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Abstract. We present a variational estimation method for the mixed logistic regression
model. The method is based on a lower bound approximation of the logistic function
(Jaakkola and Jordan, 2000). Based on the approximation, an EM algorithm can be de-
rived that results in a considerable simplification of the maximization problem in that
it does not require the numerical evaluation of integrals over the random effects. We as-
sess the performance of the variational method for the mixed logistic regression model
in a simulation study, and compare it to Laplace’s method. The results indicate that the
variational method is a viable choice for estimating the fixed effects of the mixed logistic
regression model under the condition that the number of outcomes within each cluster is
sufficiently high.
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1 Introduction

Mixed models are one of the standard tools for the analysis of clustered data. Clustered data
arise for example in the context of longitudinal studies, where a sample of clusters is repeatedly
assessed; or in educational settings where pupils are clustered within schools. The outcomes
stemming from the same cluster tend to be more homogeneous than outcomes stemming from
different clusters, and, by consequence, the outcomes within a cluster are likely to be correlated.
These dependencies are taken into account by mixed models through the incorporation of so
called random effects. These are cluster-specific parameters that are considered to be random
variables as well, with a distribution that is defined over the population of clusters. The cluster-
specific parameters are assumed to explain away all dependencies that are due to inter-cluster
variability.
? This is a preprint of an article submitted for consideration in the STATISTICAL COMPUTATION

AND SIMULATION . 2007 c©Taylor & Francis; STATISTICAL COMPUTATION AND SIMULA-
TION is available online at: http://journalsonline.tandf.co.uk/



Let yij be the j-th observed outcome of cluster i, i = 1, . . . , N , j = 1, . . . , Ji, and bi a vector
of parameters that are specific for cluster i (random effects). In its general form, a mixed model
can be defined as follows:

yij are independent realizations of f(yij | bi), conditional on bi (1)
bi are independent realizations of k(bi), (2)

By the assumption of conditional independence between the outcomes within a cluster,

p(yi | bi) =
Ji∏

j=1

f(yij | bi) .

Most commonly, a (multivariate) normal distribution is assumed for the random effects,

k(bi) = N (bi;0,Σ) .

The choice for the conditional distribution of the outcomes determines to which class of mixed
models the model belongs:

– In the linear mixed model (Verbeke and Molenberghs, 2000; Diggle et al., 2002)

p(yi | bi) = N (bi;µi,R) with µi = Xiβ + Zibi,

where Xi and Zi denote the predictor matrices for the fixed and random effects, respectively,
and β denotes the vector of parameters that are common to all clusters (fixed effects)

– In the nonlinear mixed model (Davidian and Giltinan, 1995)

p(yi | bi) = N (yi;µi,R) with µi = m(Xiβ + Zibi),

where m is a nonlinear function.
– In the generalized linear mixed model (McCulloch and Searle, 2001),

p(yi | bi) =
Ji∏

j=1

f(yij | bi) ,

with f(yij | bi) being a member of the exponential family. The conditional mean µij of
f(yij | bi) is related to the predictors via the link function g:

g(µij) = x′ijβ + z′ijbi .

Note that, if R is not the identity matrix, then for linear and nonlinear mixed models, we
obtain a more general mixed model than one presented in equations (1) and (2) in the sense
that conditional independence between the outcomes of the same cluster is no longer imposed.
This allows for the modeling of additional sources of dependencies (e.g. serial correlation).

Maximum likelihood estimates for the parameters are obtained by maximizing the log-
likelihood

`(α) =
N∑

i=1

log
(∫ +∞

−∞
p(yi | bi) · k(bi) dbi

)
, (3)

where α consists of the parameter vector ϕ that characterizes the distribution of the random
effects k(bi), β, and the remaining parameters that characterize p(yi | bi) (e.g., the parameters
that determine R in the (non)linear mixed model).
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For the linear mixed model with a normal distribution for the random effects and for some
generalized linear mixed models, the integral in equation (3) has a closed form solution. However,
for most commonly used generalized linear and nonlinear mixed model, the integral is intractable.

A variety of approximations to the integrals appearing in the log-likelihood have been pro-
posed. They can be categorized into two categories (Tuerlinckx et al., 2006): approximations
to the integral on the one hand, and approximations to the integrand on the other hand. The
gaussian quadrature methods (adaptive or nonadaptive) are methods in which the integral is
approximated by a finite sum. Examples of methods in which the integrand is approximated
are Laplace’s method (Tierny and Kadane, 1986), Marginal Quasi-Likelihood (MQL) (Gold-
stein, 1991), Penalized Quasi-Likelihood (PQL) (Breslow and Clayton, 1993) and extensions of
these methods (Raudenbush et al., 2000; Goldstein and Rasbash, 1996; Rodriguez and Goldman,
1995). For a review, see Tuerlinckx et al. (2006).

In this paper, we present and evaluate a method that belongs to a third category of approxi-
mations: the category of variational methods. The distinguishing feature of variational methods
is the introduction of so called variational parameters to obtain a lower bound approximation
to the log-likelihood.

2 A variational method for the mixed logistic regression model

Variational techniques encompass a variety of approximation techniques. The common denomi-
nator is to simplify a complex optimization problem by the introduction of additional, variational,
parameters. For a fixed set of values for the variational parameters, the transformed problem
has a simpler (e.g. closed-form) solution, providing an approximate solution to the original prob-
lem. The variational parameters are optimized in a separate step. Estimation is performed by
alternating these two steps in order to obtain a sequence of approximations of increasing ac-
curacy (Jaakkola and Jordan, 2000). Examples of the use of variational lower bounds to the
log-likelihood function can be found in the context of missing data for Markovian models (Hall
et al., 2002), and in the context of graphical models (Jordan et al., 1999; Saul et al., 1996).

Jaakkola and Jordan (2000) proposed a variational method to obtain a closed form approxi-
mation to the posterior distribution of the parameters of the logistic regression model formulated
in a Bayesian framework. Their method is based on a lower bound variational approximation of
the logistic function

h(x) =
exp(x)

1 + exp(x)
= (1 + exp(−x))−1

proposed by Jaakkola and Jordan (2000), see also Tipping (1998).
Using the same lower bound variational approximation to the logistic function, we will present

a method for obtaining maximum likelihood estimates of the parameters of a mixed logistic
regression model with a normal distribution for the random effects. The method is a natural
extension of the work of Jaakkola and Jordan (2000).

The mixed logistic regression model is a generalized linear mixed model with a binomial
distribution as the choice for the exponential family distribution, and the logit function as a link
function. Without loss of generality, we only consider the case of binary data. The log-likelihood
function is then

`(α) =
N∑

i=1

log
∫ +∞

−∞
N (bi;0,Σ)

Ji∏
j=1

h
(
(2yij − 1)(x′ijβ + z′ijbi)

)
dbi

=
N∑

i=1

log
∫ +∞

−∞
N (bi;0,Σ)

Ji∏
j=1

h (t(yij ,xij ,β,zij , bi)) dbi , (4)
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where we simplified notation by defining the function

t(y, x,β,z, b) = (2y − 1)(x′β + z′b) ,

which is linear in b. When it is clear from the context we omit other arguments of the function
and write t(b).

The main distinction between the mixed logistic regression model and the “Bayesian” logistic
regression model of Jaakkola and Jordan (2000) are the clustered data structure and the presence
of both fixed and random effects in the former, whereas in a Bayesian framework, all parameters
are considered to be random variables. Jaakkola and Jordan (2000) discuss clustered data to
some extent in the context of binary factor analysis, see also Tipping (1998).

Because the mixed logistic regression model is related but not equivalent to the models
discussed by Jaakkola and Jordan (2000), the derivations for the variational method are presented
to some detail in the following.

Variational lower bound to the log-likelihood

The variational approximation to the integral in equation (4) starts by constructing a variational
lower bound to the logistic function. First, the log logistic function is symmetrized

log h(x) =
x

2
− log

(
exp(

x

2
) + exp(−x

2
)
)

. (5)

The second term f(x) = − log
(
exp(x

2 ) + exp(−x
2 )
)

is convex in x2, so that the tangent to its
surface formed by a first order Taylor expansion in x2 around a point ξ is a lower bound

f(x) ≥ f(ξ) +
∂f(x)
∂(x2)

∣∣∣
x=ξ

(x2 − ξ2)

= f(ξ)− λ(ξ)(x2 − ξ2) ,

where

λ(ξ) = −∂f(x)
∂(x2)

∣∣∣
x=ξ

=
1
4ξ

tanh(
ξ

2
) . (6)

It implies that

h(x) ≥ exp
(x

2
+ f(ξ)− λ(ξ)(x2 − ξ2)

)
= exp

(
ξ

2
+ f(ξ)

)
exp

(
x

2
− ξ

2
− λ(ξ)(ξ2 − h2)

)
= h(ξ) exp

(
1
2
(x− ξ)− λ(ξ)(x2 − ξ2)

)
.

In Figure 1 we present logistic function together with its variational lower bounds for five
different values of variational parameter ξ.

We will use the lower bound in the context of the mixed logistic regression model and ap-
proximate h(t(b)) by its variational lower bound

h(t(b)) = h(ξ) exp
(

1
2
· (t(b)− ξ)− λ(ξ) · (t(b)2 − ξ2)

)
.

Allowing a different value ξij of the variational parameter for each outcome j within in each
cluster i, a lower bound for the log-likelihood is obtained by

`(α) ≥ `(α) =
N∑

i=1

log
∫ +∞

−∞
N (bi;0,Σ)

Ji∏
j=1

h (t(yij ,xij ,β,zij , bi)) dbi . (7)
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Fig. 1. Logistic function (solid line) and its variational lower bounds for ξ = 0, +2, +4, +6, +8 (dashed
lines)

Normality of the approximated posterior distribution of the random effects

It is easily verified that the exponent of the variational lower bound is quadratic in b

h(t(b)) ∝ exp
(

1
2
· t(b)− λ(ξ) · t(b)2

)
∝ exp

(
(y − 1

2
)z′b− λ(ξ)(2x′βz′b + b′zz′b)

)
= exp

((
(y − 1

2
)z′ − λ(ξ)2x′βz′

)
b− λ(ξ)b′zz′b)

)
,

Hence, as a function of b, h(t(b)) is proportional to a normal distribution with mean ν and
covariance matrix Ψ , where

Ψ−1 = 2λ(ξ)zz′

ν = Ψ

(
y − 1

2
− 2λ(ξ)x′β

)
z .

This property can be used to approximate the posterior distribution of the random effects q(bi |
yi). The integrand in equation (4) is the unnormalized posterior of bi, with the integrand in
equation (7) as its lower bound. As a function of bi, the latter is a product of a normal distribution
and Ji factors that are proportional to a normal distribution. This implies that the lower bound
of the unnormalized posterior of bi is proportional to a normal distribution as well,

N (bi;0,Σ)
Ji∏

j=1

h (t(yij ,xij ,β,zij , bi)) ∝ N (bi;µi,Σi) ,

where

Σ−1
i = Σ−1 + 2

Ji∑
j=1

λ(ξij)zijz
′
ij (8)

µi = Σi

Ji∑
j=1

(
yij −

1
2
− 2λ(ξij)x′ijβ

)
zij . (9)
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Consequently, we can approximate q(bi | yi) with q∗(bi | yi) = N (bi;µi,Σi). Note that, by
normalizing the variational approximation, it becomes a proper density and thus N (bi;µi,Σi)
is not a lower bound to the posterior distribution of the random effects q(bi | bi) (Jaakkola and
Jordan, 2000).

Alternatively, q∗(bi | yi) is the posterior distribution of the random effects when

h (t(yij ,xij ,β,zij , bi))

is approximated with its lower bound h (t(yij ,xij ,β,zij , bi)).

3 EM algorithm

The EM algorithm (Dempster et al., 1977) can be used to obtain parameter estimates that
maximize the lower bound to the log-likelihood `(α). Before proceeding, we take one step back
and describe the “traditional” EM algorithm for obtaining maximum likelihood estimates for the
mixed logistic regression model. Treating the random effects bi, i = 1, . . . , N as missing data,
the complete data log-likelihood is

`c(α) =
N∑

i=1

logN (bi;0,Σ) +
Ji∑

j=1

log h (t(yij ,xij ,β,zij , bi))

 , (10)

In the E-step, one computes the expectation of the complete data log-likelihood given the
previous parameter estimates α̂old:

Q(α; α̂old) = Eq{`c(α)} , (11)

where Eq denotes the expectation with respect to the posterior distributions of the random
effects q(bi | yi; α̂

old). In the M-step, this expectation is maximized for α. The latter serve as
new provisional parameter estimates for the next E-step. The sequence of parameter estimates
converges to a stationary point of the incomplete data log-likelihood `(α).

For a mixed logistic regression model however, the E-step involves the computationally de-
manding numerical evaluation of integrals over the random effects bi. Therefore, we shift atten-
tion from `(α) to its lower bound `(α), and use the EM algorithm to obtain parameter estimates
that maximize the latter. The lower bound approximation of the complete data log-likelihood is

`c(α) =
N∑

i=1

logN (bi;0,Σ) +
Ji∑

j=1

log h (t(yij ,xij ,β,zij , bi))

 . (12)

E-step

The E-step involves the computation of

Q(α, ξ; α̂old, ξ̂
old

) = Eq∗{`c(α)}

=
N∑

i=1

Eq∗{logN (bi;0,Σ)}+
Ji∑

j=1

Eq∗{log h (t(yij ,xij ,β,zij , bi))}

 , (13)

where Eq∗ denotes the expectation with respect to

q∗(bi | yi; α̂
old, ξ̂

old
) = N (bi;µold

i ,Σold
i ) .
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For the first part of the right-hand side of equation (13) we obtain

Eq∗{logN (bi;0,Σ)} = −N log(2π)D/2 −N log |Σ|1/2

−1
2

N∑
i=1

(
tr
(
Σ−1Σold

i

)
+ (µi

old)′Σ−1µi
old
)

, (14)

where D denotes the dimensionality of bi and we used the identity

Eq∗{b′iΣ
−1bi} = tr

(
Σ−1Σold

i

)
+ (µi

old)′Σ−1µi
old .

For each term of the second part of the right hand side of equation (13) we can write

Eq∗{log h (t(yij ,xij ,β,zij , bi))}

= log h(ξij) +
1
2

(Eq∗ {t(yij ,xij ,β,zij , bi)} − ξij))

−λ(ξij)
(
Eq∗

{
t(yij ,xij ,β,zij , bi)2

}
− (ξij)2

)
= log h(ξij) + (yij −

1
2
)(x′ijβ + z′ijµ

old
i )− 1

2
ξij

−λ(ξij)
(
(x′ijβ)2 + 2x′ijβz′ijµ

old
i + z′ij(µ

old
i (µold

i )′ + Σold
i )zij − (ξij)2

)
, (15)

where we used the identity Eq∗{bib
′
i} = µold

i (µold
i )′ + Σold

i .

M-step

In the M-step, the variational parameters ξij and the model parameters α are updated. The

parameters that optimize Q(α, ξ; α̂old, ξ̂
old

) are given by the solution to the likelihood equations.
For each of the variational parameters ξij , i = 1, . . . , N , j = 1, . . . , Ji, the likelihood equation

is

0 =
∂

∂ξij
Q(α, ξ; α̂old, ξ̂

old
) (16)

=
∂

∂ξij
log h(ξij)−

1
2

+ 2λ(ξij)ξij

−∂λ(ξij)
∂ξij

(
(x′ijβ)2 + 2x′ijβz′ijµ

old
i + z′ij(µ

old
i (µold

i )′ + Σold
i )zij − ξ2

ij

)
. (17)

It follows from equations (5) and (6) that

∂

∂ξij
log h(ξij) =

∂

∂ξij

(
1
2
ξij + f(ξij)

)
=

1
2

+
∂f(ξij)

∂ξ2
ij

∂ξ2
ij

∂ξij
=

1
2
− 2λ(ξij)ξij

When we substitute this into equation (17) we get

∂

∂ξij
Q(α, ξ; α̂old, ξ̂

old
)

= −∂λ(ξij)
∂ξij

(
(x′ijβ)2 + 2x′ijβz′ijµ

old
i + z′ij

(
µold

i (µold
i )′ + Σold

i

)
zij − ξ2

ij

)
,

7



which, together with the property that λ(ξij) is a monotonically decreasing function for ξij ≥ 0
(and we can always chose ξij ≥ 0 because h(t(b)) is a symmetric function of ξij), gives the
solution to the likelihood equation

ξ2
ij = (x′ijβ)2 + 2x′ijβz′ijµ

old
i + z′ij

(
µold

i (µold
i )′ + Σold

i

)
zij (18)

The likelihood equations for the fixed parameters β are

0 =
∂

∂β
Q(α, ξ; α̂old, ξ̂

old
)

=
N∑

i=1

Ji∑
j=1

(yij −
1
2
)xij + λ(ξij)

(
−2xijx

′
ijβ − 2xijz

′
ijµ

old
i

)
,

with the solution

β =

 N∑
i=1

Ji∑
j=1

2λ(ξij)xijx
′
ij

−1 N∑
i=1

Ji∑
j=1

(yij −
1
2
)xij − 2λ(ξij)xijz

′
ijµ

old
i


Finally, the likelihood equations for the covariance parameters of of the random effects are

0 =
∂

∂Σ
Q(α, ξ; α̂old, ξ̂

old
) =

N∑
i=1

∂

∂Σ
Eq∗{log (N (bi;0,Σ))}

Since

∂ log |X|
∂X

= (X−1)′ ,
∂tr(X−1A)

∂X
= −X−1A′X−1 ,

and Σ is symmetric we obtain

0 = −NΣ−1 +

(
N∑

i=1

Σ−1
(
µold

i (µold
i )′ + Σold

i

)
Σ−1

)
.

The solution for Σ is

Σ =
1
N

(
N∑

i=1

µold
i (µold

i )′ + Σold
i

)
Because the variational parameters ξij appear in the solution to the likelihood equations for

the fixed parameters β, and vice versa, a conditional maximization scheme is a convenient choice
for updating those two sets of parameters. That is, while updating one set of parameters, the
parameters of the other set are constrained at their current values. Within each M-step, this
conditional maximization scheme can be cycled through several times, but one cycle is sufficient
to increase `(α). As in the standard EM algorithm, `(αnew) ≥ `(αold) follows from Jensen’s
inequality.

4 Simulation study

The Rasch model

The Rasch model (Rasch, 1960) is widely used in the field of educational measurement. In this
context, clusters correspond to persons, and the observations to the responses on binary items
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(“correct” vs. “incorrect” or “agree” vs. “disagree”). In the Rasch model, the probability of
observing “1” is modeled as a logistic function of the sum of a person parameter and an item
parameter

Pr(Yij = 1|bi) = h(bi + βj) .

If we assume that the person parameter bi is a random variable with a distribution over
the population of persons, the Rasch model is a mixed logistic regression model with a random
intercept and fixed item parameters, with

x′ij = x′j = (δ1(j), δ2(j), . . . , δJi
(j)) , where δk(j) =

{
1 if k = j
0 otherwise.

bi = bi

zij = zi = 1 for i = 1, . . . , N
Σ = σ2 .

Method

We simulated data for four different Rasch models, with σ2 = 1, 3 and J = 5, 25. From each
of these four models we generated 60 data sets: 30 data sets containing 100 “persons” and 30
datasets containing 500 “persons”. Thus, we performed eight experiments:

1. σ2 = 3, J = 25, and N = 100,
2. σ2 = 1, J = 25, and N = 100,
3. σ2 = 3, J = 25, and N = 500,
4. σ2 = 1, J = 25, and N = 500,
5. σ2 = 3, J = 5, and N = 100,
6. σ2 = 1, J = 5, and N = 100,
7. σ2 = 3, J = 5, and N = 500,
8. σ2 = 1, J = 5, and N = 500.

The item parameters ranged between minus two and plus two. Furthermore, the items were
placed symmetrically around zero and were placed more densely the closer they were to zero,
see Figure 2.

For each dataset, parameter estimates were obtained for both the variational method and
Laplace’s method. In Laplace’s method, the log-likelihood is approximated by approximating the
log integrand in equation (4) through a second-order Taylor expansion around its mode. Laplace’s
method is often used and will therefore serve as a benchmark for assessing the performance of
the variational method.

For Laplace’s method, we used the SAS NLMIXED procedure Laplace’s method is obtained
in SAS NLMIXED through specifying “method = gauss qpoints = 1”, see the SAS user’s man-
ual (SAS Institute Inc., 2005). We implemented the variational method for the estimation of the
Rasch model in Matlab.

Results

Figures 3, 4, and 5 display the boxplots of the differences between the estimated and true
parameters for each of the eight conditions. The center of the boxplots are informative with
respect to the bias of the estimation procedure: negative bias (underestimation of the true
parameter) is indicated by a boxplot that is centered below zero, and positive bias by a boxplot
that is centered above zero. The width of the boxplots are informative with respect to the
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Fig. 2. Item parameters
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dispersion of the estimates. In Figures 4 and 5, the boxplots for β = (β1, . . . , βJ) are ordered in
decreasing order: the leftmost boxplot corresponds to βj = 2 and the rightmost to βj = −2.

With respect to the variance parameter (figure 3), Laplace’s method showed no bias when
σ2 = 1, but when σ2 = 3, a substantial negative bias was found. The magnitude of the bias is
about 50% of the true value, and is independent of sample size and the number of items. As
could be expected, the dispersion of the estimates becomes smaller with increasing sample size.
In addition, the estimates showed less dispersion when J = 5 than when J = 25. The variational
method was found to suffer from a negative bias in all conditions. The magnitude of the bias was
a function of the number of items (larger bias when J = 5). The absolute bias also depended on
the true value of σ2 (larger absolute bias when σ2 = 3), but the relative bias was roughly the
same (e.g. 40 to 50% for J = 5, for both σ2 = 1 and σ2 = 3). As could be expected, the dispersion
of the estimates becomes smaller with increasing sample size. Comparing the variational method
to Laplace’s method, the variational method showed more negative bias when σ2 = 1, and less
bias when J = 25 and σ2 = 3. Furthermore, the estimates stemming from the variational method
showed overall more dispersion than the estimates stemming from Laplace’s method.

With respect to the item parameters (Figures 4 and 5), both methods seemed to perform quite
well when J = 25, except for the condition with N = 500 and σ2 = 1, where the variational
method showed a small shrinkage of the estimates towards zero, as can be inferred from the
pattern in the boxplots: for βj = 2 (leftmost boxplot), there was a negative bias, turning into a
positive bias for βj = −2 (rightmost boxplot). For J = 5, no consistent pattern could be discerned
for Laplace’s method, whereas the variational method showed a shrinkage towards zero for all
conditions with J = 5. For the extreme item parameters (β = 2 and β = −2), the bias was
about 10 to 20%. The dispersion was comparable for both methods under all conditions. Again,
as could be expected, the dispersion was smaller for N = 500 than for N = 100. Furthermore,
the dispersion was somewhat smaller when σ2 = 1 compared to σ2 = 3.

With respect to estimation time, we observed that the variational method was quite fast in
all conditions whereas Laplace’s method (as it is implemented in the NLMIXED procedure of
SAS) slowed down considerably for the conditions with J = 25.
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Fig. 3. Differences between estimated and true values of σ2 for all eight experiments
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5 Concluding remarks

We presented a variational estimation method for the mixed logistic regression model. The
method is based on a lower bound approximation of the logistic function (Jaakkola and Jor-
dan, 2000) and results in a considerable simplification of the maximization problem in that the
approximated log-likelihood function no longer contains intractable integrals over the random
effects. Jaakkola and Jordan (2000) used the lower bound approximation of the logistic function
to approximate the posterior distribution of a logistic regression model formulated in a Bayesian
framework. The variational estimation method we presented is a generalization of their approach
in the sense that the mixed logistic regression model contains both fixed and random effects,
whereas in a Bayesian framework, all parameters are considered to be random variables.

The results of the simulation study show that the variational method suffers from a negative
bias in estimating the variance parameter(s) of the random effects. However, the bias decreases
with an increasing number of outcomes obtained from the same cluster and its performance
becomes comparable to Laplace’s method. With respect to the fixed effects, it was also found
that the performance of the variational method depends on the number of outcomes within the
same cluster. For a small number of outcomes (i.e. 5), the variational method suffers from a
shrinkage towards zero. This shrinkage was not or only to a minor degree observed for a larger
number of outcomes (i.e. 25).

Together with the observation that estimation time increases more rapidly with an increas-
ing number of outcomes for Laplace’s method than for the variational method, the variational
method seems to be a viable choice for estimating the fixed effects of the mixed logistic regression
model when the number of outcomes within each cluster is sufficiently high.
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Fig. 4. Differences between estimated and true values of β in experiments 5, 6, 7, and 8.
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Fig. 5. Differences between estimated and true values of β in experiments 1, 2, 3, and 4.
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