,Y,, the lower is the com-
putational complexity. In [8] the computational complexity of the junction tree method
applied to full CPT tables and to the tables after CP tensor decomposition was compared.
Achieved savings were several orders of magnitudes for larger networks. In this paper
we will use a completely different approach to computing the value of P(e) based on

weighted model counting of logical models [18,10,11].

4. Probabilistic Inference by Weighted Model Counting

It was shown that if Bayesian networks exhibit a lot of determinism or context specific
independence the weighted model counting (WMC) represents an efficient method for
probabilistic inference [11]. The basic idea of WMC is to encode a Bayesian network
using a conjunctive normal form (CNF), associate weights to literals according to the
CPTs of the Bayesian network, and than compute the probability of evidence as the sum
of weights of all logical models consistent with that evidence. The weight of a logical
model is the product of weights of all literals. Efficient WMC solvers exploiting several
advanced techniques such as clause learning, component caching, etc can be used. An
example of a successful WMC solver is Cachet [19].

Next we follow Chavira and Darwiche’s approach [18] and show how a BN2T can
be encoded as a CNF. This is similar to the approach of Wei Li et al. [17], who used the
encoding of Sang et al. [10] to encode Bayesian networks with noisy max models.

e For each state x € X; of a BN2T variable X; a logical variable ljéi is created.
e For each state y € Y’j of a BN2T variable Y ]/ a logical variable l){{ is created.

J
e For each variable X; following clauses that ensure the states of X; are mutually
exclusive take part in the CNF:

\/ A%, and (=AfV-Ag) foralla,beX;a<b . (15)

xeX;
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e For each variable Y ]’ following clauses that ensure that the states of Y’ are mutually
exclusive take part in the CNF:

\/ Ay, and (=44, V-4y,) foralla,beY),a<b . (16)
J J J
yEY’j

e For each value of each table in formula (14) a logical variable is created. Variables
B..,x = 0,1 for each table Py,,i=1,...,m and 6X Y/,x =0,1,y=1,...,|pa(Y))]|

for each table yy. y.
)

e For each logical variable 6§i,i =1,...,n and for each state x € X two clauses are
included in the CNF:
(—6,VAy,) and (6% V-Ax) . a7

They ensure that 6y is true if and only if ljé is true.

e For each logical variable 6; )Y, three clauses are included in the CNF:

(637 V=2V ﬁlz,) and (—|6 ) v VAg,) and (—|6;ny/ VA (18)
istj 1 i L j
They ensure that GX’yY/ is true if and only if A5, and l) is true.
e The weights of all posmve literals are defined for all x eXjandye Y} as:
w(dy) = 1 and w(l;,) =1 19)
J
W(G)ﬁ) = PX[ ()C) and W(exyy/) = WXM’; (-xay) . (20)

e The weights of all negative literals —A are all one.

Example 9. In this example we consider a BN2T with its structure defined in Figure 1,
with CPTs corresponding to deterministic threshold with k = 3, ¢/ = 2, and with evidence
Y1 =1 and Y, = 1, respectively. CPTs are decomposed as described in Example 8. We
will show how this BN2T is encoded using a CNF. We will get following 68 logical
variables, classified into two groups. The first group consists of 12 indicator variables:

A% i€ {1,2,3,4},x€{0,1} and A) voi€{12hye {01}

The weights are all one for all 12 indicator variables and for both the positive and negative
literals. The second group consists of 56 parameter variables:

6y .i<{1,2,3,4},xe {0,1}

0 yy,,(',i)E{(l,l),(l,Z),(1,3),( 2),(2,3),(2,4)},x€{0,1},y € {1,2,3,4}.

Each positive literal of a parameter variable has its weight defined to be the value of the
corresponding parameter, ie forie {1,2,3,4},x € {0,1} we have that w(0y.) = Px,(x)
and for (j,i) € {(1,1),(1,2),(1,3),(2,2),(2,3),(2,4)}

o=y 5 -5 2l -5
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for (x,y) = (0,1),(0,2),(0,3),(1,1),(1,2),(1,3), respectively. All negative literals have
weight one. The CNF consits of 12 indicator clauses that ensure that in each evaluation
exactly one of indicator variables of each variable is true, i.e., (15 holds for i € {1,2,3,4}
and (16) holds for j € {1,2}. Additionaly, there are 16 parameter clauses in the CNF,
that ensure 6y, is true if and only if Ay is true, i.e., (17) holds for i € {1,2,3,4} and

x €4{0,1} and 144 parameter clauses, that ensure Gx’ ! is true if and only if /lx and A v, is

true, i.e., (18) holds for (i, j) € {(1,1),(1,2),(1,3) (2 2),(2,3),(2,4)}, x € {0,1}, and
.)}E {1727374}'

Theorem 1. Let A be the logical theory of a BN2T with evidence e encoded by a CNF
as specified above. Then for the weighted model count w(A) of the theory A it holds that

w(A) = P(e) . b3

Proof. In order to show that the WMC of the CNF encoded as specified above is equal
to P(e) we show how a weight of a logical model of the CNF of the BN2T is computed.
The weight w(®) of a logical model w is the product of weights of its literals ¢:

~TIv0) - 22)

o=t

From the above encoding it follows that each model w of the CNF corresponds to exactly
one configuration of values of BN2T variables X,',ij,i =1,...,n,j=1,...,m. Without
any loss of generality assume it is (xi,...,xs,)],...,)),). The weight of model @ is than
equal to the product

w):(ﬁw@%‘)) (ﬁwa;;)w(e;;)) H I » X'i’/ : (23)
j=1 / i=1

J=1Xiepa(Y))

The above CNF encoding assures that all other literals are negative and their weight is
one. Therefore we could omit them from the formula (23). Substituting the values of
weights into formula (23) we get

:(ﬁp(xi)> H I WXY’ xiYp) | 24)

J=1X;€pa(Y;)

The weight of a logical theory is the sum of weights of its logical models. If we sum the
weights of all logical models of the CNF computed by formula (24) we can see that it is
equal to formula (14), which is used to compute the probability of evidence P(e). O

5. Summary and future work

In this paper we have used two-layered Bayesian networks with noisy threshold models
to illustrate how the CP tensor decomposition can be combined with weighted model
counting. In the similar manner the CP tensor decomposition can be utilized for other
models of independence of causal influence and for general Bayesian networks.

In a near future we would like to perform experiments with BN2T using modified
Cachet [19] in the same spirit as it was done by Wei Li et al. [17] for noisy-max. As it
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was noted in [11] it should be possible to convert Cachet into a compiler by modifying it
to keep a trace of its operations. As a criteria for the comparisons we could use the num-
ber of operations performed by Cachet when computing the satisfying probability since
this criteria characterizes well the computational complexity of inference with compiled
arithmetic circuits. In this way it should be possible to make fair comparisons of not
only different encodings as Chavira and Darwiche’s encoding [18] and Sang, Beame,
and Kautz’s encoding [10] but also different WMC solvers as Cachet [19] and Ace [20].
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